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Entropy and the Law of Small Numbers
Ioannis Kontoyiannis, Member, IEEE, Peter Harremoës, Member, IEEE, and Oliver Johnson

Abstract—Two new information-theoretic methods are intro-
duced for establishing Poisson approximation inequalities. First,
using only elementary information-theoretic techniques it is shown
that, when =

=1
is the sum of the (possibly dependent)

binary random variables 1 2 . . . , with ( ) =
and ( ) = , then

( Po( ))

=1

2 +
=1

( ) ( 1 2 . . . )

where ( Po( )) is the relative entropy between the distri-
bution of and the Poisson( ) distribution. The first term in this
bound measures the individual smallness of the and the second
term measures their dependence. A general method is outlined for
obtaining corresponding bounds when approximating the distribu-
tion of a sum of general discrete random variables by an infinitely
divisible distribution.

Second, in the particular case when the are independent, the
following sharper bound is established:

( Po( ))
1

=1

3

1

and it is also generalized to the case when the are general in-
teger-valued random variables. Its proof is based on the derivation
of a subadditivity property for a new discrete version of the Fisher
information, and uses a recent logarithmic Sobolev inequality for
the Poisson distribution.

Index Terms—Convergence in relative entropy, Fisher informa-
tion, law of small numbers, logarithmic Sobolev inequality, Poisson
approximation, subadditivity, total variation.

I. INTRODUCTION

L ET be binary random variables. A clas-
sical result in probability states that, if the are indepen-

dent and identically distributed (i.i.d.) with common parameter
, then, when is large, the distribution of

their sum
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is close to , the Poisson distribution with parameter .
More generally, analogous results apply when the are pos-
sibly dependent and not necessarily identically distributed. The
distribution of is close to as long as:

a) the sum of the parameters of the is close to ;
b) none of the dominate the sum, i.e., all the are small;
c) the variables are not strongly dependent.

Such results are often referred to as “laws of small numbers” or
“Poisson approximation results.” See [1], [17, Sec. 2.6], [3] for
details.

Our purpose here is to illustrate how techniques based on
information-theoretic ideas can be used to establish general
Poisson approximation inequalities. In Section II we prove the
following.

Proposition 1. Poisson Approximation in Relative En-
tropy: If is the sum of (possibly dependent)
binary random variables with parameters

and with , then the distribu-
tion of satisfies

(1)
For two probability distributions and on a discrete set ,

the relative entropy between and is defined as

and the entropy of a discrete random variable (or random vector)
with distribution on is

where denotes the natural logarithm.
Whenever a), b) and c) hold, we expect the two terms in the

right-hand side of (1) to be small, and hence the distribution of
to be close to in the relative entropy sense. Although

is not a proper metric, it is a natural measure of “dis-
similarity” in the context of statistics [26], [11, Ch. 12], and it
can be used to define a topology on probability measures [20].
Also, bounds in relative entropy can be translated into bounds
in total variation via Pinsker’s inequality [11]

(2)

For example, if the are independent, (1) reduces to

(3)

0018-9448/$20.00 © 2005 IEEE



KONTOYIANNIS et al.: ENTROPY AND THE LAW OF SMALL NUMBERS 467

Although this is reminiscent of the simple total variation bound
due to Le Cam [27]

(which, incidentally, only holds when the are independent),
applying Pinsker’s inequality (2) to (3) leads to the suboptimal
bound

(4)

The proof of Proposition 1 uses only elementary informa-
tion-theoretic facts that are established using little more than
Jensen’s inequality. To get sharper bounds for the case of inde-
pendent random variables , in Section III we employ a new
discrete version of the Fisher information which we call scaled
Fisher information, and we prove the following.

