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Abstract

Two new information-theoretic methods are introduced for establishing Poisson ap-
proximation inequalities. First, using only elementary information-theoretic techniques it
is shown that, when S, = > ; X; is the sum of the (possibly dependent) binary random
variables X1, Xo, ..., X,,, with E(X;) = p; and E(S,) = A, then

n

D(Ps,|[Po(N) < 0 + | D H(X) — H(X1 Ko, X)),

=1

where D(Pg, ||Po(\)) is the relative entropy between the distribution of S, and the
Poisson(\) distribution. The first term in this bound measures the individual small-
ness of the X; and the second term measures their dependence. A general method is
outlined for obtaining corresponding bounds when approximating the distribution of a
sum of general discrete random variables by an infinitely divisible distribution.

Second, in the particular case when the X; are independent, the following sharper
bound is established,

3
D(Ps, [[Po(A)) < _lp,,

“~p
23

> =

and it is also generalized to the case when the X; are general integer-valued random
variables. Its proof is based on the derivation of a subadditivity property for a new discrete
version of the Fisher information, and uses a recent logarithmic Sobolev inequality for
the Poisson distribution.
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1 Introduction

Let X1, Xs,..., X, be binary random variables. A classical result in probability states that,
if the X; are independent and identically distributed (i.i.d) with common parameter p; =
E(X;) = A/n, then, when n is large, the distribution of their sum

Sn=X1+Xo 4+ X,

is close to Po(\), the Poisson distribution with parameter A. More generally, analogous results
apply when the X; are possibly dependent and not necessarily identically distributed. The
distribution of Sy, is close to Po(\) as long as:

(a) The sum ) p; of the parameters p; of the X; is close to A.
(b) None of the X; dominate the sum, i.e., all the p; are small.
(¢) The variables X; are not strongly dependent.

Such results are often referred to as “laws of small numbers” or “Poisson approximation
results.” See [1][17, Section 2.6][3] for details.

Our purpose here is to illustrate how techniques based on information-theoretic ideas can
be used to establish general Poisson approximation inequalities. In Section 2 we prove:

Proposition 1. Poisson Approzimation in Relative Entropy: If S, = > | X; is the sum of n
(possibly dependent) binary random variables X, Xo, ..., X,, with parameters p; = E(X;)
and with E(S,) = Y"1, p; = A, then the distribution Ps, of S, satisfies

n

D(Ps,|IPo(N) < Y97 + [ZH(Xi) ~H(X1, Xy, X)) (1)
=1 =1

For two probability distributions P and () on a discrete set .S, the relative entropy
between P and @ is defined as D(P|Q) = > g P(z)log ggg, and the entropy of a dis-
crete random variable (or random vector) X with distribution P on S is H(X) = H(P) =
— > zeg P(x)log P(x), where log denotes the natural logarithm.

Whenever (a), (b) and (¢) hold we expect the two terms in the right-hand side of (1)
to be small, and hence the distribution of S,, to be close to Po()\) in the relative entropy
sense. Although D(PJ|Q) is not a proper metric, it is a natural measure of “dissimilarity”
in the context of statistics [26][11, Ch. 12], and it can be used to define a topology on
probability measures [20]. Also, bounds in relative entropy can be translated into bounds in

total variation via Pinsker’s inequality [11]

S IP =l < D(PIQ) 2)

For example, if the X; are independent (1) reduces to
D(Ps,|[Po(N) <Y pi. (3)
i=1
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Although this is reminiscent of the simple total-variation bound due to Le Cam [27],

n
IPs, — Po(N)|lpy < Y p}
=1

(which, incidentally, only holds when the X; are independent), applying Pinsker’s inequality
(2) to (3) leads to the suboptimal bound

n

175, Po(llay < [23°02] (W

=1

The proof of Proposition 1 uses only elementary information-theoretic facts that are
established using little more than Jensen’s inequality. To get sharper bounds for the case
of independent random variables X;, in Section 3 we employ a new discrete version of the
Fisher information which we call scaled Fisher information, and we prove:

Theorem 1. Poisson Approzimation for Independent Variables: If S, = Y1 | X; is the sum
of n independent binary random variables X1, Xo, ..., X,, with E(S,) = Y"1 1 pi = A,

