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Abstract—Motivated by questions in lossy data compression and by
theoretical considerations, the problem of estimating the rate-distortion
function of an unknown (not necessarily discrete-valued) source from
empirical data is examined. The focus is the behavior of the so-called
“plug-in” estimator, which is simply the rate-distortion function of the
empirical distribution of the observed data. Sufficient conditions are given
for its consistency, and examples are provided demonstrating that in
certain cases it fails to converge to the true rate-distortion function.
The analysis of its performance is complicated by the fact that the rate-
distortion function is not continuous in the source distribution; the under-
lying mathematical problem is closely related to the classical problem of
establishing the consistency of maximum likelihood estimators. General
consistency results are given for the plug-in estimator applied to a broad
class of sources, including all stationary and ergodic ones. A more general
class of estimation problems is also considered, arising in the context of
lossy data compression when the allowed class of coding distributions
is restricted; analogous results are developed for the plug-in estimator
in that case. Finally, consistency theorems are formulated for modified
(e.g., penalized) versions of the plug-in, and for estimating the optimal
reproduction distribution.

Index Terms—Consistency, entropy, estimation, maximum likelihood,
plug-in estimator, rate-distortion function

I. INTRODUCTION

Suppose a data string xn1 := (x1, x2, . . . , xn) is generated by a
stationary memoryless source (Xn : n ≥ 1) with unknown marginal
distribution P on a discrete alphabet A. In many theoretical and
practical problems arising in a wide variety of scientific contexts, it
is desirable – and often important – to obtain accurate estimates of
the entropy H(P ) of the source, based on the observed data xn1 ; see,
e.g., [6] [7] [8] [9] [10] [11]. Perhaps the simplest method is via
the so-called plug-in estimator, where the entropy of P is estimated
by H(Pxn

1
), the entropy of the empirical distribution Pxn

1
of xn1 .

The plug-in estimator satisfies the basic statistical requirement of
consistency: H(PXn

1
) → H(P ) in probability as n → ∞. In fact,

it is strongly consistent; the convergence holds with probability 1
(w.p.1) [12].

A natural generalization is the problem of estimating the rate-
distortion function R(P,D) of a (not necessarily discrete-valued)
source. Motivation for this comes in part from lossy data compres-
sion, where we may need an estimate of how well a given data set
could potentially be compressed, cf. [13], and also from cases where
we want to quantify the “information content” of a particular signal,
but the data under examination take values in a continuous (or more
general) alphabet, cf. [14].

The rate-distortion function estimation question appears to have
received little attention in the literature. Here we present some basic
results for this problem. First, we consider the plug-in estimator
R(PXn

1
, D), and determine conditions under which it is strongly

consistent, that is, it converges to R(P,D) w.p.1, as n → ∞. We
call this the nonparametric estimation problem, for reasons that
will become clear below.
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At first glance, consistency may seem to be a mere continuity
issue: Since the empirical distribution PXn

1
converges w.p.1 to the

true distribution P as n → ∞, a natural approach to proving
that R(PXn

1
, D) also converges to R(P,D) would be to try and

establish some sort of continuity property for R(P,D) as a function
of P . But, as we shall see, R(PXn

1
, D) turns out to be consistent

under rather mild assumptions, which are in fact too mild to ensure
continuity in any of the usual topologies; see Section III for explicit
counterexamples. This also explains our choice of the empirical
distribution Pxn

1
as an estimate for P : If R(P,D) was continuous

in P , then any consistent estimator P̂n of P could be used to make
R(P̂n, D) a consistent estimator for R(P,D). Some of the subtleties
in establishing regularity properties of the rate-distortion function
R(P,D) as a function of P are illustrated in [15] [16].

Another advantage of a plug-in estimator is that Pxn
1

has finite
support, regardless of the source alphabet. This makes it possible
(when the reproduction alphabet is also finite) to at least approximate
R(Pxn

1
, D), via, e.g., the Blahut-Arimoto algorithm [17] [18] [19].