Theorem 1. Poisson Approximation for Independent
Variables: If is the sum of inde-
pendent binary random variables , with

, then

(5)

The proof of Theorem 1 combines a natural discrete analog of
Stam’s subbativity of the Fisher information [35], [7] and a re-
cent logarithmic Sobolev inequality of Bobkov and Ledoux [8].
As we discuss extensively in Section III, Theorem 1 is a sig-
nificant improvement over Proposition 1, and in certain cases it
leads to total variation bounds that are asymptotically optimal
up to multiplicative constants in the convergence rate. More-
over, (5) is a nontrivial improvement over existing results, as it
gives a bound for the relative entropy and not just the total vari-
ation distance.

For an information-theoretic interpretation, consider a trian-
gular array of binary random variables

such that the right-hand side of (1) goes to zero as (as,
for example, when the are i.i.d. Bernoulli ). Then the
distribution of converges to , i.e., comes closer
and closer to the “most random” distribution among all those
that can be obtained by summing a finite number of Bernoulli
random variables. Let denote the set of all distributions
of sums of independent binary random variables with

, for any finite . Then [19]

So, roughly and somewhat incorrectly speaking, the entropy of
“increases” to the maximum entropy as grows.

This invites a tempting analogy with the second law of ther-
modynamics, stating that the uncertainty of a physical system
increases with time, until the system reaches equilibrium in its
maximum entropy state.

Corresponding information-theoretic interpretations and
proofs have been given for numerous classical results of proa-
bility theory, including the central limit theorem [28], [9], [4],
[21], the convergence of Markov chains [31], [24], [6], many
large-deviations results [12], [16], [13], the martingale conver-
gence theorem [5], [6], and the Hewitt–Savage – law [29].
See also the powerful comments in [18, pp. 211, 215]. Finally,
we mention that Johnstone and MacGibbon considered the
problem of Poisson convergence from the information-theory
angle in [22]. Their approach is different from ours, and paral-
lels that in [9], [4] for the central limit theorem.

II. GENERAL BOUNDS IN RELATIVE ENTROPY

Before giving the proof of Proposition 1 we introduce some
notation and briefly recall two elementary, well-known facts.
The first one formalizes the intuitive idea that we cannot do
better in a hypothesis test by simply preprocessing the data. Sup-
pose and are random variables with distributions and ,
respectively, let be an arbitrary function, and write for
the distribution of and , respectively. The following
“data processing” inequality is an easy consequence of Jensen’s
inequality [14, Lemma 1.3.11]:

Next, given and with joint distribution and marginals
and , let denote their

mutual information. The “chain rule” is the simple expansion

for any two probability distributions and .

Proof of Proposition 1: If we define ,
where are independent Poisson random variables, then
the distribution of is and

(6)

where follows from the data processing inequality, and
follows by applying the chain rule times. Using simple
calculus we obtain the bound

which, applied to each term in the first sum in (6), gives

(7)

where in the last step we expanded the definition of the mutual
informations.
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The first term in the preceding bound makes precise what we
mean by the requirement that “all the be small” whereas the
second term quantifies their degree of dependence. It is worth
noting that this difference between the sum of the entropies of
the and their joint entropy can also be written as the relative
entropy between their joint distri-
bution and the product of their marginals. This expression also
admits a natural interpretation as a measure of how far the
are from being independent.

As indicated in the Introduction, although the result of Propo-
sition 1 is generally good enough to prove convergence to the
Poisson distribution, for finite it often gives a suboptimal con-
vergence rate. This is also illustrated in the following two exam-
ples.

A Markov Chain: Let

be a triangular array of binary random variables such that each
row is a Markov chain with transition matrix

and with each having (the stationary) Bernoulli distri-
bution. The convergence of the distribution of
to is a well-studied problem; see, e.g., [10] and the ref-
erences therein. Applying Proposition 1 (or, equivalently, in-
equality (7)) in this case translates to

since

by the Markov property, and stationarity implies that

A straightforward calculation yields that

where denotes the binary entropy function

and simple calculus shows that all three terms above converge to
zero as . In fact, this expression can be bounded above
by

where the last inequality holds for all , so putting it all
together

[A corresponding bound can similarly be derived if instead of
stationarity we assume that has .]
As mentioned earlier, although this bound is sufficient to prove
that converges to the Poisson distribution, it leads to a con-
vergence rate in total variation of order , compared
to the bound derived in [3], [33], [34].

