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Pointwise Redundancy in Lossy Data Compression
and Universal Lossy Data Compression

loannis KontoyiannisMember, IEEE

Abstract—We characterize the achievable pointwise redun-  To be specific, we consider “variable-length block codes op-

dancy rates for lossy data compression at a fixed distortion level. erating at a fixed distortion level,” that is, cod€s defined by
“Pointwise redundancy” refers to the difference between the triplets (B,., ¢n, ) Where

description length achieved by annth-order block code and the . -
optimal n.R(D) bits. For memoryless sources, we show that the &) Bx is a subset ofA™ called thecodebook
best achievable redundancy rate is of orderO(4/n) in proba- b) ¢,.: A™ — B, is theencoderor quantizer
bility. This follows from a second-order refinement to the classical C) ¥n: B, — {0, 1}* is an invertible (and prefix-free) rep-

source cg)ding theorem, in the form of a “one-sided central limit resentation of the elements Bf, by finite-length binary
theorem.” Moreover, we show that, along (almost) any source strings

realization, the description lengths of any sequence of block codes ) )
operating at distortion level D exceedn.R(D) by at leastas much For D > 0, the block codeC,, = (B, ¢y, %) is said to

as Cv/nloglog n, infinitely often. Corresponding direct coding  operate at distortion level [14] (or to beD-semifaithfu[23]),

theorems are also given, showing that these rates are essentiallyif it encodes each source string with distortibnor less
achievable. The above rates are in sharp contrast with thexpected

redundancy rates of order O(log n) recently reported by various n Y < D
authors. Our approach is based on showing that the compression (@ dn(e1)) < D,
performance of an arbitrary sequence of codes is essentially . . . . .
bounded below by the performance of Shannon’s random code. From the pointof view of data compression, the main quantity of
We obtain partial generalizations of the above results for arbitrary  interest is the description length of a block cadg, expressed

sources with memory, and we prove lossy analogs of “Barron’s in terms of its associated length functién: A — N. Here,
Lemma. £, (z7) denotes the description length, in bits, assignedhy
Index Terms—targe deviations, lossy data compression, rate- to the stringz?. Formally

distortion, redundancy, universal coding.
£n(27) = length of [h, (¢ (27))] -

Roughly speaking, the smaller the description length, the better
ROADLY speaking, the objective of lossy data compreghe code.
sion is to find efficient approximate representations for rel- Shannon in 1959 characterized the best achievable compres-
atively large amounts of data. Let a (21, Toy -+, 2, de- sion performance of block codes. Suppose, for example, that the

note a data string generated by arandom salfree { X,,; n > data are generated by a memoryless soXfce {X,,; n > 1},
1} taking values in the source alphah&t We wish to repre- thatis, theX,, are independent and identically distributed (i.i.d.)
sent each:™ by a corresponding string A (51, 92, -5 Yn) random variables with common distributigh on A. Suppose

1 ~ ’ I y In

taking values in the reproduction alphabe{where A may or also that{Cy = (Bn, é, Z/’")f n oz 1} IS an arbitrary se-
may not be the same a¥), so that the distortion between eaclfuence Of bloc_k_ codes o_p_eratmg at d|stort|_on_ letzelin [28]
data string and its representation lies within some fixed allow'2nnon identified the minimakpectedlescription length that

able range. For our purposes, distortion is measured by afanﬁqﬁf] be achieved by any such sequen{ﬁE}.. He showeq that
of single-letter distortion measures the expected compression .raﬂl{%.n(Xl )]/?1 is asymptotically
bounded below by theate-distortion functionR(D)

forall z7 € A™.

I. INTRODUCTION

n

n n 1 n n n in n
Pzt y1) = - Z p(is Yi), zy € A"yt e A lim inf Eln(X7)] > R(D) bits per symbol (1)
n

=1 n—oo

wherep: A x A — [0, o) is a fixed nonnegative function. wherel(D) = R(P, D) s defined by the well-known formula

R(D) = R(P, D)
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function is an asymptotic lower bound fér(X}*) not just in (CLT): There is a sequence of random variab{és, }
expectation but also in the pointwise sense (depending onP and D) such that, for any sequence of
0,(X7) codes{C,, ¢, } operating at distortion levdD, we have
. n 1
lminf === 2 K(D) as. @ £a(X]) 2 nR(D) + /Gy + Ologn) as.  (3)

”ou

(Here and throughout this paper the terms “pointwise,” “almost where theG,, converge in distribution (as — o) to
surely” (denoted “a.s.”), and “with probability one” are used g Gaussian random variable. Moreover, there exist codes
interchangeably.) Kieffer’'s result says that, asymptotically, it is {C,,} achieving the lower bound in (3) (see Theorem 2).
impossible to beat the rate-distortion function even on a small . .
fraction of the messages generated by the source. In [14] it'idiS means that faany sequence of codes, about half the time,

i " . , )
also demonstrated that the bound in (2) can be achieved description lengttd, (X7) will deviate from the optimum
equality. nR(D) bits by O(y/n) bits.

Our main aim in this paper is to characterize the achievablg? further refinement to the pointwise converse (2) is also

pointwise redundancy ratder block codes applied to memo-91Veén in Theorem 1, in the form of a “one-sided” law of the it-
ryless sources, where the pointwise redundancy is defined€4@ted logarithm (LIL) (under some mild conditions). This pro-
the difference between the description lengtX7) of an vides a complete chgracte.rlzatllon of the pointwise redundancy
nth-order block code&”,, and the optimum description IengthOf block codes at a fixed distortion level.

given by nR(D). Mathematically, this problem translates to (LIL): For any sequence of codd<’,,, £, } operating

describing the possible rates of convergence in (2), and, inat distortion levelD, the pointwise redundancy exceeds

particular, finding the fastest such rate. The main gist of our ¢'\/nToglogn for infinitely many values of: (for some

approach will be to show that the performance of any sequence” > ()

of block codes operating at a fixed distortion level is bounded

below by the performance of a (simple variant of) Shannon’sts(X{") — nR(D) = Cy/nloglogn infinitely often, a.s.

random code. (4)
In terms of data compression, knowing the possible conver-Moreover, there exist codg<”;, } asymptotically achiev-

gence rates that can be achieved in(2) tells us how big blocks ofng this lower bound (Theorem 2).

Qata we need to take in order to come reasonably cl_ose to OpPThe pointwise redundancy rates in (3) and (4) are in sharp
timal compression performance. Clearly, these questions are,gfrast with the correspondimgpectededundancy results re-
significant practical relevance. cently reported by Zhang, Yang, and Wei in [39]. There, it shown
. that the best possible expected redundancy
A. Outline
For simplicity, assume for now that and A are both finite Ell,(XT)] — nR(D)
sets, and leX = {X,,; n > 1} be a memoryless source with

. . . . achievable by block codes is of ordé(logn). For practical
rate-distortion functionR(D). Our main results (Theorems 4 eV y ! Oxloz 1) practi

: . . urposes, this difference suggests the following interpretation:
and 5, summarized in Corollaries 1 and 2) state that the perf ince any compression algorithm used in practice is bound to

mance of an arbitrary sequence of Coges, £, }is essenua}ly have fluctuations in the description length of order at least as
dominated by the performan,f:e of a random code, to which \f‘éefge asD(,/n), for big enough block lengths it may or may
refer as the "Shannon code. not be worth putting a lot of effort into optimizing the algo-
(MAIN RESULT): Let Q% be the optimal reproduction  rithm’s expectegerformance. Instead, it might be more useful
distribution at distortion leveD, and write B(z7, D) for to either: a) try to control the variance of the description lengths

the distortion-ball of radiu® aroundz? (precise defini-  £,(X7') or b) optimize the algorithm’s implementation. Indeed,
tions are given in the next section). For any sequence ofit seems to often be the case in practice that “implementation
block codeq C,, } operating at distortion leveD, with as- complexity might be the dominating issue” [5].
sociated length function,, }, we have Our next result says, perhaps somewhat surprisingly, that
there is no cost for universality in pointwise redundancy. That
L,(XT) 2 1log [1/Q (B(XT, D))]+ O(logn) as. is, essentially the same performance can be achieved, even

] . ~when the source distribution is not known in advance. For the
Moreover, the Shannoq code asymptotically achieves thisc|ass of all memoryless sourc#sover the alphabeti, The-
lower bound with equality. orem 3 demonstrates the existence of a sequence of universal

(Throughout the paperldg” denotes the logarithm taken tocodes{C;} with length functions{¢;} such that, for every
base2 and ‘log,” denotes the natural logarithm.) Next, moti-Sourcer” (and for someC” > 0)

vated by corresponding results in the case of lossless data con®) £, (X7)/n — R(P, D) a.s.

pression [15], we interpret Kieffer's result (2) as a “one-sided” b) £;(X7) = nR(P, D) + /nG, + O(logn) a.s.