When the reproduction alphabet is continuous, the Blahut-Arimoto
algorithm can still be used after discretizing the reproduction alpha-
bet; the discretization can, in part, be justified by the observation that
it can be viewed as an instance of the parametric estimation problem
described below. Other possibilities for continuous reproduction
alphabets are explored in [20] [21].

The consistency problem can be framed in the following general
setting. As has been observed by several authors, the rate-distortion
function of a memoryless source admits the decomposition,

R(P,D) = infQR(P,Q,D), (1)

where the infimum is over all probability distributions Q on the repro-
duction alphabet, and R(P,Q,D) is the rate achieved by memoryless
random codebooks with distribution Q used to compress the source to
within distortion D [22] [23]. Therefore, R(P,D) is the best rate that
can be achieved by this family of codebooks. But in the case where
we only have a restricted family of compression algorithms available,
indexed, say, by a family of probability distributions {Qθ ; θ ∈ Θ}
on the reproduction alphabet, then the best achievable rate is:

RΘ(P,D) := infθ∈Θ R(P,Qθ, D). (2)

We also consider the parametric estimation problem, namely, that
of establishing the strong consistency of the corresponding plug-in
estimator RΘ(PXn

1
, D) as an estimator for RΘ(P,D). Of course,

when Θ indexes the set of all probability distributions on the re-
production alphabet, the parametric and nonparametric problems are
identical, allowing us to treat both problems in a common framework.

Our two main results, Theorems 4 and 5 in the following section,
give regularity conditions for the strong consistency of the plug-
in estimator in both the parametric and nonparametric estimation
problems. It is shown that consistency holds in great generality
for all distortion values D such that (s.t.) RΘ(P,D) is continuous
at D from the left. An example illustrating that consistency may
actually fail at those points is given in Section III. In particular, for
the nonparametric estimation problem we obtain the following three
simple corollaries, which cover many practical cases.

Corollary 1: If the reproduction alphabet is finite, then for any
source distribution P , R(PXn

1
, D) is strongly consistent for R(P,D)

at all distortion levels D ≥ 0 except perhaps at the single value where
R(P,D) transitions from being finite to being infinite.

Corollary 2: If the source and reproduction alphabets are both
equal to Rd and the distortion measure is squared-error, then for any
source distribution P and any distortion level D ≥ 0, R(PXn

1
, D) is

strongly consistent for R(P,D).
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Corollary 3: Assume that the reproduction alphabet is a compact,
separable metric space, and that the distortion measure ρ(x, ·) is con-
tinuous for each x ∈ A. Then (under mild additional measurability
assumptions), for any source distribution P , R(PXn

1
, D) is strongly

consistent for R(P,D) at all distortion levels D ≥ 0 except perhaps
at the single value where R(P,D) transitions from being finite to
being infinite.

Corollaries 1 and 3 are special cases of Corollary 6 in Section II.
Corollary 2 is established in Section III, which contains many other
explicit examples illustrating the consistency results and cases where
consistency may fail. The proofs of all the results in this paper can
be found in the longer version [3].

We consider extensions of these results in two directions. In
Section IV-A we examine the problem of estimating the optimal
reproduction distribution, i.e.. the distribution that achieves the in-
fimum in equations (1) and (2). Consistency results are given, under
conditions identical to those required for the consistency of the plug-
in estimator. Finally, in Section IV-B we show that consistency holds
for a more general class of estimators that arise as modifications of the
plug-in. These include penalized versions of the plug-in, analogous to
the standard penalized maximum likelihood estimators in statistics.

The tools we employ to analyze convergence are based on the
technique of epigraphical convergence [24] [25] (this is particularly
clear in the proof of our main result, the lower bound in Theorem 5, in
[3]), and it is no coincidence that these same tools have also provided
one of the most successful approaches to proving the consistency of
maximum likelihood estimators (MLEs).

