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Pointwise Redundancy in Lossy Data Compression
and Universal Lossy Data Compression

Ioannis Kontoyiannis, Member, IEEE

Abstract—We characterize the achievable pointwise redun-
dancy rates for lossy data compression at a fixed distortion level.
“Pointwise redundancy” refers to the difference between the
description length achieved by an th-order block code and the
optimal ( ) bits. For memoryless sources, we show that the
best achievable redundancy rate is of order ( ) in proba-
bility. This follows from a second-order refinement to the classical
source coding theorem, in the form of a “one-sided central limit
theorem.” Moreover, we show that, along (almost) any source
realization, the description lengths of any sequence of block codes
operating at distortion level exceed ( ) by at least as much
as log log , infinitely often. Corresponding direct coding
theorems are also given, showing that these rates are essentially
achievable. The above rates are in sharp contrast with theexpected
redundancy rates of order (log ) recently reported by various
authors. Our approach is based on showing that the compression
performance of an arbitrary sequence of codes is essentially
bounded below by the performance of Shannon’s random code.
We obtain partial generalizations of the above results for arbitrary
sources with memory, and we prove lossy analogs of “Barron’s
Lemma.”

Index Terms—Large deviations, lossy data compression, rate-
distortion, redundancy, universal coding.

I. INTRODUCTION

BROADLY speaking, the objective of lossy data compres-
sion is to find efficient approximate representations for rel-

atively large amounts of data. Let de-
note a data string generated by a random source

taking values in the source alphabet. We wish to repre-
sent each by a corresponding string
taking values in the reproduction alphabet(where may or
may not be the same as), so that the distortion between each
data string and its representation lies within some fixed allow-
able range. For our purposes, distortion is measured by a family
of single-letter distortion measures

where is a fixed nonnegative function.
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To be specific, we consider “variable-length block codes op-
erating at a fixed distortion level,” that is, codes defined by
triplets where

a) is a subset of called thecodebook;
b) is theencoderor quantizer;
c) is an invertible (and prefix-free) rep-

resentation of the elements of by finite-length binary
strings.

For , the block code is said to
operate at distortion level [14] (or to be -semifaithful[23]),
if it encodes each source string with distortionor less

for all

From the point of view of data compression, the main quantity of
interest is the description length of a block code, expressed
in terms of its associated length function . Here,

denotes the description length, in bits, assigned by
to the string . Formally

length of

Roughly speaking, the smaller the description length, the better
the code.

Shannon in 1959 characterized the best achievable compres-
sion performance of block codes. Suppose, for example, that the
data are generated by a memoryless source ,
that is, the are independent and identically distributed (i.i.d.)
random variables with common distributionon . Suppose
also that is an arbitrary se-
quence of block codes operating at distortion level. In [28]
Shannon identified the minimalexpecteddescription length that
can be achieved by any such sequence . He showed that
the expected compression ratio is asymptotically
bounded below by therate-distortion function

bits per symbol (1)

where is defined by the well-known formula

(Precise definitions are given in the next section.) Moreover,
Shannon demonstrated the existence of codes achieving the
above lower bound with equality; see [28] or Berger’s classic
text [4].

A stronger version of Shannon’s “converse” (1) was proved
by Kieffer in 1991 [14], who showed that the rate-distortion
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function is an asymptotic lower bound for not just in
expectation but also in the pointwise sense

a.s. (2)

(Here and throughout this paper the terms “pointwise,” “almost
surely” (denoted “a.s.”), and “with probability one” are used
interchangeably.) Kieffer’s result says that, asymptotically, it is
impossible to beat the rate-distortion function even on a small
fraction of the messages generated by the source. In [14] it is
also demonstrated that the bound in (2) can be achieved with
equality.

Our main aim in this paper is to characterize the achievable
pointwise redundancy ratesfor block codes applied to memo-
ryless sources, where the pointwise redundancy is defined as
the difference between the description length of an

th-order block code and the optimum description length
given by . Mathematically, this problem translates to
describing the possible rates of convergence in (2), and, in
particular, finding the fastest such rate. The main gist of our
approach will be to show that the performance of any sequence
of block codes operating at a fixed distortion level is bounded
below by the performance of a (simple variant of) Shannon’s
random code.

In terms of data compression, knowing the possible conver-
gence rates that can be achieved in(2) tells us how big blocks of
data we need to take in order to come reasonably close to op-
timal compression performance. Clearly, these questions are of
significant practical relevance.

A. Outline

For simplicity, assume for now that and are both finite
sets, and let be a memoryless source with
rate-distortion function . Our main results (Theorems 4
and 5, summarized in Corollaries 1 and 2) state that the perfor-
mance of an arbitrary sequence of codes is essentially
dominated by the performance of a random code, to which we
refer as the “Shannon code.”

(MAIN RESULT): Let be the optimal reproduction
distribution at distortion level , and write for
the distortion-ball of radius around (precise defini-
tions are given in the next section). For any sequence of
block codes operating at distortion level , with as-
sociated length functions , we have

a.s.

Moreover, the Shannon code asymptotically achieves this
lower bound with equality.

(Throughout the paper, “ ” denotes the logarithm taken to
base and “ ” denotes the natural logarithm.) Next, moti-
vated by corresponding results in the case of lossless data com-
pression [15], we interpret Kieffer’s result (2) as a “one-sided”
law of large numbers, and we state and prove corresponding
second-order refinements to (2). In Theorem 1 we give a “one-
sided” central limit theorem (CLT) corresponding to the point-
wise lower bound in (2).