law of large numbers, and we state and prove corresponding) 5, (X7) — nR(P, D) < C’y/nloglogn eventually, a.s.
second-order refinements to (2). In Theorem 1 we give a “one-A natural next question to ask is whether these results re-
sided” central limit theorem (CLT) corresponding to the pointnain true when sources with memory are considered. The fun-
wise lower bound in (2). damental coding theorems in (1) and (2) are, of course, still valid
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(with the rate-distortion function now defined in terms of the Il. RESULTS

distribution of the whole proces¥), but redundancy questions LetX = {X,; n > 1} be a random source taking values in
appear to be much more delicate. For arbitrary sources W{mssource alphna{beﬁ_ whereA is assumed to be a Polish space
memory (not even necessarily stationary or ergodic), Theor L a complete, se;;arable metric space)Aelenote its asso-

glglvkes e:jgen?ra]l_potljnctj\{wtsetl_OW(lar b(?u_?rc]i_ for theltperfobrmt?]nce ; ted Borels-field. Although all our results will be stated for
fOC fr? es? allxe | IS :)r ;ﬁn evel. fIIS resuftcan be thou e general case, there is no essential “loss of ideas” in thinking
° {I;}Sk € na uraltafna ogl 0 | € case of lossy compriz_ssmn 9 iaA as being finite. Fod < ¢ < j < oo, write X for the
well-known resutt from 10SsIess compression, Sometimes [23dctor of random variablesX;, X1, ---, X;) and similarly
referred to as “Barron’s Lemma” [1], [2]. A more detailed dis-, .. =~ ; ilid1 o
. . > oo e . : write z} = (24, i1, -, z;) € A for a realization of
cussion of this connection is given in Section II-D. Finally Ther

orem 8 is a direct coding theorem demonstrating a pointwiseg,~ . . . . .
achievability result which complements the lower bound of The- Let A denote theeproduction alphabeGiven a nonnegative

orem 6 measurable function: A x A — [0, o), we define a sequence
' of single-letter distortion measureg : A® x A® — [0, c0),
n > 1, by

B. History

n
> olwi yi), b € ATy € A

=1

Despite its obvious practical relevance, the redundancy o
problem for lossy data compression at a fixed distortion level pu(@ls Y1) =
seems to have only been considered relatively recently, and,

with few exceptions, attention has been restricted to questiofigoughout the paper we will assume that the 4és finite,
regarding expected redundancy. _ and that the functiop is bounded, i.e.p(z, ) < M < oo

In 1993, Yu and Speed [38] demonstrated the existence of R some fixed constant/, for all z € A, y € A. Although
sequence of universal codes with expected redundancy rat§ilse assumptions are not necessary for the validity of all of
orderO(log n) over the class of memoryless sources with f'”"‘%ur results, they are made here for the sake of simplicity of the

source and reproduction alphabets. In the case of the Hammigssition. We also make the customary assumption that
distortion measure, Merhavin 1995 [21] proved a corresponding

lower bound showing that the expected redundancy (even when sup min p(z, y) = 0. (5)
the source distribution is known in advance) is bounded below z€4 yCA

by (1/2) logn. The question was essentially settled by the work \we are interested inariable-length block code€!, oper-

of Zhang, Yang, and Wei [39] in 1997, where itis demonstrateéqing at a fixed distortion levewhereC,, = (B,,, ¢, 1) is
that Merhav’s lower bound is true quite generally, and corggefined in terms of a subsét, of A™ called thecodebookan
sponding direct coding theorems are given, exhibiting COd@ﬁcoderd)n;A" — B, and a lossless (prefix-free) binary code
with redundancy bounded above [yt 7+ o(log n)]. A similar $n: Ba — {0, 1}* for B,. ForD > 0, we say that the code
direct coding theorem for sources with abstract alphabets was operates at distortion leveD, if p, (27, ¢, (z7)) < D for

recently proved by Yang and Zhang [35]. For universal coding| source strings? € A™. Thelength functior,, : A» — N
at a fixed distortion level, Chou, Effros, and Gray [8] showeghqced byC,, is defined by

that the price paid for being universal ovedimensional para-

S|

metric classes of sources is essentighly2) log .. A universal £, (x7) = length of[¢, (¢, (27))]
direct coding theorem for memoryless sources over finite alpha- . o o
bets was recently reported by Yang and Zhang in [37]. so that/,, (z7) is the length (in bits) of the description ef’

With only a couple of notable exceptions from 1968 (Pil@y Ch.
[24] and Wyner [32]), the dual prob|em of |ossy Compression ForD >0 andn >1, thenth-order rate-distortion function
at a fixed-rate level appears to also have been considefédX (see, e.g., [4]) is defined by
rather recently. Linder, Lugosi, and Zeger [19], [20] studied . o oon
various aspects of thelistortion redundancyproblem and Ra(D) = (X?};fvfz) LHOSERED
exhibited universal codes with distortion redundancy of order
O(logn). Zhang, Yang, and Wei [39] proved a lower boundvherel(X7'; ¥7") denotes the mutual information (in bits) be-
of order O(logn), and they constructed codes achieving thigveenX T andY;", and the infimumis over all jointly distributed
lower bound (to first order). Coding for sources with abstraé@ndom vector¢ X', Y7*) with values inA™ x A", such that
alphabets is considered in [35], and questions of universali§i' has the source distribution addp,, (X7, Y7")] < D; if
are treated in [8] and [36], among many others. there are no suchXy', Y7*), we let R, (D) = oo. (Similarly,
The rest of the paper is organized as follows. In the next séBroughout the paper, the infimum of an empty set is taken to
tion we state and discuss our main results. Section |1l contaf@+0oc.) Therate-distortion function?(D) of X is defined as
the proofs of the pointwise converses for memoryless sourdBg limit of (1/n)R, (D) asn — oo, provided the limit exists.
(Theorems 1 and 4), and Section IV contains the proofs of the )
corresponding direct coding theorems (Theorems 2, 3, and 5)/in Second-Order Coding Theorems for Memoryless Sources
Section V, we prove our results for arbitrary sources (Theoremsln this section we assume th¥tis a memoryless source with
6-8), and the Appendices contain proofs of various technidaded distribution P. That is, the random variablesX, } are
steps needed along the way. i.i.d. according taP, where, strictly speaking?; is a probability
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measure or{A, A). As is well known [4], the rate-distortion distortion levelD, which achieve asymptotic equality (to first
function of a memoryless source reduces to its first-order rateder) in all the almost-sure statements of Theorem 1
distortion function £,.(X) - nR(D)

a) lim -G, =0 as.
R(D) = R(P, D)= inf I(X;Y) (6) n—o0 Vn
X ¥) , £.(X7) — nR(D)
o ] o o _ b) lim sup =0 a.s.
where the infimum is over all jointly distributed random vari- n—oo  y/2nlog,log, n
ables( X, Y) such thatX has distribution? andE[p(X, Y)] < . A (XD —nR(D)
D. Let c) lim inf —— =—0 a.s.
n—oo  /2nlog, log, n
Dmax = Dmax P)=min E X7 7
(P) min Plp(X, y)] M Remarks:
1) Variance: The variancer? in Theorems 1 and 2 is a quan-
and note thatR(D) = 0 for D > Dya.x (see, €.0., tity characteristic of the source, which tells us that, when the

Proposition 1-iv) in Section Ill). In order to avoid thegoyrce is encoded in the most efficient way, the deviations of
trivial case whenR(D) is identically zero, we assume thatnhe codeword lengthé, (X7) from the optimumnR(D) bits
Diax > 0. will have a variance roughly equal ta>2. If any other code is

In our first result, Theorem 1, we give lower bounds on thgsed, these deviations will be asymptotically bounded below by
pointwise deviations of the description lengthg X7') of any 5 Gaussian random variable of variane€?. In view of this,
codeC;, from the optimummR(D) bits. It is proved in Section e think of o2 = 2(P, D) as theminimal coding variancef
I11-B by an application of the general lower bound in Theorem 4ne source” at distortion levelD. The precise definition of2

Theorem 1. Second-Order Conversdst X be a memory- is given in the next section and its properties are discussed in

less source with rate-distortion functid®(D), and letD € SOMe detail in Section II-C. In particular? is always nonneg-
(0, Dynac)- ative (typically it is strictly positive), and it can be expressed as

i) CLT: There is a sequence of random variablés —
G, (P, D) such that, for any sequence of codés,, ¢, }
operating at distortion levedD, we have

o? = Var (—log F'(X})) 9)

for some functionf: A — (0, o).
2) Pointwise Redundancytet {C,,, £, } be arbitrary codes
£,(X7) — nR(D) > v/nG,, — 2logn operating at distortion leveD. If 2 > 0, part ii) of Theorem 1
eventually, a.s. (8) says that when the codgs’,, } are applied to almost any real-
ization of the sourc&, then for infinitely manyn

and the(7,, converge in distribution to a Gaussian random
variable Lo (XT) = nR(D) > Cy/nlog, log.n (10)

where forC we can take any constafitc (0, v/2¢). Moreover,
the amount by which we can “beat” the rate-distortion function

with variances? explicitly identified. satisfies
i) LIL: With ¢? as above, for any sequence of codesg
{C,, ¢, } operating at distortion leveD

D
G, — N(0, o?)