Throughout the paper we work with stationary and ergodic (not
only memoryless) sources,1 though we are only interested in esti-
mating the first-order rate-distortion function. One reason for this is
that the full rate-distortion function can be estimated by looking at
the process in sliding blocks of length m and then estimating the
“marginal” rate-distortion function of these blocks for large m; see
Section III. Another reason for allowing dependence comes from
simulation: Suppose, e.g., we wish to estimate the rate-distortion
function of a distribution P that we cannot compute explicitly (as
is the case of the majority of models used in image processing), but
for which we have a Markov chain Monte Carlo (MCMC) sampling
algorithm. The MCMC data is not memoryless, yet we only care
about the first-order rate-distortion function.

II. MAIN RESULTS

The following notation and definitions will remain in effect
throughout the paper. Suppose the random source (Xn) = (Xn :
n ≥ 1) taking values in the source alphabet A is to be compressed
in the reproduction alphabet Â, with respect to the single-letter
distortion measures (ρn) arising from an arbitrary distortion function
ρ : A×Â 7→ [0,∞). We assume that A and Â are equipped with the
σ-algebras A and Â, respectively, that (A,A) and (Â, Â) are Borel
spaces, and that ρ is σ(A × Â)-measurable.2 Suppose the source
is stationary, and let P denote its marginal distribution on A. Then
the (first-order) rate-distortion function R1(P,D) with respect to the
distortion measure ρ is defined as,

R1(P,D) := inf(U,V )∼W∈W (P,D) I(U ;V )

1Since all of our results hold with probability one, we are effectively
working with the much larger class of sources that are absolutely continuous
w.r.t. some stationary and ergodic source. This is relevant for our comments
about MCMC. Further results for nonstationary sources are in [3].

2Borel spaces include the Euclidean spaces Rd as well as all Polish
spaces, and they allow us to avoid certain measure-theoretic pathologies
[26]. Henceforth, all σ-algebras are understood from the context; we do not
complete any of them, but we say that an event C holds with probability 1
(w.p.1) if C contains a measurable subset C′ that has probability 1.

where the infimum is over all A×Â-valued random variables (U, V )
with joint distribution W belonging to the set

W (P,D) := {W : WA = P, EW [ρ(U, V )] ≤ D},

and where WA denotes the marginal distribution of W on A, and
similarly for W Â; the infimum is taken to be +∞ when W (P,D)
is empty. As usual, the mutual information I(U ;V ) between two
random variables U, V with joint distribution W , is defined as the
relative entropy between W and the product of its two marginals,
WA×W Â. Throughout the paper, all familiar information-theoretic
quantities are expressed in nats, and log denotes the natural logarithm.
In particular, for any two probability measures µ, ν on the same space,
the relative entropy H(µ‖ν) is defined as Eµ[log dµ

dν
] whenever the

density dµ/dν exists, and it is taken to be +∞ otherwise.
We write Dc(P ) for the set of distortion values D ≥ 0 for which

R1(P,D) is continuous from the left, i.e.,

Dc(P ) := {D ≥ 0 : R1(P,D) = limλ↑1R1(P, λD)} .

By convention, this set always includes 0 and any value of D for
which R1(P,D) = ∞. But since R1(P,D) is nonincreasing and
convex in D [27] [15], Dc(P ) actually includes all D ≥ 0 with the
only possible exception of the single value of D where R1(P,D)
transitions from being finite to being infinite. Conditions guaranteeing
that Dc(P ) is indeed all of [0,∞) can be found in [15].

A. Estimation Problems and Plug-in Estimators

Given a finite-length data string xn1 := (x1, x2, . . . , xn) produced
by a stationary source (Xn) as above with marginal distribution
P , the plug-in estimator of the first-order rate-distortion function
R1(P,D) is R1(Pxn

1
, D), where Pxn

1
is the empirical distribution

induced by the sample xn1 on An, namely,

Pxn
1

(C) := 1
n

∑n
k=1 1{xk ∈ C} xn1 ∈ An, C ∈ A

and where 1 is the indicator function. Our first goal is to obtain
conditions under which this estimator is strongly consistent. We call
this the nonparametric estimation problem.