(CLT): There is a sequence of random variables
(depending on and ) such that, for any sequence of
codes operating at distortion level , we have

a.s. (3)

where the converge in distribution (as ) to
a Gaussian random variable. Moreover, there exist codes

achieving the lower bound in (3) (see Theorem 2).

This means that foranysequence of codes, about half the time,
the description length will deviate from the optimum

bits by bits.
A further refinement to the pointwise converse (2) is also

given in Theorem 1, in the form of a “one-sided” law of the it-
erated logarithm (LIL) (under some mild conditions). This pro-
vides a complete characterization of the pointwise redundancy
of block codes at a fixed distortion level.

(LIL): For any sequence of codes operating
at distortion level , the pointwise redundancy exceeds

for infinitely many values of (for some
)

infinitely often, a.s.
(4)

Moreover, there exist codes asymptotically achiev-
ing this lower bound (Theorem 2).

The pointwise redundancy rates in (3) and (4) are in sharp
contrast with the correspondingexpectedredundancy results re-
cently reported by Zhang, Yang, and Wei in [39]. There, it shown
that the best possible expected redundancy

achievable by block codes is of order . For practical
purposes, this difference suggests the following interpretation:
Since any compression algorithm used in practice is bound to
have fluctuations in the description length of order at least as
large as , for big enough block lengths it may or may
not be worth putting a lot of effort into optimizing the algo-
rithm’s expectedperformance. Instead, it might be more useful
to either: a) try to control the variance of the description lengths

or b) optimize the algorithm’s implementation. Indeed,
it seems to often be the case in practice that “implementation
complexity might be the dominating issue” [5].

Our next result says, perhaps somewhat surprisingly, that
there is no cost for universality in pointwise redundancy. That
is, essentially the same performance can be achieved, even
when the source distribution is not known in advance. For the
class of all memoryless sourcesover the alphabet , The-
orem 3 demonstrates the existence of a sequence of universal
codes with length functions such that, for every
source (and for some )

a) a.s.
b) a.s.
c) eventually, a.s.
A natural next question to ask is whether these results re-

main true when sources with memory are considered. The fun-
damental coding theorems in (1) and (2) are, of course, still valid
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(with the rate-distortion function now defined in terms of the
distribution of the whole process), but redundancy questions
appear to be much more delicate. For arbitrary sources with
memory (not even necessarily stationary or ergodic), Theorem
6 gives a general pointwise lower bound for the performance of
block codes at a fixed distortion level. This result can be thought
of as the natural analog to the case of lossy compression of a
well-known result from lossless compression, sometimes [29]
referred to as “Barron’s Lemma” [1], [2]. A more detailed dis-
cussion of this connection is given in Section II-D. Finally The-
orem 8 is a direct coding theorem demonstrating a pointwise
achievability result which complements the lower bound of The-
orem 6.

B. History

Despite its obvious practical relevance, the redundancy
problem for lossy data compression at a fixed distortion level
seems to have only been considered relatively recently, and,
with few exceptions, attention has been restricted to questions
regarding expected redundancy.

In 1993, Yu and Speed [38] demonstrated the existence of a
sequence of universal codes with expected redundancy rate of
order over the class of memoryless sources with finite
source and reproduction alphabets. In the case of the Hamming
distortion measure, Merhav in 1995 [21] proved a corresponding
lower bound showing that the expected redundancy (even when
the source distribution is known in advance) is bounded below
by . The question was essentially settled by the work
of Zhang, Yang, and Wei [39] in 1997, where it is demonstrated
that Merhav’s lower bound is true quite generally, and corre-
sponding direct coding theorems are given, exhibiting codes
with redundancy bounded above by . A similar
direct coding theorem for sources with abstract alphabets was
recently proved by Yang and Zhang [35]. For universal coding
at a fixed distortion level, Chou, Effros, and Gray [8] showed
that the price paid for being universal over-dimensional para-
metric classes of sources is essentially . A universal
direct coding theorem for memoryless sources over finite alpha-
bets was recently reported by Yang and Zhang in [37].

With only a couple of notable exceptions from 1968 (Pilc
[24] and Wyner [32]), the dual problem of lossy compression
at a fixed-rate level appears to also have been considered
rather recently. Linder, Lugosi, and Zeger [19], [20] studied
various aspects of thedistortion redundancyproblem and
exhibited universal codes with distortion redundancy of order

. Zhang, Yang, and Wei [39] proved a lower bound
of order , and they constructed codes achieving this
lower bound (to first order). Coding for sources with abstract
alphabets is considered in [35], and questions of universality
are treated in [8] and [36], among many others.

The rest of the paper is organized as follows. In the next sec-
tion we state and discuss our main results. Section III contains
the proofs of the pointwise converses for memoryless sources
(Theorems 1 and 4), and Section IV contains the proofs of the
corresponding direct coding theorems (Theorems 2, 3, and 5). In
Section V, we prove our results for arbitrary sources (Theorems
6–8), and the Appendices contain proofs of various technical
steps needed along the way.

II. RESULTS

Let be a random source taking values in
thesource alphabet , where is assumed to be a Polish space
(i.e., a complete, separable metric space); letdenote its asso-
ciated Borel -field. Although all our results will be stated for
the general case, there is no essential “loss of ideas” in thinking
of as being finite. For , write for the
vector of random variables and similarly
write for a realization of

.
Let denote thereproduction alphabet. Given a nonnegative

measurable function , we define a sequence
of single-letter distortion measures ,

, by

Throughout the paper we will assume that the setis finite,
and that the function is bounded, i.e.,
for some fixed constant , for all . Although
these assumptions are not necessary for the validity of all of
our results, they are made here for the sake of simplicity of the
exposition. We also make the customary assumption that

(5)

We are interested invariable-length block codes oper-
ating at a fixed distortion level, where is
defined in terms of a subset of called thecodebook, an
encoder , and a lossless (prefix-free) binary code

for . For , we say that the code
operates at distortion level , if for

all source strings . The length function
induced by is defined by

length of

so that is the length (in bits) of the description of
by .