W XT) —nR(D) > —Cy/nlog, log.n eventually, a.s.

TheO(y/nlog, log, n) rate in (10) is in sharp contrast with the

lim sup A7) — nR(D) >0 a.s. expectededundancy rates of ordél(logn) reported in [39].

n—oo y/2nlog. log.n

liminf n(AY) — nB(D)

> — ¢ a.s.

3) Expected Versus Pointwise Redundan@ire difference
between the two types of redundancy is reminiscent of the clas-
sical bias/variance tradeoff in statistics. Here, if the goal is to

design a lossy compression algorithm that will be used repeat-

(Recall that log, denotes the natural logarithm ancedly and on large data sets, then it is probably a good idea to
log = log,.) Our next result, Theorem 2, shows that thessptimize the expected performance. On the other hand, if it is
lower bounds are tight. It is proved in Section IV using #mportant to guarantee compression performance within certain
random coding argument. Although the construction is esséssunds, it might be possible to give up some rate in order to re-
tially identical to Shannon’s classical argument, determinirguce the variance.
its pointwise asymptotic behavior is significantly more deli- 4) Lossless Compressiorthe results in Theorem 1 are
cate, and it relies heavily on the recent results of Dembo aolbse parallels of the corresponding lossless compression
Kontoyiannis [10] and Yang and Zhang [35] on the asymptoti¢esults in [15, Theorems 1 and 2]. There, the coding variance
of the probability of “distortion balls.” See the discussion aftetakes the simple form

Theorem 4.
_ _ o? = Var (- log P(X,)) (11)
Theorem 2. Direct Coding Theoreni:et X be a memory-

less source with rate-distortion functidR(D), and letD € (cf. (9) above), which can be viewed as the natural second-order
(0, Dpyax). There is a sequence of codgs,,, £, } operating at analog of the entropyy = E(—log P(X1)). In the lossless
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case, the pointwise lower bounds are easily achieved, for edaere the infimum is over all p.m.f."§ on A (simply inter-
ample, by the Huffman code or the Shannon code [9]. In fact,dhange the two infima).
is well known [18], [30] that we can come withi®(logn) of For each sourc® on A and distortion leveD > 0, letQ* =
the Shannon code universally over all memoryless sources, €¢7( P, D) denote a p.m.f. achieving the infimum in (13)
all message strings;. Therefore, in the lossless case, the same
pointwise behavior can be achieved universally at no extra cost R(D)=R(P, Q*, D). (14)
[15].

Next we show that the pointwise redundancy rates of ThéSee Proposition 2 part i) in Section IlI-A for the existence of
orem 2 can be achieved universally over all memoryless sourcgs) We call this(Q* the optimal reproduction distributiorfior
on A. The proof of Theorem 3 (Section 1V) is similar in spiritP at distortion levelD.
to that of Theorem 2, with the difference that here, in order to For a fixed source?, a distortion levelD € (0, D,,..), and
be universal, we generate multiple random codebooks and aveorresponding}* as in (14), we lefA,(A\), z € A, A < 0,
allow the encoder to choose the best one. The additional cosbefthe log-moment generating function of the random variable
transmitting the index of the codebook that was used turns ouid@:, ') whenY ~ Q*
be negligible, and the pointwise behavior obtained is identical
(up to terms of orde®(log 1)) to that achieved with knowledge A _(\) = log, Fq- (@p(nY)) . zEeA N0
of the source distribution. The idea of multiple random code-
books is well known in information theory, dating at least as faf,op, there exists a unigue= \*
back as Ziv's 1972 paper [40] and the work of Neuhoff, Gray,
and Davisson in 1975 [22]. Nevertheless, to determine the exact d
pointwise behavior of this random code is more delicate, and J[EP(AX()‘))] =D
our analysis relies on recent results from [10] and [35].

< 0 such that

. . . (see Lemma 1 in Section IlI-A).

'_I'heorem 3. Universal Cod!ngTher-e IS a sequence of" Our next result, Theorem 4, shows that the pointwise redun-
universal codegCy, £} } operating at distortion leveD, such - qaney of any sequence of block codes is essentially bounded
that, if the datd X, X», ---) are generated bgnymemoryless pe|oy by a sum of i.i.d. random variables. As we discuss in the
source”” on 4, and if D € (0, Drax(P)), then remarks following Theorem 4, this lower bound can be inter-

ing that th fi f f block
¢ (XT)—nR(P, D) preted as saying that the performance of any sequence of bloc

d) lim -G, (P, D)| =0, P—as. codesis dominated by the performance of Shannon’s random
n—ee Vi code. Theorem 4 is proved in Section IlI-B.
b') lim sup GL(XT) —nR(P, D) =o(P, D), P-as. Theorem 4. Pointwise Lower Bound:et X be a memory-
n—oo  y/2nlog log. n less source with rate-distortion functidd(D), and letD ¢
0 (X)—nR(P, D) (Q, Dn_m). For any sequence of cod¢€’,,, E,,,} _operating at
c) héri)lcgf o 1o =—o(P, D), P-as. distortion levelD and any sequendg,, } of positive constants
V ST 108 108 T such thay", 2% < oo, we have

where the random variables, = G,,(P, D) and the variance

o® = o*(P, D) are as in Theorem 1. Lu(XT) —nR(D) 2> f(X;) —b, eventually,as. (15)
=1
B. Main Results: Pointwise Optimality of the Shannon Code h
where
In this section we state our main results, from which Theo-
rems 1-3 of the previous section will follow. A % *
. e = (loge)(—Az(\*) — Ep[-Ax(\")]). 16
Assume thatX is a memoryless source with distributidh f(@) = (log ) (= A, (A7) P[=Ax () (16)
on A, and let@ be an arbitrary measure ofj sinceA is a finite .
. . . - . Remarks:
set, we think of simply as a discrete probability mass function
(p.m.f.). For eacl}, define 1) Consequencesitt is easy to see that Theorem 1 is an im-
mediate consequence of the lower bound (15). In particular, the
R(P,Q, D)= inf [I(X;Y)+ H(Qv|Q)] (12) coding variances? in Theorems 1 and 2 is simply the variance
(X, Y) of the random variablg (X, ).

2) Intuition: Suppose we generate a random (Shannon)

where H(E||Q2) denotes the relative entropy (in bits) betWeeEodebook according tQ*, that is, we generate i.i.d. codewords

two distributionsR and @, Oy denotes the distribution df,
and the infimum is over all jointly distributed random variables
(X, Y) with values inA x A such thatX has distributionP
and E[p(X, Y)] < D. Itis easy to see that the rate-distortio
function of X can be expressed as

Y(i)=(Yi1, Yi2, -, Yin) i=1,2 -

'sach drawn from the distributio®’ = (Q*)". We can en-
code each source sequen&é by specifying the index =
W, of the first codeword”(¢) such thap,, (X7, Y(¢)) < D.

R(D) = R(P, D) = igf R(P, Q, D) (13) This description takes approximateliog W,,) bits. But W,,,
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the “waiting time” until the firstD-close match forX{, is ap- Next, in Corollary 1 we combine Theorem 4 (with, =
proximately equal to the reciprocal of the probability of finding1 + 6)logn) with (18) and Theorem 5 part i), to rewrite the
such a match, so above results in an intuitively more appealing form. And in
Corollary 2 we point out that from the proof of Theorem 4 we
log Wy, = log [1/Qr(B(XY, D))] can read off a lower bound on the performance of an arbitrary

sequence of codes, which holds for any finite block length

Although the two corollaries are simple consequences of Theo-

B(a?, D) = {y? c An. e, Yy < D}, at e An,  Tems 4 and 5, conceptually they contain the main contributions
17) of this paper.

where the “distortion ballsB(z7, D) are defined by

From the recent work of Dembo and Kontoyiannis [10] and Corollary 1. Pointwise Optimality of Shannon Codginder
Yang and Zhang [35] we know that these probabilities behaute assumptions of Theorem 4, for any sequence of codes
like {Chy, £, } operating at distortion leveD, we have

log [1/Q(B(XT', D))] £,(X1) > log [1/Q%(B(X], D))] — 2logn eventually, a.s.
= (19)
= nR(D) + Z J(Xi)+ 5 logn + O(loglogn)  &S. \yhere the Shannon code achieves
=1

(18) £, (X7) < log[1/Q%(B(XT, D))] + 4logn + Const.
(See Proposition 3 in Section IV.) Therefore, the pointwise de- eventually, a.s.

scription length of the Shannon code is, approximately, Corollary 2. (Nonasymptotic Lower Bound)Inder the as-

n _ sumptions of Theorem 4, for any block lengthand any con-
log Wi, = nR(D) + Z f(Xi) bitsas. stantc > 0, if the code(C,,, £,,) operates at distortion levéD,
=1 then

In view of this, we can rephrase Theorem 4 by saying that, in a .
strong sensehe performance of any code is bounded below by’* {Kn(Xf’) <—log Eqg; (CM (rn (M )_D)) _C} <27
the performance of the Shannon coltkeleed, the proof of The- ) . ,
orem 4 is based on first showing that any code can be though{dft1€ case of lossless compression, this reduces to Barron's
as arandomcode (according to a measure 4n different from OWer bound (see [2, eq. (3.5)])
Q7), and then proving that the pointwise performance of any ) n ) n —c
random code is dominated by the performance of the Shannon Prifn(Xy) < —log P(XT) — e} < 27
code.