"
DUFs, [Po) < 1 3 12 o)

The proof of Theorem 1 combines a natural discrete analog of Stam’s subbativity of the
Fisher information [35][7], and a recent logarithmic Sobolev inequality of Bobkov and Ledoux
[8]. As we discuss extensively in Section 3, Theorem 1 is a significant improvement over
Proposition 1, and in certain cases it leads to total variation bounds that are asymptotically
optimal up to multiplicative constants in the convergence rate. Moreover, (5) is a nontrivial
improvement over existing results, as it gives a bound for the relative entropy and not just
the total variation distance.

For an information-theoretic interpretation, consider a triangular array of binary random
variables {(XYL), Xén), - ,ngn)), n > 1}, such that the right-hand side of (1) goes to zero as

n — oo (as, for example, when the Xi(n) are i.i.d. Bernoulli(A\/n)). Then the distribution of
Sy converges to Po(A), i.e., Ps, comes closer and closer to the “most random” distribution
among all those that can be obtained by summing a finite number of Bernoulli random
variables: Let P(\) denote the set of all distributions of sums S,, of n independent binary
random variables with E(S,,) = A, for any finite n. Then [19],

H(Po(\)) = sup{H(P) : P P(\)}.

So, roughly and somewhat incorrectly speaking, the entropy of S, “increases” to the maxi-
mum entropy H(Po()\)) as n grows. This invites a tempting analogy with the second law of
thermodynamics, stating that the uncertainty of a physical system increases with time, until
the system reaches equilibrium in its maximum entropy state.

Corresponding information-theoretic interpretations and proofs have been given for nu-
merous classical results of proability theory, including the central limit theorem [28][9][4][21],



the convergence of Markov chains [31][24][6], many large deviations results [12][16][13], the
martingale convergence theorem [5][6], and the Hewitt-Savage 0-1 law [29]. See also the
powerful comments in [18, pp. 211,215]. Finally, we mention that Johnstone and MacGib-
bon considered the problem of Poisson convergence from the information theory angle in [22].
Their approach is different from ours, and parallels that in [9][4] for the central limit theorem.

2 General Bounds in Relative Entropy

Before giving the proof of Proposition 1 we introduce some some notation and briefly recall
two elementary, well-known facts. The first one formalizes the intuitive idea that we cannot
do better in a hypothesis test by simply pre-processing the data. Suppose X and Y are
random variables with distributions P and @, respectively, let f be an arbitrary function,
and write P/, @’ for the distribution of f(X) and f(Y), respectively. The following “data
processing” inequality is an easy consequence of Jensen’s inequality [14, Lemma 1.3.11],

D(P'|Q") < D(P|Q).

Next, given X and Y with joint distribution Pxy and marginals Py and Py, let I(X;Y) =
H(X)— H(X|Y) denote their mutual information. The “chain rule” is the simple expansion,

D(Pxyl|@x x Qy) = D(Px|Qx) + D(Py||Qy) + I(X;Y),
for any two probability distributions Qx and Qy .

Proof of Proposition 1. If we define S}, = Y | Z;, where Z; are independent Poisson(p;)
random variables, then the distribution Pg of S, is Po()) and
D(Ps,[[Po(A)) = D(Ps,lPs;,)
(a)
< D(Px,,. x,Pz...z)
n n—1
= Y D(Px[[Po(pi) + Y I(Xis (X, .-, Xn)), (6)
i=1 i=1

where (a) follows from the data processing inequality, and (b) follows by applying the chain
rule (n — 1) times. Using simple calculus we obtain the bound

(1-p)

e P

2

p
D(Bern(p)|[Po(p)) = (1 — p) log +plog 5 <

which, applied to each term in the first sum in (6), gives,

n n—1
D(Ps,|[Po())) < ZP? + ZI(Xz’; (Xig1,---, Xn)) (7)
=1 i1

= YR [ HX) - B X X)),
=1 =1

where in the last step we expanded the definition of the mutual informations. o



The first term in the above bound makes precise what we mean by the requirement that
“all the p; be small” whereas the second term quantifies their degree of dependence. It is
worth noting that this difference between the sum of the entropies of the X; and their joint
entropy can also be written as the relative entropy D(Pxp|Px, X --+ x Px,) between their
joint distribution and the product of their marginals. This expression also admits a natural
interpretation as a measure of how far the X; are from being independent.