For and , the th-order rate-distortion function
of (see, e.g., [4]) is defined by

where denotes the mutual information (in bits) be-
tween and , and the infimum is over all jointly distributed
random vectors with values in , such that

has the source distribution and ; if
there are no such , we let . (Similarly,
throughout the paper, the infimum of an empty set is taken to
be .) Therate-distortion function of is defined as
the limit of as , provided the limit exists.

A. Second-Order Coding Theorems for Memoryless Sources

In this section we assume thatis a memoryless source with
fixed distribution . That is, the random variables are
i.i.d. according to , where, strictly speaking, is a probability
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measure on . As is well known [4], the rate-distortion
function of a memoryless source reduces to its first-order rate-
distortion function

(6)

where the infimum is over all jointly distributed random vari-
ables such that has distribution and

. Let

(7)

and note that for (see, e.g.,
Proposition 1-iv) in Section III). In order to avoid the
trivial case when is identically zero, we assume that

In our first result, Theorem 1, we give lower bounds on the
pointwise deviations of the description lengths of any
code from the optimum bits. It is proved in Section
III-B by an application of the general lower bound in Theorem 4.

Theorem 1. Second-Order Converses:Let be a memory-
less source with rate-distortion function , and let

.

i) CLT: There is a sequence of random variables
such that, for any sequence of codes

operating at distortion level , we have

eventually, a.s. (8)

and the converge in distribution to a Gaussian random
variable

with variance explicitly identified.
ii) LIL: With as above, for any sequence of codes

operating at distortion level

a.s.

a.s.

(Recall that denotes the natural logarithm and
.) Our next result, Theorem 2, shows that these

lower bounds are tight. It is proved in Section IV using a
random coding argument. Although the construction is essen-
tially identical to Shannon’s classical argument, determining
its pointwise asymptotic behavior is significantly more deli-
cate, and it relies heavily on the recent results of Dembo and
Kontoyiannis [10] and Yang and Zhang [35] on the asymptotics
of the probability of “distortion balls.” See the discussion after
Theorem 4.

Theorem 2. Direct Coding Theorem:Let be a memory-
less source with rate-distortion function , and let

. There is a sequence of codes operating at

distortion level , which achieve asymptotic equality (to first
order) in all the almost-sure statements of Theorem 1

a) a.s.

b) a.s.

c a.s.

Remarks:
1) Variance: The variance in Theorems 1 and 2 is a quan-

tity characteristic of the source, which tells us that, when the
source is encoded in the most efficient way, the deviations of
the codeword lengths from the optimum bits
will have a variance roughly equal to . If any other code is
used, these deviations will be asymptotically bounded below by
a Gaussian random variable of variance . In view of this,
we think of as theminimal coding varianceof
the source at distortion level . The precise definition of
is given in the next section and its properties are discussed in
some detail in Section II-C. In particular, is always nonneg-
ative (typically it is strictly positive), and it can be expressed as

(9)

for some function .
2) Pointwise Redundancy:Let be arbitrary codes

operating at distortion level . If , part ii) of Theorem 1
says that when the codes are applied to almost any real-
ization of the source , then for infinitely many

(10)

where for we can take any constant . Moreover,
the amount by which we can “beat” the rate-distortion function
satisfies

eventually, a.s.

The rate in (10) is in sharp contrast with the
expectedredundancy rates of order reported in [39].

3) Expected Versus Pointwise Redundancy:The difference
between the two types of redundancy is reminiscent of the clas-
sical bias/variance tradeoff in statistics. Here, if the goal is to
design a lossy compression algorithm that will be used repeat-
edly and on large data sets, then it is probably a good idea to
optimize the expected performance. On the other hand, if it is
important to guarantee compression performance within certain
bounds, it might be possible to give up some rate in order to re-
duce the variance.

4) Lossless Compression:The results in Theorem 1 are
close parallels of the corresponding lossless compression
results in [15, Theorems 1 and 2]. There, the coding variance
takes the simple form

(11)

(cf. (9) above), which can be viewed as the natural second-order
analog of the entropy In the lossless
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case, the pointwise lower bounds are easily achieved, for ex-
ample, by the Huffman code or the Shannon code [9]. In fact, it
is well known [18], [30] that we can come within of
the Shannon code universally over all memoryless sources, for
all message strings . Therefore, in the lossless case, the same
pointwise behavior can be achieved universally at no extra cost
[15].

Next we show that the pointwise redundancy rates of The-
orem 2 can be achieved universally over all memoryless sources
on . The proof of Theorem 3 (Section IV) is similar in spirit
to that of Theorem 2, with the difference that here, in order to
be universal, we generate multiple random codebooks and we
allow the encoder to choose the best one. The additional cost of
transmitting the index of the codebook that was used turns out to
be negligible, and the pointwise behavior obtained is identical
(up to terms of order ) to that achieved with knowledge
of the source distribution. The idea of multiple random code-
books is well known in information theory, dating at least as far
back as Ziv’s 1972 paper [40] and the work of Neuhoff, Gray,
and Davisson in 1975 [22]. Nevertheless, to determine the exact
pointwise behavior of this random code is more delicate, and
our analysis relies on recent results from [10] and [35].

Theorem 3. Universal Coding:There is a sequence of
universal codes operating at distortion level , such
that, if the data are generated byanymemoryless
source on , and if , then

a ) a.s.

b ) a.s.

c ) a.s.

where the random variables and the variance
are as in Theorem 1.