The following result, Theorem 5, formalizes the above. Minimal Coding Variance
random coding argument, and also shows that essentially
the same performance can be achieved universally over 5IP
memoryless sources.

upposeX is a memoryless source with distributidt let
€ (0, Dyax), and let@Q* be the corresponding optimal re-
production distribution. In the notation of the previous section,

Theorem 5. The Shannon Code—Random Coding: the minimal coding variance? = Var [f(X1)] can be written
i) Let X be a memoryless source with rate-distortion funés
tion R(D), and letD € (0, Dyax). There is a sequence 0 ) N [p(X, Y)=D]
of codes{C,,, £, } operating at distortion leveD, such 0" = Varp [_ log By (6 )}
that

(hereX andY are independent random variables with distribu-

£u(XT) < log [1/Q7 (B(XT, D))] + 4logn + Const. tions P andQ*, respectively). As we will see in Section IlI-A,

the rate-distortion functio®(D) can similarly be expressed as
eventually, a.s.

whereQ* is the optimal reproduction distribution at dis- R(D) = Ep [— log Eq- ((3A X, Y)_Dm :
tortion level D, and @, = (Q*)™.

i) There is a sequence of universal codé€’, ¢}
operating at distortion leveD, such that, if the data
(Xy, X5, ---) are generated bgny memoryless source

Comparing the last two expressions suggests that we may think
of o2 as a second-order version Bf D), and further justifies
the term minimal coding variance, by analogy to the minimal

PonA,andifD € (0, Dyax(P)), then coding rateR(D). _ L
It is obvious that? is always nonnegative, and it is typically
£ (X7) Llog[1/Qr (B(XT, D)) strictly positive, since the only way it can be zero is if the ex-

pectationEq- (e* #(*Y)) is constant forP-almost allz € A.

We give three simple examples illustrating this.

wherek is the number of elements i, Q*=Q"(P, D) Example 1. Lossless Compressiofis mentioned above, in

is the optimal reproduction distribution corresponding tthe case of lossless compression the minimal coding variance
the true sourcé at distortion levelD, andQ?, = (Q*)". reduces t@? = Var [-log P(X1)] (cf. (11)), from which it is

+(4+k)logn+Const. eventuallyP—a.s.
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immediate that> = 0 if and only if P is the uniform distribu- result gives an analog of Theorem 4 for the case of sources with
tion over the finite alphabed. (See [15] for more details and amemory. It is proved in Section V using an argument similar to
corresponding characterization for Markov sources.) the one used by Kieffer in the proof of Theorem 2 in [14].
Example 2. Binary Source, Hamming Distortioihis is the
simplest nontrivial lossy example. Suppd$ehas Bernoullig)
distribution for somep € (0, 1/2]. Let A = A = {0, 1} and
let p be the Hamming distortion measugz, v) = |z —y|.
For D € (0, p), easy but tedious calculations (cf. [4, Exampl

Theorem 6. A Lossy “Barron’s Lemma”"SupposeX is an
arbitrary source, and ldd > 0 be such thai(,, (D) < ~o. For
any sequence of cod¢€’,,, ¢,,} operating at distortion leveD,
(\a/ve have the following.

2.7.1] and [9, Theorem 13.3.1]) show i@t is a Bernoulli) i) Foralln
distribution withg=(p—D)/(1—-2D), \*=log, (D/(1— D)), N
and E[6.(X1)] =2 Kn(D) Z Bn(D).
Ee (C,\*p(x,y)) _ P(x) ' i) For any sequencdb,,} of positive constants such that
@ 1-D Y270 < oo
As we already noted; = 0 if and only if the above expression .
is constant inz, so that, herey2 = 0 if and only if p = 1/2, £ (XT) 2 log [UQn(B(X{L’ D))} — by, eventually, as.
i.e., if and only if P is the uniform distribution ot = {0, 1}. (20)

Example 3. A Quaternary Exampléhis is a standard ex-  The lower bound in (20) is a natural “lossy analog” of a well-
ample from Berger's text [4, Example 2.7.2]. SuppdSéakes known result from lossless compression, often called “Barron’s
values in the alphabet = {1, 2, 3, 4} and letA = A. Sup- Lemma” [1], [2]. Barron’s Lemma states that for any sequence
pose the distribution oX is given byP = (p/2, (1 — p)/2, of lossless code§C,,, £, }

(1 — p)/2, p/2), for somep € (0, 1/2], and let the distor-

tion measurep be specified by the matrixo;;) = (p(4, 7)), 0 (XT) 2 log[1/ P (XT)] — b, eventually, a.s.

i, j € A, where

Similarly, we can interpret the lower bound of Corollary 1 (19)

as a different generalization of Barron’s Lemma, valid only for

(pij) = 1 memoryless sources. The reason why (19) is preferable over
/21 0 1/2 20) is because th@* are product measures, whereas it is ap-
1 12 1/2 0 ( n e b £es, P

parently hard to characterize the measupgsin general. For

ForD € (0, (1—+/1—2p)/2) itis possible (although tedious) example, in the case of memoryless sources one would expect

0 1/2 1/2 1
/2 0 1 1/2

to calculate* and \* explicitly, and to obtain that that, for largen, the measureg),, “converge” to the measures
Q)7 in some sense. The only way in which we have been able
Eq- (@*ﬂ(% Y)) — P(z) ) to make this intuition precise is by proving the following result
(1-D)? asserting the asymptotic equivalence between the compression

Once again, this is generally not constantirwith the excep- Performance of), and¢;.

tion of the casg = 1/2. So,o” will be strictly positive, unless  Theorem 7. Equivalence of Measurelset X be a memory-

P is the uniform distribution omd = {1, 2, 3, 4}. less source with distributio?, and letD € (0, Diy.x). Then
There is an obvious trend in all three examples abdbe

varianceos? is strictly positive, unles® is uniformly distributed log [1/Qn (B(XT D))}
overA. Itis an interesting problem to determine how generally ’ ’ . .
this pattern persists. =log[1/Q(B(XT, D))] + O(logn) as.

D. Sources with Memory Clearly, Theorem 7 can be combined with the recent results

Here we present analogs of Theorems 4 and 5 for arbitraty Fhe probabilities oD.-baII.s mentioned n (18), to give alter-
native proofs of the pointwise converses in Theorems 1 and 4.

sources. Of course, at this level of generality, the results inally, we state a direct coding theorem, demonstrating that the
get are not as strong as the ones in the memoryless case. v%’uﬂ Y, 9 ' 9

adopting a different approach, we are able to get interesting p%'y'gc?gﬂn\? Illhe::znm dSrLS;)Sg{:]pgtlc?#Z;;ght' Itis proved
tial generalizations. ' | using Ing argu .

Let X be an arbitrary source with valuesih and letP, de- Theorem 8. Partial AchievabilitySupposeX is an arbitrary
note the distribution oK {'. By asubprobability measur€,, on  source, and leD > 0 be such thaf,,(D) < cc. Then there is
A™ we mean a positive measure with total maiss @,,(A") < a sequence of codd<,,, 4, } operating at distortion leveD,

1. For eachD > 0 we define (recall the notation in (17)) such that
Kn(D) = Ku(P, D) = inf Ep, {-logQu(B(XT, D))} £,(X7) <log [1/(3”(3()(;1, D))] + 2logn
where the infimum is over all subprobability measuégs +2loglog {L} +Const.
Suppose?,, achieves the above infimum (the existence of Qn (B(XT, D))

such a@,, is established by Lemma 3 in Section V). Our next eventually, a.s.
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Theorem 8, combined with Theorem 7 and (18), provides al- iv) For every\ < 0 and every probability measufeon A,
ternative proofs for Theorem 2 and Theorem 5 part i). A, . (X) is upper semicontinuous as a functior.of

Finally, we remark that, for “nice” measureék,, it is natural . . . .
to expect that the probabilitied,, (B (B(X7, D)) will decay to In the following propositions we give two alternative repre-
i L sentations of the functio®(y, v, D), and state several of its

zero exponentially fast. This would be true, for example if the . .
ropertles. Propositions 1 and 2 are proved in Appendices Il and
Q,, were the finite-dimensional marginals of a “nice” proces fl, respectively

like a Markov chain [34] or a process with “rapid mixing” prop-
erties [7]. In that case, thddglog” term in Theorem 8 would ~ Proposition 1. Representations Bf ., v, D):
grow likelog n, implying that the lower bound of Theorem 7 is ) ForallD > 0

tight up to terms of orde©(logn). B

R(p, v, D)= inf E,[H(O(|X] .
I1l. CONVERSES FORMEMORYLESSSOURCES (1, v, D) lg ”[ (OCXDII )]