As indicated in the introduction, although the result of Proposition 1 is generally good
enough to prove convergence to the Poisson distribution, for finite n it often gives a suboptimal
convergence rate. This is also illustrated in the following two examples.

A Markov Chain. Let {(Xl(n), Xén), e ,qun)), n > 1} be a triangular array of binary random

variables such that each row (X fn), e ,Xﬁ[”) is a Markov chain with transition matrix
n_ 1
n+1 n+1
n-1  _2
n+1 n+1

and with each X Z-(n) having (the stationary) Bernoulli(X) distribution. The convergence of the
distribution of S, =", Xz-(n) to Po(1) is a well-studied problem; see [10] and the references
therein. Applying Proposition 1 (or, equivalently, inequality (7)) in this case translates to

n n—1

1 n 1 n n
D(Ps,[Po(1)) < 3~ 5+ 31X X)) = ~+ (- DI(X{": x5"),
1=1 =1

since [ (Xi(n); (XZ(?_)I, e )) I(X; (n), XZ( +)1) by the Markov property, and stationarity
implies that (X" (n), ;' X, (n )1) I(X; (n), X; )). A straightforward calculation yields that

n—1 n—1
h(ai) — h(737);

(n = DI X57) = (n = 1) [h(E) = () -

where h(p) denotes the binary entropy function h(p) = —plogp — (1 — p)log(1l — p), and
simple calculus shows that all three terms above converge to zero as n — oo. In fact, this
expression can be bounded above by

logn logn
ntl n =3 n '

where the last inequality holds for all n > 3, so putting it all together,

logn 1
AL

D(Ps, ||Po(1)) < 3

n

[A corresponding bound can similarly be derived if instead of stationarity we assume that

an) has pgn) = E(an)) < 1/n.] As mentioned above, although this bound is sufficient to
prove that Pg, converges to the Poisson distribution, it leads to a convergence rate in total
variation of order 4/(logn)/n, compared to the O(1/n) bound derived in [3][33][34].



A Compound Poisson Approzimation Example. Let Xq,...,X, be independent Bernoulli
random variables with parameters p; = E(X;), write A = >""" | p;, and let a1, a9, ..., a;, be
i.i.d, independent of the X;, with distribution

[ 1 with prob 1/2
Y=\ 2 with prob 1/2.

We will show that the distribution of the sum
n
Sn = Z OéiXi
i=1

is close to the compound Poisson distribution with parameters (A/2, A/2), which we denote
by Po(A/2,\/2). Recall that if Z; and Z3 are i.i.d. Poisson(\/2) random variables, then
Z = (Z\ + 2Z5) has Po(A\/2,\/2) distribution. Alternatively, we can write Z = > ' | V;
where the Y; are independent Po(p;/2,p;/2) random variables. Arguing as before, the data
processing inequality and the chain rule imply that

n
D(Ps, [Po(A/2,/2)) < D(Pay xi,.an X | Pr,.vi) = D D(Payx, |1 Py,),
i=1

and it is straightforward to calculate
Di
D(Po,x.||Py;) < p + (1= pi)lpi +log(1 = pi)] — 5 log(1 + pi/4) < pj,

so that

n
D(Ps,|[Po(A\/2,4/2)) <> p}.
i=1
A general method.  Finally, we outline a simple general strategy for approximating the
distribution Pg, of the sum of n nonnegative-integer-valued random variables X, Xo,..., X,
by the distribution of some infinitely divisible discrete random variable Z with E(S,,) = E(Z).
First, use the infinitely divisibility of Py to represent Z as Z =Y " | Y; where the ¥; are
independent and have the same distribution as Z but with different parameters. Then apply
the data processing inequality and the chain rule as before to obtain

n

D(Ps,[1P7) <> D(Px|Py) + | S H(X) = H(X1,... X)),
i=1 i=1

and finally, estimate the last two terms in above inequality. The first term should be small if
the X; are individually small and well-approximated by the corresponding Y;, and the second
term should be small if the X; are sufficiently weakly dependent.