B. Main Results: Pointwise Optimality of the Shannon Code

In this section we state our main results, from which Theo-
rems 1–3 of the previous section will follow.

Assume that is a memoryless source with distribution
on , and let be an arbitrary measure on; since is a finite
set, we think of simply as a discrete probability mass function
(p.m.f.). For each , define

(12)

where denotes the relative entropy (in bits) between
two distributions and , denotes the distribution of
and the infimum is over all jointly distributed random variables

with values in such that has distribution
and . It is easy to see that the rate-distortion
function of can be expressed as

(13)

where the infimum is over all p.m.f.’s on (simply inter-
change the two infima).

For each source on and distortion level , let
denote a p.m.f. achieving the infimum in (13)

(14)

(See Proposition 2 part ii) in Section III-A for the existence of
.) We call this theoptimal reproduction distributionfor
at distortion level .
For a fixed source , a distortion level , and

a corresponding as in (14), we let , , ,
be the log-moment generating function of the random variable

when

Then there exists a unique such that

(see Lemma 1 in Section III-A).
Our next result, Theorem 4, shows that the pointwise redun-

dancy of any sequence of block codes is essentially bounded
below by a sum of i.i.d. random variables. As we discuss in the
remarks following Theorem 4, this lower bound can be inter-
preted as saying that the performance of any sequence of block
codes is dominated by the performance of Shannon’s random
code. Theorem 4 is proved in Section III-B.

Theorem 4. Pointwise Lower Bound:Let be a memory-
less source with rate-distortion function , and let

. For any sequence of codes operating at
distortion level and any sequence of positive constants
such that , we have

eventually, a.s. (15)

where

(16)

Remarks:

1) Consequences:It is easy to see that Theorem 1 is an im-
mediate consequence of the lower bound (15). In particular, the
coding variance in Theorems 1 and 2 is simply the variance
of the random variable .

2) Intuition: Suppose we generate a random (Shannon)
codebook according to , that is, we generate i.i.d. codewords

each drawn from the distribution . We can en-
code each source sequence by specifying the index

of the first codeword such that .
This description takes approximately bits. But ,
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the “waiting time” until the first -close match for , is ap-
proximately equal to the reciprocal of the probability of finding
such a match, so

where the “distortion balls” are defined by

(17)
From the recent work of Dembo and Kontoyiannis [10] and
Yang and Zhang [35] we know that these probabilities behave
like

a.s.

(18)

(See Proposition 3 in Section IV.) Therefore, the pointwise de-
scription length of the Shannon code is, approximately,

bits a.s.

In view of this, we can rephrase Theorem 4 by saying that, in a
strong sense,the performance of any code is bounded below by
the performance of the Shannon code.Indeed, the proof of The-
orem 4 is based on first showing that any code can be thought of
as arandomcode (according to a measure on different from

), and then proving that the pointwise performance of any
random code is dominated by the performance of the Shannon
code.

The following result, Theorem 5, formalizes the above
random coding argument, and also shows that essentially
the same performance can be achieved universally over all
memoryless sources.

Theorem 5. The Shannon Code—Random Coding:

i) Let be a memoryless source with rate-distortion func-
tion , and let . There is a sequence
of codes operating at distortion level , such
that

Const.

eventually, a.s.

where is the optimal reproduction distribution at dis-
tortion level , and .

ii) There is a sequence of universal codes
operating at distortion level , such that, if the data

are generated byany memoryless source
on , and if , then

Const. eventually, a.s.

where is the number of elements in,
is the optimal reproduction distribution corresponding to
the true source at distortion level , and .

Next, in Corollary 1 we combine Theorem 4 (with
) with (18) and Theorem 5 part i), to rewrite the

above results in an intuitively more appealing form. And in
Corollary 2 we point out that from the proof of Theorem 4 we
can read off a lower bound on the performance of an arbitrary
sequence of codes, which holds for any finite block length.
Although the two corollaries are simple consequences of Theo-
rems 4 and 5, conceptually they contain the main contributions
of this paper.

Corollary 1. Pointwise Optimality of Shannon Code:Under
the assumptions of Theorem 4, for any sequence of codes

operating at distortion level , we have

eventually, a.s.
(19)

where the Shannon code achieves

Const.

eventually, a.s.

Corollary 2. (Nonasymptotic Lower Bound):Under the as-
sumptions of Theorem 4, for any block lengthand any con-
stant , if the code operates at distortion level ,
then

In the case of lossless compression, this reduces to Barron’s
lower bound (see [2, eq. (3.5)])

C. Minimal Coding Variance

Suppose is a memoryless source with distribution, let
, and let be the corresponding optimal re-

production distribution. In the notation of the previous section,
the minimal coding variance can be written
as

(here and are independent random variables with distribu-
tions and , respectively). As we will see in Section III-A,
the rate-distortion function can similarly be expressed as

Comparing the last two expressions suggests that we may think
of as a second-order version of , and further justifies
the term minimal coding variance, by analogy to the minimal
coding rate .

It is obvious that is always nonnegative, and it is typically
strictly positive, since the only way it can be zero is if the ex-
pectation is constant for -almost all .
We give three simple examples illustrating this.

Example 1. Lossless Compression:As mentioned above, in
the case of lossless compression the minimal coding variance
reduces to (cf. (11)), from which it is



142 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 1, JANUARY 2000

immediate that if and only if is the uniform distribu-
tion over the finite alphabet . (See [15] for more details and a
corresponding characterization for Markov sources.)