We also consider the more general class of estimation problems
mentioned in the Introduction. Suppose for a moment that our goal
is to compress data produced by a memoryless source (Xn) with
distribution P on A, and suppose also that we are restricted to using
memoryless random codebooks with distributions Q belonging to
some parametric family {Qθ : θ ∈ Θ} where Θ indexes a subset
of all probability distributions on Â. Using a random codebook with
distribution Q to compress the data to within distortion D, yields
(asymptotically) a rate of R1(P,Q,D) nats/symbol, where

R1(P,Q,D) = infW∈W (P,D) H(W‖P×Q).

See [22] [23] for details. From this it is immediate that the rate-
distortion function of the source admits the decomposition given in
(1). Having restricted attention to the class of codebook distributions
{Qθ ; θ ∈ Θ}, then the best possible compression rate is:

RΘ
1 (P,D) := infθ∈Θ R1(P,Qθ, D) nats/symbol. (3)

When θ indexes certain nice families, say Gaussian, the infimum
RΘ

1 (P,D) can be analytically derived or easily computed, often for
any distribution P , including an empirical distribution.

Thus motivated, we now formally define the parametric esti-
mation problem. Suppose (Xn) is a stationary source and let
{Qθ : θ ∈ Θ} be a family of probability distributions on the
reproduction alphabet Â parameterized by an arbitrary parameter
space Θ. The plug-in estimator for RΘ

1 (P,D) is RΘ
1 (PXn

1
, D), and

we seek conditions for its strong consistency.
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Note that RΘ
1 (P,D) = R1(P,D) when {Qθ : θ ∈ Θ} includes

all probability distributions on Â, or if it simply includes the optimal
reproduction distribution achieving the infimum in (1). Therefore, the
nonparametric problem is a special case of the parametric one, and
we can consider the two situations in a common framework.

In the parametric scenario we write,

DΘ
c (P ) := {D ≥ 0 : RΘ

1 (P,D) = limλ↑1R
Θ
1 (P, λD)}.

Unlike Dc(P ), DΘ
c (P ) can exclude more than a single point.

B. Consistency

We investigate conditions under which the plug-in estimator
RΘ

1 (PXn
1
, D) is strongly consistent, i.e.,

RΘ
1 (PXn

1
, D)

w.p.1→ RΘ
1 (P,D). (4)

[Throughout the paper we do not require limits to be finite, but say
that limn an =∞ if an diverges to∞; similarly for −∞.] Of course
in the special case where Θ indexes all probability distributions
on Â, this reduces to the nonparametric problem, and (4) becomes
R1(PXn

1
, D)

w.p.1→ R1(P,D). We separately treat the upper and lower
bounds that combine to give (4).

The upper bound requires no further assumptions, although there
can be certain pathological values of D for which it is not valid. In
the nonparametric case, the only potential problem is the single value
of D where R1(P,D) transitions from finite to infinite.

Theorem 4: If the source (Xn) is stationary and ergodic with
X1 ∼ P , then, for all D ∈ DΘ

c (P ):

lim supn→∞R
Θ
1 (PXn

1
, D)

w.p.1

≤ RΘ
1 (P,D).

As illustrated by a simple example in Section III, the requirement
D ∈ DΘ

c (P ) cannot be relaxed completely. The proof of the theorem,
given in [3], is a combination of the decomposition in (3) and the
fact that R1(PXn

1
, Q,D)

w.p.1→ R1(P,Q,D) quite generally. Actually,
from the proof we also obtain an upper bound on the lim inf ,

lim inf
n→∞

RΘ
1 (PXn

1
, D)

w.p.1

≤ RΘ
1 (P,D) for all D ≥ 0, (5)

which provides some information even for those values of D where
the upper bound in Theorem 4 may fail.

For the corresponding lower bound in (4), some mild additional
assumptions are needed. We will always assume that Θ is a metric
space, and also that the following two conditions are satisfied:
A1. The map θ 7→ Eθ[e

λρ(x,Y )] is continuous for each x ∈ A and
λ ≤ 0, where Eθ denotes expectation w.r.t. Qθ .