3 Tighter Bounds for Independent Random Variables

Next we take a different point of view that yields tighter bounds than Proposition 1. Recall
that in [22][30][23], the Fisher information of a random variable X with distribution P on
Zy =1{0,1,2,...}, is defined in a way analogous to that for continuous random variables, via

0 = B (PE LAY,

with the convention that P(—1) = 0. However, as Kagan [23] acknowledges, this definition
is really only useful if X is supported on the entire Z,: If X has bounded support then for
some n, P(n) > 0 but P(n+ 1) = 0, which implies that J(X) = co.

Partly in order to avoid this difficulty, we proceed along a different route. Recalling that
the Poisson distribution is characterized by the recurrence AP(z) = (z + 1)P(x + 1) for all
x, we let the scaled score function of a random variable X with mean A and distribution P
on Z4 be : Py )

z+1)Plz+1

and we define the scaled Fisher information of X as

—1, $€Z+,

K(X) = AE[px(X)?].
From this we easily see that
K(X)>0

with equality iff px(X) = 0 with probability 1, i.e., iff X is has a Poisson(\) distribution.
Moreover, as we show next, the smaller the value of K(X), the closer P is to the Poisson(\)
distribution. The proof of Proposition 2, given in Section 3.2, is an easy consequence of a
recent logarithmic Sobolev inequality of Bobkov and Ledoux [§].

Proposition 2. Relative Entropy and K(X): If X is a random variable with distribution P
on Z4 and with E(X) = A, then

D(P[[Po(})) < K(X), (8)

as long as either P has full support (i.e., P(k) > 0 for all k), or finite support (i.e., there
exists N € Z; such that P(k) =0 for all £ > N).

Note that from (8) and Pinsker’s inequality (2) we have that
[P = Po(A)[lrv < V2K (X). (9)

We also give a direct proof of (9) in Section 3.2, based on a simple Poincaré inequality for
the Poisson measure.



3.1 Results

The main step in the proof of Theorem 1 will be to establish a form of subadditivity for the
scaled Fisher information. It is worth noting that in the Gaussian case the Fisher information
is also subadditive [35][7], but, in contrast to the present setting, subadditivity alone does
not suffice to prove the central limit theorem [4]. Proposition 3 is proved in Section 3.2.

Proposition 3. Subadditivity of Scaled Fisher Information: If S, = > | X; is the sum of
n independent integer-valued random variables X7, Xo, ..., X,,, with means E(X;) = p; and
E(Sy) =Y, pi = A, then

K(Sy) < zn: %K(XZ-).

Proof of Theorem 1. If the X; are independent Bernoulli(p;) random variables with
S pi =\, then K(X;) =p?/(1 — p;) and Proposition 3 gives

1 — p3
K(S,) < - L,
(n)_/\izll—pz’

Combining this with X = S, in Proposition 2 yields inequality (5). O

Ezample 1. 1If the X; are i.i.d. Bernoulli(A/n) random variables, from Theorem 1 combined
with Pinsker’s inequality (2) we obtain that for any € > 0,

A
| Ps, —Po(N)|lpv < (2+ e)ﬁ, for n > \/e.
This is a definite improvement over the earlier 2A/y/n bound from (4), and, except for the

constant factor, it is asymptotically of the right order; see [3][15] for details.

Ezxample 2. 1If the X; are i.i.d. Bernoulli(x/+/n) random variables, Theorem 1 together with
Pinsker’s inequality (2) yield,

2
HPSn - PO(M\/E)HTV < % W ~ %\/i

which is of the same order as the optimal asymptotic rate, as n — oo,

| Ps, — Poluv/n) |y ~ ~=/1/(2e)

s
vn
derived in [15].