Example 2. Binary Source, Hamming Distortion:This is the
simplest nontrivial lossy example. Supposehas Bernoulli( )
distribution for some . Let and
let be the Hamming distortion measure, .
For , easy but tedious calculations (cf. [4, Example
2.7.1] and [9, Theorem 13.3.1]) show that is a Bernoulli( )
distribution with , ,
and

As we already noted, if and only if the above expression
is constant in , so that, here, if and only if ,
i.e., if and only if is the uniform distribution on .

Example 3. A Quaternary Example:This is a standard ex-
ample from Berger’s text [4, Example 2.7.2]. Supposetakes
values in the alphabet and let . Sup-
pose the distribution of is given by

, for some and let the distor-
tion measure be specified by the matrix ,

, where

For it is possible (although tedious)
to calculate and explicitly, and to obtain that

Once again, this is generally not constant in, with the excep-
tion of the case . So, will be strictly positive, unless

is the uniform distribution on .
There is an obvious trend in all three examples above:The

variance is strictly positive, unless is uniformly distributed
over . It is an interesting problem to determine how generally
this pattern persists.

D. Sources with Memory

Here we present analogs of Theorems 4 and 5 for arbitrary
sources. Of course, at this level of generality, the results we
get are not as strong as the ones in the memoryless case. Still,
adopting a different approach, we are able to get interesting par-
tial generalizations.

Let be an arbitrary source with values in, and let de-
note the distribution of . By asubprobability measure on

we mean a positive measure with total mass
For each we define (recall the notation in (17))

where the infimum is over all subprobability measures.
Suppose achieves the above infimum (the existence of

such a is established by Lemma 3 in Section V). Our next

result gives an analog of Theorem 4 for the case of sources with
memory. It is proved in Section V using an argument similar to
the one used by Kieffer in the proof of Theorem 2 in [14].

Theorem 6. A Lossy “Barron’s Lemma”:Suppose is an
arbitrary source, and let be such that . For
any sequence of codes operating at distortion level ,
we have the following.

i) For all

ii) For any sequence of positive constants such that

eventually, a.s.
(20)

The lower bound in (20) is a natural “lossy analog” of a well-
known result from lossless compression, often called “Barron’s
Lemma” [1], [2]. Barron’s Lemma states that for any sequence
of lossless codes

eventually, a.s.

Similarly, we can interpret the lower bound of Corollary 1 (19)
as a different generalization of Barron’s Lemma, valid only for
memoryless sources. The reason why (19) is preferable over
(20) is because the are product measures, whereas it is ap-
parently hard to characterize the measuresin general. For
example, in the case of memoryless sources one would expect
that, for large , the measures “converge” to the measures

in some sense. The only way in which we have been able
to make this intuition precise is by proving the following result
asserting the asymptotic equivalence between the compression
performance of and .

Theorem 7. Equivalence of Measures:Let be a memory-
less source with distribution , and let . Then

a.s.

Clearly, Theorem 7 can be combined with the recent results
on the probabilities of -balls mentioned in (18), to give alter-
native proofs of the pointwise converses in Theorems 1 and 4.
Finally, we state a direct coding theorem, demonstrating that the
lower bound in Theorem 6 is asymptotically tight. It is proved
in Section V using a random coding argument.

Theorem 8. Partial Achievability:Suppose is an arbitrary
source, and let be such that . Then there is
a sequence of codes operating at distortion level ,
such that

Const.

eventually, a.s.
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Theorem 8, combined with Theorem 7 and (18), provides al-
ternative proofs for Theorem 2 and Theorem 5 part i).

Finally, we remark that, for “nice” measures , it is natural
to expect that the probabilities will decay to
zero exponentially fast. This would be true, for example, if the

were the finite-dimensional marginals of a “nice” process,
like a Markov chain [34] or a process with “rapid mixing” prop-
erties [7]. In that case, the “ ” term in Theorem 8 would
grow like , implying that the lower bound of Theorem 7 is
tight up to terms of order .

III. CONVERSES FORMEMORYLESSSOURCES

In Section III-A we collect some useful technical facts, and
in Section III-B we prove Theorem 4 and use it to deduce The-
orem 1.

A. Representations and Properties of

For , let and be arbitrary probability measures on
and , respectively (of course, since is a finite set, is

a discrete p.m.f. on ). Write for a random vector with
distribution on , and for an independent random vector
with distribution on . Let

denote the support of, and define

Clearly, For , we define

and, for , we write for the Fenchel–Legendre trans-
form of

In analogy with (12), we also define

where denotes the relative entropy (in bits) between
two distributions and , denotes the distribution of ,
and the infimum is over all jointly distributed random vectors

with values in such that has distribu-
tion and . In the next lemma we collect
various standard properties of and . Parts i)–iii) can
be found, e.g., in [10] or [17]; part iv) is proved in Appendix I.

Lemma 1:

i) is infinitely differentiable on ,
, and as .

ii) for all ; if, moreover, ,
then for all .

iii) If and , then there
exists a unique such that and

.

iv) For every and every probability measureon ,
is upper semicontinuous as a function of.

In the following propositions we give two alternative repre-
sentations of the function , and state several of its
properties. Propositions 1 and 2 are proved in Appendices II and
III, respectively.

Proposition 1. Representations of :

i) For all

where the infimum is taken over all probability measures
on such that the -marginal of equals

and .
ii) For all we have

Proposition 2. Properties of :

i) For every and every probability measureon ,
is lower semicontinuous as a function of.

ii) For every , there exists a p.m.f. on
achieving the infimum in (14).

iii) For , ; for ,
; and for , .

iv) For we have , whereas for
, .

v) If , then and
.