A Compound Poisson Approximation Example: Let
be independent Bernoulli random variables with parameters

, write

and let be i.i.d., independent of the , with dis-
tribution

with prob.
with prob. .

We will show that the distribution of the sum

is close to the compound Poisson distribution with parameters
, which we denote by . Recall that

if and are i.i.d. Poisson random variables, then
has distribution. Alternatively,

we can write where the are independent
random variables. Arguing as before, the data

processing inequality and the chain rule imply that

and it is straightforward to calculate

so that

A General Method: Finally, we outline a simple general
strategy for approximating the distribution of the sum of
nonnegative integer-valued random variables
by the distribution of some infinitely divisible discrete random
variable with .

First, use the infinitely divisibility of to represent as
where the are independent and have the same
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distribution as but with different parameters. Then apply the
data processing inequality and the chain rule as before to obtain

and estimate the last two terms in above inequality. The first term
should be small if the are individually small and well-ap-
proximated by the corresponding , and the second term should
be small if the are sufficiently weakly dependent.

III. TIGHTER BOUNDS FOR INDEPENDENT RANDOM VARIABLES

Next we take a different point of view that yields tighter
bounds than Proposition 1. Recall that in [22], [30], [23], the
Fisher information of a random variable with distribution
on , is defined in a way analogous to that for
continuous random variables, via

with the convention that . However, as Kagan [23]
acknowledges, this definition is really only useful if is sup-
ported on the entire : If has bounded support then for some

, but , which implies that .
Partly in order to avoid this difficulty, we proceed along a

different route. Recalling that the Poisson distribution is char-
acterized by the recurrence for all

, we let the scaled score function of a random variable with
mean and distribution on be

and we define the scaled Fisher information of as

From this we easily see that

with equality iff with probability , i.e., iff has a
Poisson distribution. Moreover, as we show next, the smaller
the value of , the closer is to the Poisson distribu-
tion. The proof of Proposition 2, given in Section III-B, is an
easy consequence of a recent logarithmic Sobolev inequality of
Bobkov and Ledoux [8].

Proposition 2. Relative Entropy and : If is a random
variable with distribution on and with , then

(8)

as long as either has full support (i.e., for all ), or
finite support (i.e., there exists such that for
all ).

Note that from (8) and Pinsker’s inequality (2) we have that

(9)

We also give a direct proof of (9) in Section III-B, based on a
simple Poincaré inequality for the Poisson measure.

A. Results

The main step in the proof of Theorem 1 will be to establish
a form of subadditivity for the scaled Fisher information. It is
worth noting that in the Gaussian case the Fisher information is
also subadditive [35], [7], but, in contrast to the present setting,
subadditivity alone does not suffice to prove the central limit
theorem [4]. Proposition 3 is proved in Section III-B.

Proposition 3. Subadditivity of Scaled Fisher Information: If
is the sum of independent integer-valued

random variables , with means and
, then

Proof of Theorem 1: If the are independent
Bernoulli random variables with , then

and Proposition 3 gives

Combining this with in Proposition 2 yields inequality
(5).

Example 1: If the are i.i.d. Bernoulli random vari-
ables, from Theorem 1 combined with Pinsker’s inequality (2)
we obtain that for any

for

This is a definite improvement over the earlier bound
from (4), and, except for the constant factor, it is asymptotically
of the right order; see [3], [15] for details.

Example 2: If the are i.i.d. Bernoulli random
variables, Theorem 1 together with Pinsker’s inequality (2)
yield

which is of the same order as the optimal asymptotic rate, as

derived in [15].