A2. For each D ≥ 0, there exists a (possibly random) sequence (θn)
that is relatively compact w.p.1 and s.t.

lim infn→∞R1(PXn
1
, Qθn , D)

w.p.1

≤ lim infn→∞R
Θ
1 (PXn

1
, D). (6)

Theorem 5: If Θ is separable, A1 and A2 hold, and (Xn) is
stationary and ergodic with X1 ∼ P , then for all D ≥ 0:

lim infn→∞R
Θ
1 (PXn

1
, D)

w.p.1

≥ RΘ
1 (P,D).

Although A1 and A2 may seem quite involved, they are fairly easy
to verify in specific examples: For A1, we show in [3] that either of
the following two conditions imply A1.
P1. Whenever θn → θ, we also have that Qθn → Qθ setwise.3

N1. Â is a metric space with its Borel σ-algebra Â, ρ(x, ·) is
continuous for each x, and θn → θ implies Qθn → Qθ weakly.

3We say that Qm → Q setwise (or weakly), if EQm (f)→ EQ(f) for all
bounded, measurable functions f (or, for all bounded, continuous functions
f , respectively).

For A2, we first note that a sequence (θn) satisfying (6) always
exists and that the inequality in (6) must always be an equality. The
important requirement in A2 is that (θn) be relatively compact. In
particular, A2 is trivially true if Θ is compact. More generally, the
following two conditions make it easier to verify A2 in particular
examples. In [3] we prove that either one implies A2 as long as the
source is stationary and ergodic with marginal distribution P , and in
Section III we describe concrete situations where these assumptions
are valid. For any subset K of the source alphabet A, we write
B(K,M) for the subset of Â which is the union of all the distortion
balls of radius M ≥ 0 centered at points of K. Formally,

B(K,M) :=
⋃
x∈K{y : ρ(x, y) ≤M}, K ⊆ A, M ≥ 0.

P2. For each D ≥ 0, there exists a ∆ > 0 and a K ∈ A s.t.
P (K) > D/(D + ∆) and {θ : Qθ(B(K,D + ∆)) ≥ ε} is
relatively compact for each ε > 0.

N2. (Â, Â) is a metric space with its Borel σ-algebra, Θ is the set
of all probability distributions on Â with a metric that metrizes
weak convergence of probability measures, and for each ε > 0
and each M > 0 there exists a K ∈ A s.t. P (K) > 1− ε and
B(K,M) is relatively compact. [Note that Θ can always be
metrized in this way, and so that Θ will be separable (compact)
if Â is separable (compact) [28].]

The proof of Theorem 5 has the following main ingredients.
The separability of Θ and the continuity in A1 are used to ensure
measurability and, in particular, for controlling exceptional sets. A1
is a local assumption that ensures infθ∈U R1(PXn

1
, Qθ, D) is well

behaved in small neighborhoods U . A2 is a global assumption that
ensures the final analysis can be restricted to a small neighborhood.

Combining Theorems 4 and 5 gives conditions under which
RΘ

1 (PXn
1
, D)

w.p.1→ RΘ
1 (P,D). In the nonparametric situation we have

the following Corollary, which is a generalization of Corollary 3 in
the Introduction; it follows immediately from the last two theorems.

Corollary 6: Suppose (Â, Â) is a compact, separable metric space
with its Borel σ-algebra and ρ(x, ·) is continuous for each x ∈ A. If
(Xn) is stationary and ergodic with X1 ∼ P , then R1(PXn

1
, D)

w.p.1→
R1(P,D) for all D ∈ Dc(P ). Furthermore, the compactness condi-
tion can be relaxed as in N2.

III. EXAMPLES

Suppose the source (Xn) is stationary and ergodic with X1 ∼ P .

Example A. Nonparametric Consistency with Discrete Alphabets
Let A and Â be at most countable and let ρ be unbounded in

the sense that for each fixed x ∈ A and each fixed M > 0 there
are only finitely many y ∈ Â with ρ(x, y) < M . N1 and N2 are
clearly satisfied in the nonparametric setting where Θ is the set of all
probability distributions on Â, so R1(PXn

1
, D)

w.p.1→ R1(P,D) for all
D except perhaps at the single value of D where R1(P,D) transitions
from finite to infinite. If, in addition, for each x there exists a y with
ρ(x, y) = 0, then Dc(P ) = [0,∞) regardless of P [15], and the
plug-in estimator is strongly consistent for all P and all D.