B. Proofs of Converses

Proof of Theorem 1 from Theorem 4:Taking
in Theorem 4, yields

eventually, a.s.

(21)
Writing we get (8) since the
random variables are zero-mean, bounded, i.i.d.
random variables, so the ordinary CLT implies that

where . This proves part i).
Next, dividing both sides of (21) by , letting

, and invoking the classical LIL (see, e.g., [6, Theorem
13.25] or [12, p. 437]), immediately gives the two statements in
part ii).

Proof of Theorem 4:Let be an ar-
bitrary sequence of block codes operating at distortion level,
and let be the sequence of corresponding length functions.
By Proposition 2 part ii) we can choose a p.m.f. on so
that . Since we assume ,
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Proposition 2 part v) implies that , so by
Lemma 1 we can pick a with

(22)

where the second equality comes from Proposition 1 part ii).
Since is a prefix-free lossless code (for each), it induces

a length function on given by

length of

The functions and are clearly related by
. The key idea of the proof is to consider the

following subprobability measure on :

for all

Note that is supported entirely on ; the fact that it is
a subprobability measure follows by the Kraft inequality. Our
main use for will be to bound the description lengths

in terms of an expectation over . For any

where follows from the fact that operates at distortion
level . This gives the lower bound

(23)

Now consider the following family of functions on :

for a subprobability measure on

and notice that is a convex family. We are interested in the
infimum

(24)

where denotes the distribution . According to Lemma 2
below, this infimum is achieved by the function defined

in terms of the measure

(25)

i.e.,

for all

But these are exactly the Kuhn–Tucker conditions for the opti-
mality of in (24); therefore, by [3, Theorem 2] we have that

for all (26)

The result of Theorem 4 can now be proved as follows. Define
by

(27)

Recall the function on defined in (16), and observe that,
using (22), it can be rewritten as

(28)

Then, the probability that the assertion of the theorem fails can
be bounded above as

(29)

where follows from the bound (23), follows from the def-
initions of , , and in (28), (27), and (25), is simply
Markov’s inequality, and follows from the Kuhn–Tucker con-
ditions (26) with . Now since the sequence is
summable by assumption, an application of the Borel–Cantelli
lemma to the bound in (29) completes the proof.
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Lemma 2: The infimum in (24) is achieved by .
Proof of Lemma 2:Write (or ) for the collection

of all probability (respectively, subprobability) measures on.
For and a p.m.f. on , let

Taking in the infimum in (24), the result of
the lemma follows from the following series of relations:

where and follow from the definitions of and
, respectively; follows from the choice of and

follows from the choice of in (14); follows from the
well-known fact that the rate-distortion function of a vector of
i.i.d. random variables equalstimes the rate-distortion func-
tion of one of them; follows in the same way as we noted in
the Introduction that (6) is the same as (13);follows from
Proposition 1 part ii); follows simply by replacing by ;

follows by an application of the minimax theorem (see below
for an explanation); follows from a simple continuity argu-
ment given below; follows from the definitions of the func-
tions and ; and follows from noting that if is
strictly a subprobability measure with , then
using the probability measure we can make
the expression that is being minimized on line smaller by

.
To justify the application of the minimax theorem in step

, first we note that, by Lemma 1 part iv), is lower semi-
continuous as a function of , and by Lemma 1 part i) it is
a continuous function of . Also, since by Lemma 1 part ii)

, is concave in , and by Jensen’s inequality
(and the concavity of the logarithm), is convex in . And
since the space of all p.m.f.’s on is compact, we can in-

voke Sion’s minimax theorem [31, Corollary 3.3] to justify the
exchange of the infimum and the supremum in step.

Finally, we need to justify step. For define the func-
tions , and

Our goal is to show

(30)

From the above argument– , we have that

As noted in the beginning of the proof of Theorem 4,
is strictly concave and its supremum is achieved uniquely
by , so we may restrict our attention to an interval

, and since
for all

By the definition of as the infimum of continuous functions it
follows that it is upper semicontinuous (see, e.g., [27, p. 38]), so
it achieves its supremum on the compact set. Since

for all , and only at , this implies
that the supremum of over must also be achieved at ,
giving (30).

IV. SHANNON’S RANDOM CODES AND -BALL PROBABILITIES

In this section we prove Theorem 5, and we deduce Theorems
2 and 3 from it.

We continue in the notation of the previous section, and recall
the definition of a distortion ball in (17). Let be a memory-
less source with distribution , fix , let be
the optimal reproduction distribution for at distortion level ,
and write . The following proposition will be used
repeatedly in the proofs. If follows easily from some recent re-
sults in [10] and [35]; see Appendix VI.

Proposition 3: If , we have

a.s.

Proofs of Theorems 2 and 3 from Theorem 5:Combining
Theorem 5 part i) with Proposition 3 gives

a.s.

In view of the corresponding lower bound in Theorem 4 (with
), this, together with the classical CLT and the LIL
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applied to the sum of the bounded, zero-mean, i.i.d. random
variables , yield the three statements of Theorem 2.
Theorem 3 follows from Theorem 5 part ii) in exactly the same
way.

Proof of Theorem 5 Part i):For each we generate
a random codebook according to . Let

, , be i.i.d. random vectors
in , each drawn according to . Given a source string
to be encoded, let denote the first indexsuch
that matches theth codeword with distortion or less

If such a match exists, we describe (with distortion no more
than ) by describing the integer to the decoder; this can
be done using (cf. [13] and [33])

bits.

Otherwise, we describe exactly, using bits (re-
call (5)). Our code consists of combining these two descrip-
tions, together with a one-bit flag to specify which one was
chosen.