~ In Section IlIl-A we collect some useful technical facts, and  \yhere the infimum is taken over all probability measures
in Section I1I-B we prove Theorem 4 and use it to deduce The- g on A" x A" such that thed”-marginal of® equals:
orem 1. and Ee[p, (X7, Y] < D.
) ] i) Forall D > 0 we have

A. Representations and Propertiesi®RfP, @, D)

Forn > 1, lety andr be arbitrary probability measures on R(u, v, D) = (loge)AS, (D).
A™ and A”, respectively (of course, sinckis a finite sety is
a discrete p.m.f. om") Write X7 for a random vector with . . )
distribution;, on A, andY;* for an independent random vector Proposition 2. Properties o(y, v, D):
with distribution on A”. Let S,, = {5 € A™: v(y7) > 0} C i) For everyD > 0 and every probability measureon A",

A™ denote the support of, and define R(p, v, D) is lower semicontinuous as a function:af
i) For everyD > 0, there exists a p.m.f = Q* on A

DhY — (X7 achieving the infimum in (14).
min w Linm pn(XT, Ul )} iiiy For D < D> R(u, v, D) =oo; for D < D < DH Y

0< R(p, v, D)< oc0; and fOI’D>D“ ¥, R(p, v, D)=0.

max?

DY —F (X7, Y. .
wev [n (X1, 17 iV) For0 < D < Dyax We haved < R(D) < oc, whereas for

max

Clearly,0 < Di.» < Di ¥ < oo. ForA < 0, we define D 2 Dax, (D) = 0. P,
V) If D € (0, Dyax), then D29 < DR and D e
AH:”()‘) = EH |:10g€ E, (CAP”(XI Y )):| (DIHII? ’ Dﬂ?a% )
and, forD > 0, we write A}, , for the Fenchel-Legendre transB. Proofs of Converses
formof A, ., :
’ Proof of Theorem 1 from Theorem 4fakingd,, = 2logn
A (D) =sup[AD — A, (V)] in Theorem 4, yields
’ A<0
In analogy with (12), we also define £, (X7) —nR(D) = Z F(X,) —2logn eventually, a.s.
=1
R(p, v, D)= _inf [I(X7; Z7)+ H(Qzy||V)] (21)
(x1.27) writing G, = (1/v/n) 37, f(X;) we get (8) since the

random variables{ f(X,,)} are zero-mean, bounded, i.i.d.

where H(R||@Q) denotes the relative entropy (in bits) betweerandom variables, $o the ordinary CLT implies that

two distributionsi and@, @z denotes the distribution diT,
and the infimum is over all jointly distributed random vectors »

(X7, Z1) with values inA™ x A™ such thatX? has distribu- G, — N(0, o%)

tion u andE[p, (X7, Z7")] < D. In the next lemma we collect

various standard properties 4f, ,. andAfL »- Parts i)—iii) can wheres? = Var (f(X,)). This proves part i).

be found, e.g., in [10] or [17]; part iv) is proved in Appendix I.  Next, dividing both sides of (21) by/2n log, log, , letting

n — oo, and invoking the classical LIL (see, e.g., [6, Theorem
13.25] or[12, p. 437]), immediately gives the two statements in

Lemma 1:
i) Ay, isinfinitely differentiable on(—oo, 0), A}, ,(0) =

Dz andAl, ,(A) — D% ash — —oc. part i) H

i) AL LN 2 Ofor all A < 0; if, moreover,D!." < D x| Proof of Theorem 4:Let {C,, = (B,,, ¢n, ¥»)} be an ar-
thenA” L(A) > 0forall A <0. bitrary sequence of block codes operating at distortion 1&yel

iii) If Dﬁ;m DiioandD € (D, Dih), then there and let{/, } be the sequence of corresponding length functions.

exists a uniquex < 0 such thatd], ,(A\) = D and By Proposition 2 part ii) we can choose a p.n¢f: on A so
AL (D) = AD — A, (). thatR(D) = R(D, Q*, D). Since we assumB € (0, Dy,x),



144

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 1, JANUARY 2000

Proposition 2 part v) implies tha € (D29 DI2Q"), soby in terms of the measur@?, = (Q*)"
Lemma 1 we can pick a* < 0 with
( nA [pn (2, Y1)~ D]
A'D — Ap g+ (X*) =Ap - (D) n
= (log, 2)R(P, Q*, D) =] £o (e” [f’@f:Y)*Dl) (25)
= (log. 2)R(D) (22) =1

where the second equality comes from Proposition 1 part ii)."e"
Sincey,, is a prefix-free lossless code (for each it induces

a length function,, on B,, given by

L,(y1') = length of [, (v1)], 91 € B,.

The functionsL,, and/,, are clearly related by,,(z7)
L, (¢,(27)). The key idea of the proof is to consider the

following subprobability measure aa™:

Qc, (F) 2 | >

Yy} CFNB,

2_Ln(y711)7

Note thatQ)¢, is supported entirely o®,,; the fact that it is
a subprobability measure follows by the Kraft inequality. Our

forall ' C A™,

)eo

But these are exactly the Kuhn-Tucker conditions for the opti-
mality of ¢* in (24); therefore, by [3, Theorem 2] we have that

forall g € F,.

g(XT)
b {g*(XI‘)

The result of Theorem 4 can now be proved as follows. Define
gn € Fpn by

} <1, forall g € F,. (26)

gn(ﬂU?) — EQC'n (en)\* [pﬂ,(az’ﬁYl”)—D}) ) (27)

main use for@Q., will be to bound the description lengths

£, (%) in terms of an expectation ové€l¢, . For anyz? € A"

9=6a D) — 9T (60 })

2)2_[1”((;5”(1;’1")) NN [pn (27, (27 )= D]

< Z =L (y1) gnA*[pn (@1, 97 )— D]
TEDB,

— EQ% ( nA [ (2}, Y1) — D})

wherea) follows from the fact thatC,, operates at distortion

level D. This gives the lower bound

£(x]) > —log Eq., (Cm*[pn<w?,Yf1>—D1)_

Now consider the following family of functions oA™:

A n A [pn (27, Y —
Fo 2 {golat) = Eo, (e ot 20=11)

for a subprobability measui@,, on A"}

and notice thafF,, is a convex family. We are interested in the

infimum

inf Ep» {—log, g(X)}

gCFn

= il Bp» {~log, Bq, (¢ In X711}

whereP™ denotes the distributio{*. According to Lemma 2
below, this infimum is achieved by the functigh € F,, defined

Recall the functionf on A defined in (16), and observe that,
using (22), it can be rewritten as

f(z) = —R(D) — log Eq- (e”[ﬂ@Y)—D]). (28)

Then, the probability that the assertion of the theorem fails can
be bounded above as

Pr {zn(x" — nR(D

53 st}
a)

2pr { ~log B, (¢ 051000=))
(23)

I

<

[f(X:) + R(D)] - bn}

=1

2 Pr {=logg. (X7)
(

gn
=Pr
{9*(X
c) n
<27 Epn {g"()f;)
9*()‘1 )

> —log g™ (X1)bn}
X7) > 2@,}
)

}

wherea) follows from the bound (23),) follows from the def-
initions of f, g,, andg* in (28), (27), and (25)¢) is simply
Markov's inequality, and) follows from the Kuhn—Tucker con-
ditions (26) withg = g,. Now since the sequenc "~ is
summable by assumption, an application of the Borel-Cantelli
lemma to the bound in (29) completes the proof. O

d)

<27 (29)

(24)
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Lemma 2: The infimum in (24) is achieved b’ = (Q@*)"*. voke Sion’s minimax theorem [31, Corollary 3.3] to justify the
Proof of Lemma 2:Write P,, (or SP,,) for the collection exchange of the infimum and the supremum in sjep
of all probability (respectively, subprobability) measuressn Finally, we need to justify stef). For A < 0 define the func-

ForA < 0 and@,, a p.m.f. on4™, let tionsM(\) = h(A, @), and
h(X, Q) =nAD — Apn g, (nA). m(A) = angp h(X, Q).
nCPn