This example also yields a new proof of the general consistency
result mentioned in the Introduction, for the plug-in entropy estima-
tor: If we take A = Â = {0, 1, . . .}, let ρ(x, y) = |x− y|, and take
D = 0, then we obtain the strong consistency of [12, Cor. 1].

Example B. Nonparametric Consistency with Continuous Alphabets
Again in the nonparametric setting, let A = Â = Rd be finite

dimensional Euclidean space, and let ρ(x, y) := f(‖x − y‖) for
some function f of Euclidean distance where f : [0,∞) → [0,∞)
is continuous and f(t)→∞ as t→∞. As in the previous example,
N1 and N2 are clearly satisfied, so R1(PXn

1
, D)

w.p.1→ R1(P,D) for all
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D except perhaps at the single value of D where R1(P,D) transitions
from finite to infinite. If furthermore f(0) = 0, then Dc(P ) = [0,∞)
regardless of P [15] and the plug-in estimator is strongly consistent
for all P and all D. This includes the important special case of
squared-error distortion: In the nonparametric problem, the plug-in
estimator is always strongly consistent under squared-error distortion
over finite dimensional Euclidean space, as stated in Corollary 2.

This example also extends to more general distortion measures on
subsets A, Â of Rd; see [3].

Example C. Parametric Consistency for Gaussian Families
Let A = Â = R, let ρ satisfy the assumptions of Example B, let

Θ = {(µ, σ) ∈ R× [0,∞)} with the Euclidean metric, and for each
θ = (µ, σ) let Qθ be Gaussian with mean µ and standard deviation
σ [the case σ = 0 corresponds to the point mass at µ]. Conditions
N1 and P2 are clearly satisfied, so RΘ

1 (PXn
1
, D)

w.p.1→ RΘ
1 (P,D) for

all D ∈ DΘ
c (P ). In the special case where ρ(x, y) = (x − y)2 is

squared-error distortion, then it is not too difficult [23] to show that

RΘ
1 (P,D) = max{0, (1/2) log(σ2

X/D)},

where σ2
X denotes the (possibly infinite) variance of P , so DΘ

c (P ) =
[0,∞) and convergence holds for all D. Furthermore, if the source
P is also be Gaussian, then RΘ

1 (P,D) = R1(P,D) and the plug-in
estimator is also strongly consistent for the nonparametric problem.

Example D. Convergence Failure for D 6∈ Dc(P )

Let A = {0, 1}, Â = {0}, and ρ(x, y) := |x− y|. Since there is
only one possible distribution on Â, it is easy to show that, for any
distribution P ′ on A, we have R1(P ′, D) = 0 for D ≥ P ′(1) and
R1(P ′, D) = ∞ otherwise. If P (1) > 0, the only possible trouble
point for consistency is D = P (1), which is not in Dc(P ). It is easy
to see that convergence (and therefore consistency) might fail at this
point because R1(PXn

1
, D) will jump back and forth between 0 and

∞ as PXn
1

(1) jumps above and below D = P (1). The law of the
iterated logarithm implies that this failure to converge happens w.p.1
when the source is memoryless, and for a stationary ergodic source
convergence will fail with positive probability [29].

Example E. Consistency at a Point of Discontinuity in P
This slightly modified example from [15] illustrates that R1(·, D)

can be discontinuous at P even though the plug-in estimator is
consistent. Let A = Â = {1, 2, . . . }, let P ′ be any distribution on A
with infinite entropy and with P ′(x) > 0 for all x, and let ρ(x, y) :=
P ′(x)−11{x 6= y}+|x−y|. Note that R1(P ′, D) =∞ for all D (see
[3] for a detailed explanation). This is a special case of Example A so
the plug-in estimator is always strongly consistent regardless of P and
D. Nevertheless, R1(·, D) is discontinuous everywhere it is finite. To
see this, let the source P be any distribution on A with finite entropy
H(P ). Note that R1(P,D) ≤ R1(P, 0) = H(P ) < ∞. Define the
mixture distribution Pε := (1 − ε)P + εP ′. Then Pε → P in the
topology of total variation as ε ↓ 0, but R1(Pε, D) 6→ R1(P,D)
because R1(Pε, D) ≥ εR1(P ′, D/ε) =∞ for all ε > 0; see [3] for
a proof of this last inequality.