Next we show that, for large, the “waiting time” until a
-match is found can be approximated by the reciprocal of the

probability of finding such a match, . Specifi-
cally, we claim that the difference

satisfies

eventually, a.s. (31)

where the almost-sure statement above (and also in all subse-
quent statements) is with respect to-almost any source real-
ization, and almost any sequence of codebooks generated ac-
cording to the above procedure. We prove (31) by an argument
along the lines of the “strong approximation” results in [10],
[16], and [17]. Let

for all

Proposition 2 implies that, eventually, almost every string
generated by will belong to a , i.e.,

(32)

where, with a slight abuse of notation, we write for the
one-dimensional marginal of the distribution of as well as
the infinite-dimensional product distribution it induces. Now
let . Conditional on , the
waiting time has a geometric distribution with parameter

, so that

where the last step follows from the inequality
, for and . Since this bound is uniform

over , and is summable, the Borel–Cantelli
lemma implies that , eventually, for almost every
codebook sequence, and-almost all . This together
with (32) establishes (31).

In particular, (31) implies that with probability one,
eventually. Therefore, the description length of our code

bits, eventually, a.s.

and this can be bounded above as

Const.

eventually, a.s.

where follows from (31) and Proposition 3. This proves
part i).

Note that the above proof not only demonstrates the existence
of a good sequence of codes , but it also shows that
almost every sequence of random codes generated as above will
satisfy the statement of the theorem.

Proof of Theorem 5 Part ii):Here we assume that the
source has a distribution , where

is unknown to the encoder and decoder, but such that
. For each we generate a family of

codebooks, one for each-type on . Recall [9] that a p.m.f.
on is called an -type if, for each , for

an integer . The number of -types grows polynomially
in , and it is bounded above as

(33)

where denotes the cardinality of ; see [9, Ch. 13].
For , let denote the th -type. The th

codebook consists of i.i.d. random vectors

where each is drawn according to . Given a
source string , we let be the waiting
time until a -close match for is found in the th codebook
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and we define

It is not hard to see that, for large enough, there will (almost)
always be a -match for in one of the codebooks, so that

eventually, a.s.

where the almost-sure statement here (and also in all subse-
quent statements) is with respect to-almost any source realiza-
tion, and almost any sequence of codebooks generated as above.
(This is so because, for , at least one of the-types has
positive probability on all elements of, so with probability one
every possible -string will appear infinitely often. Assump-
tion (5) then guarantees the existence of a-match.) Therefore,
we can describe (with distortion no more than ) to the de-
coder by specifying the waiting time , and the codebook in
which is achieved. As in part i), and using the bound in (33),
this can be done using

bits, eventually, a.s.

Now, following [17], we pick a sequence of-types that are
close to . We let be an -type such that and

, for all . This can be done for
all , for some fixed integer (see [17] for the details).
Let denote the waiting time associated with the codebook
corresponding to , and write . The same argument
as the one used to prove (31) in part i) can be used here to show
that

eventually, a.s. (34)

Using the obvious fact that is never greater than , we
can bound above by

(35)

eventually, almost surely, where as be-
fore, and

Next we claim that there exist absolute constantsand such
that

for all and all (36)

Before proving this, let us see how it allows us to complete the
proof. Recalling Proposition 3 and substituting the bounds (34)
and (36) into (35) gives

Const.

eventually, a.s.

Finally, we need to prove (36). Pick large enough,
so that for all and all , is either equal to
zero or . Let and be arbitrary.
Then

where is by the choice of , and is the with the
smallest nonzero probability. So

with , and this is a convergent sequence so it
must be bounded.

As in part i), this proof actually shows that almost every se-
quence of random codes generated as above will satisfy the
statement of the theorem.

V. ARBITRARY SOURCES

Let be an -valued source, and write for the distri-
bution of . In this section, we prove Theorems 6–8. We
begin with two useful lemmas; they are proved in Appendices
IV and V, respectively.

Lemma 3: The infimum

(37)



148 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 1, JANUARY 2000

over all subprobability measures on is the same as the
infimum over all probability measures, and it is achieved by
some probability measure .

Lemma 4:

Proof of Theorem 6:Let be an arbitrary se-
quence of codes operating at distortion level, where each

consists of a triple . Let be the length
function induced by on . As in the proof of Theorem 4,
the key idea is to consider the subprobability measure on

defined by

for all

Since operates at distortion level , for any we
have

(38)

From (38) and the definition of we immediately get that

and, in view of Lemma 4, this proves part i).
For part ii), we define a family of functions on

for a subprobability measure on

and note that is a convex family. By Lemma 3 we know that

(39)

where is the function . But for each
, (39) are exactly the Kuhn–Tucker conditions for the

optimality of in , so [3, Theorem 2] implies that

for all (40)

Therefore, letting

the probability that the assertion of part ii) fails can be bounded
above as

where follows from the bound (38), is simply Markov’s in-
equality, and follows from the Kuhn–Tucker conditions (40)
with . Since the sequence is summable by assump-
tion, the Borel–Cantelli lemma completes the proof.

Proof of Theorem 7:Suppose is a memoryless source
with distribution , let denote the distribution of ,
and write , where is the optimal reproduction
distribution at distortion level .

Replacing by in the last part of

the argument of the proof of Theorem 6, and taking ,
we get

eventually, a.s. (41)

Similarly, taking

in place of in the proof of Theorem 4, and choosing
, we get

eventually, a.s. (42)

But by Proposition 3 we know that (in the notation of the proof
of Theorem 4)

a.s.

a.s. (43)

and also, by a simple Chernoff-type bound

(44)



KONTOYIANNIS: POINTWISE REDUNDANCY IN LOSSY DATA COMPRESSION AND UNIVERSAL LOSSY DATA COMPRESSION 149

From (42)–(44) we have

a.s.