Example 3: If the are geometric random variables with
respective distributions , then

. Letting and assuming
that
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combining Proposition 3 and the bound (9) yields

In particular, taking all the gives the elegant
estimate

To see how tight the result of Proposition 3 is in general, note
that the following lower bound of Cramér–Rao type holds: Since
for all and any random variable with mean and variance

(10)
choosing , we obtain that

In Example 1, where is the sum of
i.i.d. Bernoulli random variables, the lower bound (10)
coincides with the upper bound given in Proposition 3. Simi-
larly, in Example 3 with all the , the upper
bound from Proposition 3 holds with equality. Therefore, any
remaining slackness in our bounds comes from either Proposi-
tion 2 or Pinsker’s inequality.

Finally, in Proposition 4 below, we establish a formal con-
nection between relative entropy and the probability distribution

implicitly used in our definition of the scaled
Fisher information. It is proved in the next section.

Proposition 4: Let be an integer-valued random variable
with distribution and mean . If is the sum of independent
Bernoulli random variables, then

(11)

where is the distribution of
where is an independent Poisson random vari-

able, and

More generally, the same result holds for any random variable
that has and satisfies the logarithmic Sobolev

inequality of Proposition 2.

This result is reminiscent of the well-known de Bruijn iden-
tity, which states that the (differential) relative entropy between
a random variable and a Gaussian with the same variance can
be written as a weighted integral of (continuous) Fisher informa-
tions of convex combinations of and an independent
random variable; see [11], [4]. In a similar vain, if we formally
expand the logarithm in the integrand in (11) as a Taylor series,

then the first term in the expansion (the quadratic term) turns out
to be equal to . Therefore,

giving an alternative formula to Proposition 2, also relating
scaled Fisher information and relative entropy.

B. Proofs

Although subsequently in several places we formally divide
by a quantity which may be zero, this is taken care of by
the usual conventions, , , and

, for any .

Proof of Proposition 2: Let denote the
probabilities. In the case when has full support, the result
follows immediately from Corollary 4 of [8], upon considering
the function .

In the case of finite support, for let have the mixture
distribution

Then and has full support, so by the previous
part

(12)

But since for , then
for those , and letting in the left-hand side of (12) we get

Moreover

so

as , and this completes the proof.

Next we prove the bound in (9) using a classical Poincaré
inequality for the Poisson distribution. We actually establish the
following (apparently stronger) bound for the Hellinger distance

between and :

Proof of (9): For any function , define
. It is well known that, writing

for the probabilities, then for all functions
in

(13)

where is the mean of under ; see,
for example, Klaassen [25].
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Using the simple fact that

for all

we get that

and applying (13) to the function we
obtain

where . Therefore, the Hellinger dis-
tance satisfies

and since

(see, e.g., [32, p. 360]) the result follows.

For the proof of Proposition 3, as in the case of normal conver-
gence in Fisher information, we exploit the theory of spaces
and the fact that scaled score functions of sums are conditional
expectations (projections) of the original scaled score functions.

Lemma. Convolution: If and are nonnegative integer-
valued random variables with probability distributions and
and means and , respectively, then,

where , .
Proof: Writing for

the distribution of , we get (see the first equation at the

bottom of the page) as required, where follows by moving
to in the first sum.

Proof of Proposition 3: It suffices to prove the case .
By the Lemma

therefore, noting that for any random variable

as claimed.

Proof of Proposition 4: Assume for the moment that the
relative entropy between and tends to zero as

(this will be established below). Then we can write
as the integral in the second equation at the bottom

of the page. Since the probabilities satisfy a differential-dif-
ference equation , we have

and similarly

Substituting these two expressions in the expansion of
the result follows.
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Finally, it remains to establish our initial assumption. If
is the sum of independent Bernoulli random variables then it
has finite support and Proposition 2 holds; moreover, is
easily seen to be finite by Proposition 3. More generally, using
Propositions 2 and 3 we have

as , as required.
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