Extensions of this example in [3] show that even closeness in rela-
tive entropy between two distributions is not enough to guarantee the
closeness of the corresponding rate-distortion functions. Moreover,
similar examples can be constructed for real-valued sources w.r.t.
squared-error distortion.

Example F. Higher-Order Rate-Distortion Functions
Suppose that we want to estimate the mth-order rate-distortion

function of a stationary and ergodic source (Xn) with mth order
marginal distribution Xm

1 ∼ Pm, namely,

Rm(Pm, D) := 1
m

inf(U,V )∼W∈Wm(Pm,D) I(U ;V ),

where the infimum is over all Am × Âm-valued random variables,
with joint distribution W in the set Wm(Pm, D) of probability
distributions on Am × Âm whose marginal distribution on Am

equals Pm, and which have E[ρm(U, V )] ≤ D for ρm(xn1 , y
n
1 ) :=

1
m

∑m
k=1 ρ(xk, yk). All the above results apply; we simply esti-

mate the first-order rate-distortion function of the “blocked” process
(Zk := (Xk, . . . , Xk+m−1)), w.r.t. the reproduction alphabet Âm

and the distortion measure ρm, and divide the estimate by m.

IV. FURTHER RESULTS

A. Estimation of the Optimal Reproduction Distribution

So far, we concentrated on conditions under which the plug-
in estimator is consistent; these guarantee an (asymptotically)
accurate estimate of the best compression rate RΘ

1 (P,D) =
infθ∈Θ R1(P,Qθ, D) that can be achieved by codes restricted to
some class of distributions {Qθ ; θ ∈ Θ}. Now suppose this infimum
is achieved by some θ∗, corresponding to the optimal reproduction
distribution Qθ∗ . Here we use a simple modification of the plug-in
estimator in order to obtain estimates θn = θn(xn1 ) for the optimal
reproduction parameter θ∗ based on the data xn1 . Specifically, since
we have conditions under which

infθ∈Θ R1(Pxn
1
, Qθ, D) ≈ infθ∈Θ R1(P,Qθ, D), (7)

we naturally consider the sequence of estimators which achieve the
infima on the left-hand-side of (7) for each n ≥ 1; that is, we simply
replace the inf by an arg inf . Since these arg-infima may not exist or
may not be unique, we actually consider any sequence of approxi-
mate minimizers (θn) that have R1(PXn

1
, Qθn , D) ≈ RΘ

1 (PXn
1
, D)

in the sense that (9) below holds. Similarly, minimizers θ∗ of the
right-hand-side of (7) may not exist or be unique, either. We thus
consider the (possibly empty) set Θ∗ containing all the minimizers of
R1(P,Qθ, D) and address the problem of whether the estimators θn
converge to Θ∗, meaning that θn is eventually in any neighborhood
of Θ∗.

Our proofs are in part based on a recent result from [29].
Theorem 7: [29] If the source (Xn) is stationary and ergodic with

X1 ∼ P , then for all D ≥ 0 we have

lim infn→∞R1(PXn
1
, Q,D)

w.p.1
= R1(P,Q,D),

and for all D ∈ Dc(P,Q) := {D ≥ 0 : R1(P,Q,D) =
limλ↑1 R1(P,Q, λD)} we have

limn→∞R1(PXn
1
, Q,D)

w.p.1
= R1(P,Q,D). (8)

Similar to Dc(P ), Dc(P,Q) always contains 0 and any point where
R1(P,Q,D) =∞. Since R1(P,Q,D) is convex and nonincreasing
in D [29], Dc(P,Q) is the entire interval [0,∞), except perhaps the
single point where R1(P,Q,D) transitions from finite to infinite.