Taking@, = Q;, = (Q*)" in the infimum in (24), the result of o, goal is to show
the lemma follows from the following series of relations:

o sup m(A) = m(A\"). (30)
EPH {— IOge EIQ:I (Cn)\ [pn (X7, Y7 )_D1)} A<0
2D — Apn, g: () From the above argumenj—i), we have that
_) * *
=n[A"D = Ap g (X)] M"Y = sup M()) = sup m(\).
2 (log, 2)nR(P, Q*, D) A0 A0
) (log, 2)nR(D) As noted in the beginning of the proof of TheoremM, )
o) is strictly concave and its supremum is achieved uniquely
= (log. 2)R(D) by \* < 0, so we may restrict our attention to an interval
2 (log, 2) inf R(P", Q,, D) I =[\ =6 A +68 C(—o0,0), and sincen()) < M(X)
@nCPn for all A
g)
= inf sup h(A/n, Q)
QnCPn <0 M(X\*) = sup M()\) = sup m(A).
h) Aerl Aerl
= inf sup h(A, Q)
. @nEPr A<0 By the definition ofm as the infimum of continuous functions it
H sup _inf A\, Qn) follows that it is upper semicontinuous (see, e.g., [27, p. 38]), so
A<0 QuEPy it achieves its supremum on the compact&ebincem () <
Dot ROV, On) M(A) for all A, andM (X)) = M(A*) only at \*, this implies
QuEP, ren that the supremum af» over I must also be achieved at,
LI T A [pn (X7, Y{") =D giving (30). U
—Qilgp : Epx { log, Eq, (c 1:0 )}
D) inf  Ep» {—10ge Eo, (Cn)\*[pn(Xf“,Yl”)—D1)} V. SHANNON’S RANDOM CODES AND D-BALL PROBABILITIES
Q.CSP,,

In this section we prove Theorem 5, and we deduce Theorems
d 2 and 3 from it.
We continue in the notation of the previous section, and recall
the definition of a distortion ball in (17). LeX be a memory-
f less source with distributio#, fix D € (0, Dy.x), let Q* be
the optimal reproduction distribution fét at distortion leveD,
and write@)?, = (Q*)™. The following proposition will be used

the Introduction that (6) is the same as (18):follows from repeatedly in the proofs. If follows easily from some recent re-

Proposition 1 part ii)h) follows simply by replacingk by nA; sults in [10] and [35]; see Appendix V.

i) follows by an application of the minimax theorem (see below Proposition 3: If D € (0, Dp.x), We have
for an explanation)j) follows from a simple continuity argu-

ment given belowk) follows from the definitions of the func- — log Q (B(XT, D))

tionsh andAp. ¢ ; and?) follows from noting that ifQ,, is n

wherea) andb) follow from the definitions ofA p» (g+)» an
Ap, -, respectivelyic) follows from the choice of\* andd)

follows from the choice of@* in (14); e) follows from the
well-known fact that the rate-distortion function of a vectono
i.i.d. random variables equalstimes the rate-distortion func-
tion of one of themf) follows in the same way as we noted in

n 1
strictly a subprobability measure with,,(A") = Z < 1, then =nR(D)+ Z (X)) + 3 logn + O(loglogn) a.s.
using the probability measutg, () = Z~1Q,.(-) we can make i=1
the expression that is being minimized on lif®@ smaller by o
log Z < 0. Proofs of Theorems 2 and 3 from Theorem@Gombining

To justify the application of the minimax theorem in sted N€orem 5 part i) with Proposition 3 gives
i), first we note that, by Lemma 1 part iv}, is lower semi- "
continuous as a function @p,,, and by Lemma 1 part i) it is £,(XT) — nR(D Z )+O(logn) as.
a continuous function oh. Also, since by Lemma 1 part ii) Pl
A% . (M) 2 0, his concave im\, and by Jensen’s inequality
(and the concavity of the logarithmj), is convex in@,,. And In view of the corresponding lower bound in Theorem 4 (with
since the space of all p.m.f.(g,, on Anis compact, we can in- b,, = 2logn), this, together with the classical CLT and the LIL
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applied to the sum of the bounded, zero-mean, i.i.d. randgn 2 Q:(B(X}, D)), so that
variables{ f(X;)}, yield the three statements of Theorem 2.
Theorem 3 follows from Theorem 5 part ii) in exactly the sam@r {¢,, > 2logn|X] = z7} = Pr{W, > n®/p,|X]" = 27}

way. O <@ _pn)(nz/pn)—l
Proof of Theorem 5 Part i):For eachn > 1 we generate <2(1-— pn)nz/pn

a random codebook according €, = (Q*)*. LetY (i) = 22/712

(Yz‘,g, Yi2,---, Y, n), ¢ =1,2, .-+, beiid. random vectors =

in A", each drawn according 197,. Given a source string{" \\here the last step follows from the inequality — p) <

to be encoded, 18%, = W,.(X{) denote the firstindexsuch 1 /y;.) forp, € (0, 1) andM > 0. Since this bound is uniform
that X* matches theéth codeword with distortiorD or less overz® € Gy, and(2/n?) is summable, the Borel-Cantelli
lemma implies that,, < 2logn, eventually, for almost every
W, =inf {i > 1: p (X7, Y(4)) < D}. codebook sequence, afalmost allz° € G,,. This together
with (32) establishes (31).
If such a match exists, we descril¥§' (with distortion nomore  |n particular, (31) implies that with probability on#/,, < o

than D) by describing the integéi¥’,, to the decoder; this can eventually. Therefore, the description length of our code
be done using (cf. [13] and [33])

£, (XT) <logW,,+2loglog(2W,,)+11 bits, eventually, a.s.
[log(W,, + 1)1 + 2[log ([log(W;, + 1)] + 1)]
< log W, + 2loglog(2W,,) +10  bits and this can be bounded above as

R n < o * n
Otherwise, we describ& ] exactly, using[ log |A[] bits (re- En(X1) < LoglL/Qu(BIXT, D))l +en

call (5)). Our cod&”,, consists of combining these two descrip- +2log[l + & —log Q. (B(XT, D))] + 11
- . _ . . . a)
gﬁgz,ert]ogether with a one-bit flag to specify which one was < 1og[L/Q" (B(XT, D))] +2logn

Next we show that, for large, the “waiting time”W,, until a + 2log[1 + 2logn + 2nR(D)] + 11
D-match is found can be approximated by the reciprocal of the < log[l/Qr (B(XT, D))] + 4logn + Const.
probability of finding such a matcl®);; (B(X}*, D)). Specifi- eventually, a.s.

cally, we claim that the difference
where a) follows from (31) and Proposition 3. This proves

én = log W, — log[1/Qx(B(XT', D))] parti). =
o Note that the above proof not only demonstrates the existence
satisfies of a good sequence of cod¢€),, ¢, }, but it also shows that
almost every sequence of random codes generated as above will
en < 2logn eventually, a.s. (31) satisfy the statement of the theorem.

) Proof of Theorem 5 Part ii):Here we assume that the
where the almost-sure statement above (and also in all sub§§jrce x = {X,;n > 1} has a distributionP, where
quent statements) is with respect/fealmost any source real- p is ynknown to the encoder and decoder, but such that
ization, and almost any sequence of codebooks generated gcz (0, Dyax(P)). For eachn > 1 we generate a family of
cording to the above procedure. We prove (31) by an argumedtiehooks, one for eaohtype on A. Recall [9] that a p.m.f.

along the lines of the “strong approximation” results in [10]Q on A is called am-type if, for eachy € A Qy) = m/n for

[16], and [17]. Let an integern. The numbef’(n) of n-types grows polynomially
in », and it is bounded above as
G =1{27: 0 < QL (B(z}, D)) < 1/2forall n > m}.
T(n) < (n+ 1)k (33)
Proposition 2 implies that, eventually, almost every striffg . .
generated byX will belong to aG,,,, i.e., wherek = |A| denotes the cardinality of; see [9, Ch. 13].
Forl < j < T(n), let Q) denote thejth n-type. Thejth
codebook consists of i.i.d. random vectors

P G| =1 32) , o )
"gl Y(])(i) = (Y;Sjl)v Y;§JQ)7 T Y;SJrZ)v i=1,2,--

where, with a slight abuse of notation, we wrif for the Where eachy¥) (i) is drawn according t¢Q“))". Given a
one-dimensional marginal of the distribution Xf as well as source stringXy*, we let W) = r(ﬂ)(X{L) be the waiting
the infinite-dimensional product distribution it induces. Nowime until aD-close match folXT is found in thejth codebook
let n > m > 1. Conditional onX{® = z{° € G,,, the

waiting time W,, has a geometric distribution with parameter W) = inf {L > 1:p, (X7, YO (4)) < D}
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and we define Before proving this, let us see how it allows us to complete the
proof. Recalling Proposition 3 and substituting the bounds (34)
W* = min WO, and (36) into (35) gives
"<ty "

£, (XT) < log(1/pyn) +2log[l + C + 2logn + 3nR(D)]
+(2+k)logn+ (C+11+k)
< log(1/py) + 2log[4nR(D)] + (2 + k) logn
Wy < oo eventually, a.s. +(C+11+k)
< log[l/Q; (B(XT, D))] + (4 + k) logn + Const.
eventually,P — a.s.