Ezample 3. If the X; are Geometric random variables with respective distributions P;(x) =
(1 - ¢i)%qi, x > 0, then K(X;) = (1 — ¢;)*/q;- Letting S, = >, X; and assuming that

E(S,) =31, % = ), combining Proposition 3 and the bound (9) yields

2 n
I1Ps, = PoWllry < | 5

(1 - %)3
—
i=1 4



In particular, taking all the ¢; = n/(n + \) gives the elegant estimate

1P, — Po(\)lpy < ‘fH) <val

To see how tight the result of Proposition 3 is in general, note that the following lower

bound of Cramér-Rao type holds: Since for all ¢ and any random variable S with mean A

and variance o2,

0 < AE(ps(S) —a(S —\)* = K(S) + A <a202 —2a (C’QA A)) : (10)
choosing a = (62 — \)/(c%\), we obtain that
K(S) > (a2 = N2 /(®N).

In Example 1 where S = S, = > | X; is the sum of n i.i.d. Bernoulli(A\/n) random
variables, the lower bound (10) coincides with the upper bound given in Proposition 3.
Similarly, in Example 3 with all the ¢; = n/(n + \), the upper bound from Proposition 3
holds with equality. Therefore, any remaining slackness in our bounds comes from either
Proposition 2 or Pinsker’s inequality.

Finally, in Proposition 4 below we establish a formal connection between relative entropy
and the probability distribution (2 4+ 1)P(x + 1)/A implicitly used in our definition of the
scaled Fisher information. It is proved in the next section.

Proposition 4. Let X be an integer-valued random variable with distribution P and mean .
If X is the sum of independent Bernoulli random variables, then

D(P|[Po(X / D(P,|| P)dt (11)

where Py(r) = Pr(X; = r) is the distribution of X; = X +Po(t) where Po(t) is an independent
Poisson(t) random variable, and P;(r) = (r + 1)Pr(X; = r 4+ 1)/(A +t). More generally, the
same result holds for any random variable X that has K (X) < oo and satisfies the logarithmic
Sobolev inequality of Proposition 2.

This result is reminiscent of the well-known de Bruijn identity, which states that the
(differential) relative entropy between a random variable X and a Gaussian with the same
variance can be written as a weighted integral of (continuous) Fisher informations of convex
combinations of X and an independent N (0,¢) random variable; see [11]|[4]. In a similar vain,
if we formally expand the logarithm in the integrand in (11) as a Taylor series, then the
first term in the expansion (the quadratic term) turns out to be equal to K (X;)/2(\ + t).
Therefore,
> K(X +Po(t))

2N +1)
giving an alternative formula to Proposmon 2, also relating scaled Fisher information and
relative entropy.

D(P||Po(A

)



3.2 Proofs

Although in several places below we formally divide by a quantity which may be zero, this is
taken care of by the usual conventions, 0log(0/a) = 0, 0log(0/0) = 0, and 0log(a/0) =
for any a > 0.

Proof of Proposition 2.  Let Poy(k) denote the Po(\) probabilities. In the case when P
has full support, the result follows immediately from Corollary 4 of [8], upon considering the
function f(k) = P(k)/Pox(k), k > 0.

In the case of finite support, for € > 0 let X have the mixture distribution

P =¢Poy + (1 —¢)P.
Then E(X€) = X and P€ has full support, so by the previous part,
D(P¢||Po(N)) < K(X°). (12)

But since P(k) =0 for k > N + 1, then P¢(k)/Po()\)(k) = € for those k, and letting € | 0 in
the left hand side of (12) we get

Pe(k)
D(P¢||Po( P(k)1 Pr{Po(\) > N}el D(P||Po(N)).
[Po( Z Jlog | 5] + Pr{Po(d) > Nieloge — D(P[Po()
Moreover,
(k+1)P(k+1)
=1, k>N-+1
NP (k) BN+
SO N
(k+1)P(k+1) 2
X€) = pe -1 K(X
as € | 0, and this completes the proof. O

Next we prove the bound in (9) using a classical Poincaré inequality for the Poisson
distribution. We actually establish the following (apparently stronger) bound for the Hellinger
distance ||P — Po(\)|| g between P and Po(\):

1P = Po(A)|[Fy < [P = Po(N)[[F < 2K(X).