Loosely speaking, the main point of this paper is to give conditions
under which an infimum over Q can be moved inside the limit in the
above theorem. It turns out that our methods work equally well for
moving an arg-infimum inside the limit. The next theorem, proved
in [3], is a strong consistency result giving conditions under which
the approximate minimizers (θn) converge to the optimal parameters
{θ∗} corresponding to the optimal reproduction distributions {Qθ∗}.

Theorem 8: Suppose the source (Xn) is stationary and ergodic
with X1 ∼ P , the parameter set Θ is separable, and A1 and A2
hold. Then for all D ∈ DΘ

c (P ), the set

Θ∗ := arg infθ∈Θ R
Θ
1 (P,Qθ, D)

is not empty and any (typically random) sequence (θn) of approxi-
mate minimizers, i.e., satisfying,

lim supn→∞R1(PXn
1
, Qθn , D) ≤ lim supn→∞R

Θ
1 (PXn

1
, D) (9)
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has all of its limit points in Θ∗ w.p.1. Furthermore, if RΘ
1 (P,D) <

∞ and either P2 or N2 holds, then any sequence of approximate
minimizers (θn) is relatively compact w.p.1. Hence θn → Θ∗ w.p.1.

B. More General Estimators

The upper and lower bounds of Theorems 4 and 5 can be combined
to extend our results to a variety of other estimators. For example,
instead of the simple plug-in estimator,

RΘ
1 (Pxn

1
, D) = infθ∈Θ R1(Pxn

1
, Qθ, D)

we may wish to consider MDL-style penalized estimators, e.g.,

infθ∈Θ {R1(Pxn
1
, Qθ, D) + Fn(θ)}, (10)

for appropriate (nonnegative) penalty functions Fn(θ). The penalty
functions express our preference for certain (typically less complex)
subsets of Θ. This is particularly important when estimating the
optimal reproduction distribution as discussed above. Note that in
the case when no distortion is allowed, these estimators reduce to
the classical ones used in lossless data compression and in MDL-
based model selection [30]. Indeed, if A = Â are discrete sets, ρ is
Hamming distance and D = 0, then the estimator in (10) becomes,

− 1
n

supθ∈Θ {logQnθ (xn1 )− nFn(θ)},

which precisely corresponds to penalized maximum likelihood esti-
mators. [Qn denotes the n-fold product distribution of Q.]

More generally, suppose we have a sequence of functions
(ϕn(xn1 , θ,D)) with the properties that, for all n, xn1 , θ and D:

ϕn(xn1 , θ,D) ≥ R1(Pxn
1
, Qθ, D) (11a)

lim sup
n→∞

ϕn(Xn
1 , θ,D)

w.p.1
= lim sup

n→∞
R1(PXn

1
, Qθ, D) (11b)

For each such sequence (ϕn), we define a new estimator for
RΘ

1 (P,D):

ϕΘ
n (xn1 , D) := infθ∈Θ ϕn(xn1 , θ,D).

Condition (11a) implies that any lower bound for the plug-in es-
timator also holds here. Also, considering a single θ′ for which
lim supnR1(PXn

1
, Qθ′ , D) ≤ RΘ

1 (P,D)+ε, w.p.1, shows that (11b)
similarly implies a corresponding upper bound:

Corollary 9: Theorems 4, 5 and 8 remain valid if RΘ
1 (PXn

1
, D) is

replaced by ϕΘ
n (Xn

1 , D) for any sequence (ϕn) satisfying (11a)(11b).
For example, the penalized plug-in estimators above satisfy the

conditions of the corollary, as long as the penalty functions Fn satisfy,
for each θ, Fn(θ)→ 0 as n→∞. Another example is the sequence
of estimators based on the “lossy likelihoods” of [4], namely,

ϕn(xn1 , θ,D) = − 1
n

logQnθ (Bn(xn1 , D))

where Bn(xn1 , D) denotes the distortion-ball of radius D around xn1 ,
Bn(xn1 , D) := {yn1 ∈ Ân : ρn(xn1 , y

n
1 ) ≤ D}; cf. [31]. Again,

conditions (11a) and (11b) are valid in this case [29].
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