It is not hard to see that, for large enoughthere will (almost)
always be a)-match forX} in one of the codebooks, so that

where the almost-sure statement here (and also in all subse-

guent statements) is with respecealmost any source realiza-

tion, and almost any sequence of codebooks generated as above. .
D >

(This is so because, for > k, at least one of the-types has Emally, we need to prove (36). Pick, = NV large enough,

positive probability on all elements af, so with probability one igrt(?itr fo*r alln Zk No igg all>y ; ing Sly) Iiﬁlt;]: ;?&?grto
every possibled™-string will appear infinitely often. Assump- Q@*(y) > k/n. = o € Y-

tion (5) then guarantees the existence df-match.) Therefore, Then
we can describ&(}* (with distortion no more tha®) to the de-

> [ )]

coder by specifying the waiting timé’;;, and the codebook in Q*(B(z?,D)) wrcBGr, D)
which W is achieved. As in part i), and using the bound in (33), Qn(B(.’L':;’D)) == S 0uh)
this can be done using " L y?EB(% Dy e

max (y

K:L(Xf) _ DOg(W; + ]_)-| +2 DOg(DOg(W; + 1)—| + 1)-| yr€B(x},D) Qn( %

+ [klog(n + 1)] *
<log W) + 2loglog(2W)) + klogn + (11 + k) = max H

IA

)
)

bits, eventually, a.s. HeBED (yz)
. . < BN C))
Now, following [17], we pick a sequence aftypes that are = \yed: @ (>0 @ (y)
close toQ*. We letg,, be ann-type such thag,(y) > 0 and n
lgn(y) — Q*(v)| < k/n, for ally € A. This can be done for Y A Q*(y)
all n > N, for some fixed integeV (see [17] for the details). T \ved Q>0 Q@ (y) —k/n

Let V,, denote the waiting time associated with the codebook I —n
corresponding tg,,, and write?,, = (g,,)". The same argument < < — ﬁ>
as the one used to prove (31) in part i) can be used here to show nQ*(y")

that wherea) is by the choice of,, andy* is they € A with the

A n smallest nonzer@* probability. So
— 2105V, — log[L/Qu(B(X}, D)) @"p 4

<2logn eventually, a.s. (34) §a(a?) < —nlog(l — C' /n)
Using the obvious fact tha¥’; is never greater thaW,, we \ith 7 = k/Q*(y*), and this is a convergent sequence so it
can bound’;, (X{) above by must be bounded. 0O
(X < log Vi, + 2loglog(2V;,) + klogn + (11 + k) As in part i), this proof actually shows that almost every se-

quence of random codes generated as above will satisfy the

< log(1/py) + 6, + €
< 1og(1/pn) +6n + €5 statement of the theorem.

+ 2log[l + 6, + €, +log(1/pn)]
+klogn + (11 + k) (35)

eventually, almost surely, whegg, = Q% (B(X7, D)) as be- V. ARBITRARY SOURCES

fore, and
Let X be anA-valued source, and writ&,, for the distri-

Qr(B(X], D)) bution of X7. In this section, we prove Theorems 6-8. We
Q.(B(X,D))| " begin with two useful lemmas; they are proved in Appendices

IV and V, respectively.
Next we claim that there exist absolute const@nend.V, such
that

8 = 6,(XT) = log [

Lemma 3: The infimum

§o(z7) < C foralln > No, and allz? € A™.  (36) inf Ep, {=1logQn(B(XT, D))} (37)
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over all subprobability measurég, on A™ is the same as the the probability that the assertion of part ii) fails can be bounded
infimum over all probability measures, and it is achieved bgbove as

some probability measui@,,. P {En(Xf) < log [1/Qn(B(Xf, D))} B bn}
2pr{ 02[1/Qc, (B(XF, D))
< log [1/Qu(B(XT, D))] ~ b}

Lemma 4:

K. (D) = Ep, {~105 Qu(B(X}', D))} > Ru(D).

Proof of Theorem 6:Let {C,,, £,} be an arbitrary se- =Pr { Qc, (B g?l ’D )) }
guence of codes operating at distortion le¥&l where each Qn(B(XT, D)) —
C,, consists of a triple B, ¢y, ¥, ). Let L, be the length ]224)”]51, {gn 1) }
function induced byy,, on B,,. As in the proof of Theorem 4, - " X7

the key idea is to consider the subprobability measpee on <)
A" defined by =

wherea) follows from the bound (38);) is simply Markov’s in-

Qc, (F) 2 Z 9= Ln(ul), forall F C A™. equality, and:) follows from the Kuhn—Tucker conditions (40)

’ yr EFB, - with g = g,.. Since the sequen@e’~ is summable by assump-
tion, the Borel-Cantelli lemma completes the proof. O

SinceC, operates at distortion levéd, for anyz? € A" we Proof of Theorem 7:SupposeX is a memoryless source
have with distribution P, let F,, = P" denote the distribution ok}*,

and write@* = (Q*)", where@* is the optimal reproduction
distribution at distortion leveD.

ba(a)) = La(bu(21)) Replacingg,, by ¢/, (27) = QF (B(«}, D)) in the last part of
= —logQc, (Pn(z])) the argument of the proof of Theorem 6, and takipg 2 log n,
> —logQc, (B(z7, D)). (38) we get

log[1/Q7(B(XT'; D))]

F 38) and the definition ok, (D i diately get that -
rom (38) and the definition o, (1) we immediately get tha Zlog[l/Qn(B(X{L, D))}—210gn eventually, a.s. (41)

Ep, [£.(XT])] > K.(D) Similarly, taking
gi(at) = By (Cnx [on <w’f,Yf1>fD1)

and, in view of Lemma 4, this proves part i).

For partii), we define a family of functions aa™ in place of g, in the proof of Theorem 4, and choosing

bn £ 2logn, we get
—log B (enx* [on (X7, Yl”)—D])
log B (6 I (51 0)-2)

and note thag,, is a convex family. By Lemma 3 we know that —2logn eventually, as. (42)

G = {g: g(al) = Qu(B(a}, D))

for a subprobability measurg,, on fl"}

But by Proposition 3 we know that (in the notation of the proof
in(;f Ep {—logg(X])} = Ep, {—logg(XT)} (39) of Theorem 4)
gE€Yn

log[1/Q(B(XT, D))]
whereg is the functionj(z7) = Q,.(B(z%, D)). But for each L
n > 1, (39) are exactly the Kuhn—Tucker conditions for the =~ — )+ Z FIXi
optimality of g in G, so [3, Theorem 2] implies that

+ % logn + O(loglogn) a.s.

— log Ep- ( nA [pn (X7, V] >—DJ) = log
og Ly | ¢ +2 ogn

N {g(XZ)} <1 forallged,. (40) + O(loglogn) a.s. (43)
g(XT)

and also, by a simple Chernoff-type bound
Therefore, letting On(B(XT, D)) — B, {"[pn(Xy,YI”)SD}}
gu(at) = Qc, (B(at, D)) < By, [N I EDDIL (ag)
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From (42)—(44) we have APPENDIX |

log[1/Qn(B(X], D))] Proof of Lemma 1 Part iv):Fix ax < 0 and a probability
. . 5 measurg: on A”. Let {v(*)} be a sequence of p.m.f.'s ofr",
2 log[1/Q; (B(XT, D))l - 5 logn+ O(loglogn) as. gych that the® converge, aé — oo, to some p.m.f on A™.

Combining this with the corresponding lower bound in (41-5-hen

completes the proof. O limsup A, o (A)

Proof of Theorem 8:We use a random coding argument, R o A (XY
very similar to the ones used in the proofs of Theorem 5 parts == hglggf E {_ loge Epx) (C B )}
i) and ii). For eachn > 1 we generate a random codebook a) \ N
according toQ,,: Let <-E, {%E&f —log, B, (6 prXT, ¥ ))}

V(@)= (Y1, Yo, -, Yip),  i=1,2-- Y_p, {_bge E, (CAPH<X1%Y1”>)}
be i.i.d. random vectors ial", each drawn according t@n =A, (N

Given a source string}?, let W,, = W, (X7) denote the first
index: such thatX{ matches théth codeword with distortion
D or less

wherea) follows from Fatou’s Lemma an) follows from the
assumption that®) — v. ThereforeA,, ,.(\) is upper semi-
continuous inv. O
W, =inl{i > 1. p,(XT, Y(¥)) < D}.