Proof of (9). For any function f : Z;y — R, define Af(z) = f(x+1)— f(z). It is well-known
that, writing Poy(z) for the Poisson()) probabilities, then for all functions g in L?(q),

Y Por(@)(9(x) — p)® <A Por(x)(Ag(x))?, (13)

where =) g(x)Poy(z) is the mean of g under Po()); see for example Klaassen [25].
Using the simple fact that

(Vu—12<Vu—1)>*Vu+1)? = (u—1)% forall u>0,

10



we get that
2
B P+ DPoy(@) .\ Plz +1)Pox(z)
KOO =22 Pe) (Po,\(x P 1) 2A2 ) (\/POWU PG 1) |

and applying (13) to the function g(z) = \/P(z)/Pox(z) we obtain,

2

K(X) > XY Poy(z) <\/ Piif;rli) B \/Pii@))
2
> 3" Poy(a) ( Por] “) S

where =) +/P(x)Poy(x). Therefore, the Hellinger distance ||P — Po(\)||x satisfies
1P —Po(N)[[F = (2 —2u) < 2(1 — %) < 2K(X),

and since ||P — Po(A)|rv < v/||P — Po(\) ||z (see, e.g., [32, p. 360]) the result follows. O

For the proof of Proposition 3, as in the case of normal convergence in Fisher information,
we exploit the theory of L? spaces and the fact that scaled score functions of sums are
conditional expectations (projections) of the original scaled score functions.

Lemma. Convolution: If X and Y are nonnegative integer-valued random variables with
probability distributions P and () and means p and ¢, respectively, then,

px+y(2) = Elaxpx(X) + aypy (V) | X +Y =2],

where ax = p/(p+q), ay = q/(p+9)-
Proof. Writing F(z +1) =), P(z)Q(z — z + 1) for the distribution of X + Y, we have,

B (z4+1)P(z)Q(z —x+1)
px+y(z) = Zx: -+ F(2) -1
B tP(@)Q(z—z+1) (—z+1)P@)Q(z—-—z+1)]
= X erare t erore
B zP(x) Plz—-1)Q(z—x+1)
- ZI: pP(x—1) F(2) N 1]
(2—2+1)Q(—2+1)P(x)Q(z —z)
o | 0k F(z) 1]
@ > P(x)FQ((;_ ?) [axpx(x) + aypy (2 — 56)} ;
as required, where (a) follows by moving z to (z + 1) in the first sum. O

11



Proof of Proposition 3. 1t suffices to prove the case n = 2. By the Lemma,

2
0 px, (X1) + %PXQ (X2) = pxy+x, (X1 + Xz)]

IN

Kby

E [%le (X1) + %% (Xz)} S Eloxx (X1 + X2,
therefore, noting that F[px(X)] = 0 for any random variable X
K(X1+X2) = (p1+p2)Epx,+x,(X1 + Xo)]?
< \E [%pxl (X1) + %pxg (Xz)}2
= B (mBlox, (X)) + 22 (B, (6))
Pl (xy) + 2R (Xy),

A A
as claimed. O

Proof of Proposition 4. Assume for the moment that the relative entropy between P; and
Po(A + t) tends to zero as t — oo (this will be established below). Then we can write
D(P||Po(A)) as the integral

DPIPO() = — [~ 5 D(PIPo(+ )

- /OOO aat <()‘ +t) — E[X¢log(A + t)] + Ellog(X:!)] — H(Xt)>dt

= /OOO (log()\ +t) — %E[log(Xt!)] + ;H(Xt)) dt.

Since the probabilities P; satisfy a differential-difference equation, %(w) = P(z—1)— P(x),
we have,

QE[log(Xt)!] => oF —L(r)logr! =Y (Py(r —1) — Py(r))logr! = Elog(X; + 1),

ot — Ot

"
and similarly,

P, Py(r
QHXt = —Zat ) log Pi(r Zpt log<t()>

8t Pt 7” + 1)

Substituting these two expressions in the expansion of D(P|[Po())) the result follows.

Finally it remains to establish our initial assumption. If X is the sum of independent
Bernoulli random variables then it has finite support and Proposition 2 holds; moreover,
K (X) is easily seen to be finite by Proposition 3. More generally, using Propositions 2 and 3
we have

A

as t — oo, as required.

12
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