Combining this with the corresponding lower bound in (41)
completes the proof.

Proof of Theorem 8:We use a random coding argument,
very similar to the ones used in the proofs of Theorem 5 parts
i) and ii). For each we generate a random codebook
according to : Let

be i.i.d. random vectors in , each drawn according to .
Given a source string , let denote the first
index such that matches theth codeword with distortion

or less

If such a match exists, we describe to the decoder (with
distortion no more than ) by describing , using, as before,
no more than

bits.

Otherwise, we describe exactly, using bits; this
is possible because of our initial assumption (5). Our code
consists of combining these two descriptions, together with a
one-bit flag to specify which one was chosen.

Next we claim that the waiting times can be approximated
by the quantities , in that their difference sat-
isfies

eventually, a.s. (45)

The assumption that implies that

for -almost all , so the strong approximation argument
from the proof of Theorem 5 goes through essentiallyverbatim
to prove (45). In particular, (45) implies that eventu-
ally, almost surely, so the description length of our code can be
bounded above as

Const.

eventually, a.s.

and we are done.

APPENDIX I

Proof of Lemma 1 Part iv):Fix a and a probability
measure on . Let be a sequence of p.m.f.’s on ,
such that the converge, as , to some p.m.f. on .
Then

where follows from Fatou’s Lemma and follows from the
assumption that . Therefore, is upper semi-
continuous in .

APPENDIX II

Proof of Proposition 1: The alternative representation of
in part i) can be obtained from its definition by a

simple application of the chain rule for relative entropy (see,
e.g., [25, eq. (3.11.5)] or [11, Theorem D.13]).

For part ii) we will use the representation in part i). Fix
arbitrary, and recall (see [11, Lemma 6.2.13]) that for any

bounded measurable function , any , and
any candidate measureon with -marginal equal

and , we have

Choosing and taking expectations of
both sides with respect to, yields that

Taking the infimum over all candidate measuresand the
supremum over all , implies (from part i))

(46)

To prove the reverse inequality we consider four cases. (Note
that we only need to consider cases when .)

Case I: and . By Lemma 1, for all

Therefore,

so in this case

(47)
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Case II: . Here, by Lemma 1, for all

so is achieved at , giving

On the other hand, taking , noting that

and recalling that relative entropy is nonnegative, implies that
. Hence, here

(48)

Case III: and . By
Lemma 1, there is a unique such that and

(49)

Let

and observe that . Then

This, together with (46) and (49) imply that here

(50)

Case IV : and . Write
for the support of , and for let

so that and

Also, by Lemma 1

so is the increasing limit of as
. Therefore, letting denote the event

and denote its complement

where the last equality follows from the monotone convergence
theorem. Since we are only interested in the case

, the above calculation implies that we may assume, without
loss of generality, that for -almost all .
We can then define a measureby

which has , and

This together with (46) complete the proof.

APPENDIX III

Proof of Proposition 2: By Lemma 1 part iv), is
upper semicontinuous as a function of, so
is lower semicontinuous. Therefore, by the representation
of in Proposition 1 part ii) and the fact that the
supremum of lower semicontinuous functions is itself lower
semicontinuous (see, e.g., [27, p. 38]) we get that
is lower semicontinuous as a function of, proving part i).

Part ii) follows immediately from part i): since is finite, the
set of all p.m.f.’s on is compact, and therefore the lower
semicontinuous function must achieve its infimum
over that compact set (see, e.g., [26, p. 195]), proving the exis-
tence of the required .

For part iii): it is easy to check that the stated properties of
are actually proved in the course of proving Propo-

sition 1 part ii); see (47), (48), and (50).
Part iv): First, if , then letting denote the

uniform distribution on and recalling our basic assumption
(5), we have

i.e., . Therefore, means that , so
by part iii) above and hence .
Also, for any distribution on
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so, in particular, . Part iii) then implies that
.

On the other hand, if , then by the definition of
in (7) there exists a such that

where is the measure attaching unit mass at. This means
that , so by part iii) above , and
hence .

Part v): Since

from part iii) we have that , and, in par-
ticular that . So we only have to rule out the
case , but this was done in [17, Appendix II].

APPENDIX IV

Proof of Lemma 3:First observe that if is strictly a
subprobability measure with , then using
the probability measure we can make the
expectation in (37) smaller by . Therefore, it is enough
to consider probability measures .

As for the achievability of the infimum, it suffices to note that
it is taken over a compact set (the set over all p.m.f.’son ),
and that the map is lower
semicontinuous. This follows from Fatou’s Lemma in exactly
the same way as it was shown in Appendix I that is
upper semicontinuous in.

APPENDIX V

Proof of Lemma 4:Define a joint probability measure
on the product space by restricting the product measure

to be supported on

Observe that the -marginal of is , and let denote its
-marginal. Then, with distributed according to

where follows from the definition of , follows
from the chain rule for relative entropy (see, e.g., [25, eq.
(3.11.5)] or [11, Theorem D.13]), follows from the nonneg-
ativity of relative entropy, is just the definition of mutual
information, and comes from the definition of , since

.

APPENDIX VI

Proof of Proposition 3: Since , Proposi-
tion 2 part v) implies that , so we may
invoke [35, Corollary 1] to obtain

a.s.

where is the empirical measure induced by on , i.e.,
the measure that assigns mass to each one of the values ,

. Also, [10, Theorem 3] says that

a.s.

but a simple examination of the proof in [10] shows that we
may replace the term above by , without any
changes in the proof. Combining these two results completes the
proof of the proposition.
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