If such a match exists, we describg® to the decoder (with APPENDIX I
distortion no more tha) by describing?,,, using, as before,

no more than Proof of Proposition 1: The alternative representation of

R(u, v, D) in part i) can be obtained from its definition by a
log W, 4 2loglog(2W,,) + 10  bits. simple application of the chain rule for relative entropy (see,
. e.g., [25, eq. (3.11.5)] or [11, Theorem D.13)).
Otherwise, we describ&} exactly, using/» log|A|] bits; this For part ii) we will use the representation in part i). Eix>
is possible because of our initial assumption (5). Our dGde ¢ arbitrary, and recall (see [11, Lemma 6.2.13]) that for any
consists of combining these two descriptions, together withpaunded measurable functign A" = R, anyz} € A", and
one-bit flag to specify which one was chosen. any candidate measu@on A™ x A" with A™-marginal equal
Nextwe claim that the waiting timé#’,, can be approximated ,, andEg[p, (X7, Y7")] < D, we have

by the quantities /Q,,(B(X?, D)), in that their difference sat-

isfies (log, 2)H(O(-|zy)[lv())
e = log W, — log[1/Qu(B(X], D))] < 2logn > / #(u1) A0 a7) — log, B, (207)).
eventually, as. (45) Choosingg(y?) = Apn(z?, 37) and taking expectations of
The assumption thak,,(D) < oo implies that both sides with respect o, yields that
Qn(B(a, D)) > 0 (log. 2)E, [H(O(|X)lv()] = AD = Ay o (A).

for P,-almost allz7, so the strong approximation argumenfaking the infimum over all candidate measur@sand the
from the proof of Theorem 5 goes through essentiadigpatim Supremum over alk < 0, implies (from part i)

to prove (45). In particular, (45) implies thHf,, < oo eventu-

ally, almost surely, so the description length of our code can be R(p, v, D) = (loge)A, (D). (46)

bounded above as To prove the reverse inequality we consider four cases. (Note

n that we only need to consider cases wlzkin (D) < 00.)
3 < . . N v
fn(X1) < logWn + 2loglog(2Wn) + 11 Casel: D" > 0andD € (0, D!.”). By Lemma 1, for all

, v

< log [1/Qu(B(XT., D)) +en , osel D
M 2Fn+1 7 d /
+2loglog | =—— | +11 D — ALV =D — A N<D-— D;Lu<0
508 _Qn(B(XIL,D))_ d)\ [ la ( )] 22} V( ) — min
< log [1/Qu(B(XT, D))] + 2logn Therefore,
_ ) . . . -
+2loglog | =—— | + Const Al p(D) 2 limsup AD = Ay, (V)] = 00
L@ (B(XT, D)) ]
eventually, a.s. S0 in this case
and we are done. O R(p, v, D) = (loge)A;, (D) = oc. (47)
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Case ll: D > D#: = Here, by Lemma 1, for alh < 0 andZ(z?) denote its complement

d A (DI

L AD = 8N = D= N, (N 2 Dt~ Dt =0 i) N

dA - AEIPOO E, [_ log, E, (6)\[/771()(1 YT )= (X7 )])}
soA}, (D) is achieved ah = 0, giving

= lm_E, [_ log, {V(Z(Xf))

A% (D) =A, ,(0)=0. A .
s " 1E, (eA[pn (X7 Y =P (XT)] "2<x;>) H

On the other hand, takin@ = 1 x », noting that = B, [~ log, (Z(X)]
Eolpn(XT, Y{")] = Dk where the last equality follows from the monotone convergence

theorem. Since we are only interested in the ¢gse (D1;,) <

min

and recalling that relative entropy is nonnegative, implies that the above calculation implies that we may assume, without
R(p, v, D) = 0. Hence, here loss of generality, that(Z(z})) > 0 for y-almost allz? € A™.
We can then define a measupeby

R(p, v, D) = (loge)Ay, (D) =0. (48)
’ de — 1,
Case lll: D" < D&Y and D € (D™, DY), By di X dv (21, 91) = W Z(zy)) WrerE

Lemma 1, there is a unique' <0 such that\!, ,(A*)=D and i L
o which hasEs [p, (X1, Y1")] = Dy, and
Np (D) =ATD = Ay p(X) > 0= Ao (0) = 0. (49) R(p, v, D) < B, [H (O(C1X7) ()]

de
Let _ .
= / log [dux dl/:| dp X dv
1 e —(oge) [ ~log, H(2(s1)) dute?)
dp x dv L E, (C)\ pn (27, Y] )) = (log C)Az,u(Dﬁ{iZ)-
and observe thate[p, (X7, Y*)] = A/m”()\*) — D. Then This together with (46) complete the proof. O
R(p, v, D) < E, [H(OC|XT)|[v(-))]
APPENDIX IlI
z/log{ }duxdu N ] ]
dpe X dv Proof of Proposition 2: By Lemma 1 part iv)A,,, . (\) is
=(loge) [\ D — A, (A7) upper semicontinuous as a function:gfso [AD — A,, ,,(\)]
= (log e)A; (D). is lower semicontinuous. Therefore, by the representation
’ of R(yu, v, D) in Proposition 1 part ii) and the fact that the
This, together with (46) and (49) imply that here supremum of lower semicontinuous functions is itself lower
semicontinuous (see, e.g., [27, p. 38]) we get fRigt, v, D)
0 < R(p, v, D) = (loge)A;, (D) < oo, (50) is lower semicontinuous as a function:afproving part i).

_ R Part i) follows immediately from part i): sincé is finite, the
Case IV: DI < Dby andD = D Write S,, € A" set of all p.m.f.’sQ on A is compact, and therefore the lower

for the support of/, and forz7 € A" let semicontinuous functioR(P, @, D) must achieve its infimum
over that compact set (see, e.g., [26, p. 195]), proving the exis-
pn(21) = ymelg Pn(xT, 1) tence of the required*.
T For part iii): it is easy to check that the stated properties of
so thatD!” = E,[p,(X7)] and R(yu1, v, D) are actually proved in the course of proving Propo-
sition 1 part ii); see (47), (48), and (50).
ADES — Ay L (N) Part iv): First, if D € (0, Diax), then lettingU denote the
=B, [_ log, E, (C)\[pn(Xil,Yln)fpn(Xil)1>:| _ uniform distribution onA and recalling our basic assumption
¢ (5), we have

Also, by Lemma 1 ;
y DII;’ifl’ =K, [mir} p(X, u)} < sup min p(z, y) =0
yCA €A yeA

d
LD A V] = DY AL () <0 , ,
. i.e., DU — 0. Therefore,D > 0 means thaD > D".Y so

dX\ min min ", v
min

SOAY, (D) is the increasing limit ofAD";” — A, ,(\)] as DY partii) aboveR(P’, U, D) < oo and hencel(D) < oc.

min min

A\ — —oo. Therefore, lettingZ(z7) denote the event Also, for any distributiort on A

. Diax = min Ep[p(X, y)]| < E X, V) =DE@
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S0, in partlcularD < D, APPENDIX VI
R(P, Q*, D) >
On the other hand, iD > Drax, then by the definition of

Dyax in (7) there exists @ € A such that

" Partiii) then implies thaR(D) =

Hl ax

Proof of Proposition 3: SinceD € (0, Dyyax), Proposi-
tion 2 part v) implies tha) € (D.¢"| DI2Q"), so we may

invoke [35, Corollary 1] to obtain
—log Q7 (B(XT, D))
R(P,, Q", D)+

where P, is the empirical measure induced B§J* on 4, i.e.,
the measure that assigns mags to each one of the values;,

1=1,2, ..., n. Also, [10, Theorem 3] says that
) + X;) +o(+x/n
from part iii) we have thapD ¢ [DL:9" ) DEQ"), and, in par- 2 (&) +o(v/n)
ticular thatD2:@" < DIQ"

g max - SO We only have to rule out the pyt a simple examination of the proof in [10] shows that we
caseD = D, ;v , but this was done in [17, Appendix Il]. I may replace the tera{+/n) above byO(loglog 1), without any
changes in the proof. Combining these two results completes the

DP [

max

Dinax = Ep[p(X, 2)] = Epxs.[p(X, V)] =

whereé. is the measure attaching unit masszafhis means
thatD > DE:%= so by part iii) aboveR(P, 6., D) = 0, and

henceR(D) = 0.
Part v): Since

R(P, Q%, D)

1
3 logn +0O(1) a.s.

= R(D) € (0, o)

nR(P,, Q*, D) = nR(D) a.s.

APPENDIX IV

Proof of Lemma 3:First observe that if,, is strictly a
subprobability measure withy,,(A”) = Z < 1, then using

the probability measur€’,(-) = Z=1Q,.(-) we can make the

proof of the proposition. O
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As for the achievability of the infimum, it suffices to note thaPaPer-

itis taken over a compact set (the set over all p.m@,.0n A™),
and that the maf,, — Ep, {—log Q.(B(X], D))} is lower

semicontinuous. This follows from Fatou’s Lemma in exactly

the same way as it was shown in Appendix | that ,.(}) is
upper semicontinuous in. O

APPENDIX V

Proof of Lemma 4:Define a joint probability measur@

on the product spacé™ x A™ by restricting the product measure

P, x Q, to be supported ofi(z7, ¥): pn(z?, y}) < D}
9 i 1 u

— (2], ¥ =R .

AP x QT Qu(B(ay, D)) PO

Qbserve that thel™-marginal of© is F,,, and let®, denote its
A™-marginal. Then, wit{ X7, Y7*) distributed according t®

Ka(D)2 Ep, {~10gQu(B(XT, D))}
=H(O||P, x Q,)
2 Eeo, {HO(Y)IIP.()} + H(O2]|Q..)
H(O||P, x ©2)
I(X75 Y7

(AVASE

Ve

R (D)

where a) follows from the definition of K,(D), b) follows

from the chain rule for relative entropy (see, e.g., [25, edyy7]

(3.11.5)] or [11, Theorem D.13]};) follows from the nonneg-
ativity of relative entropyd) is just the definition of mutual
information, ande) comes from the definition oR(D), since
Bolpn(X{', Y1) < D. O
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