The Asymptotics of Waiting Times Between Stationary Processes,

Allowing Distortion
Short title: Waiting Times Allowing Distortion

By AMIR DEMBO! AND TOANNIS KONTOYIANNIS?

Stanford University

Appeared in Annals of Applied Probability, vol. 9, pp. 413— 429, May 1999

Given two independent realizations of the stationary processes X = {X,, ; n > 1} and Y =
{Y,, ; n > 1}, our main quantity of interest is the waiting time W,, (D) until a D-close version of the
initial string (X1, Xo, ..., X,,) first appears as a contiguous substring in (Y7,Y5,Y3,...), where closeness
is measured with respect to some “average distortion” criterion.

We study the asymptotics of W,,(D) for large n under various mixing conditions on X and Y. We
first prove a strong approximation theorem between log W, (D) and the logarithm of the probability
of a D-ball around (X;,Xs,...,X,). Using large deviations techniques, we show that this proba-
bility can, in turn, be strongly approximated by an associated random walk, and we conclude that:
(i) n=tlog W, (D) converges almost surely to a constant R determined by an explicit variational prob-
lem; (ii) [log W,, (D) — R], properly normalized, satisfies a central limit theorem, a law of the iterated

logarithm, and, more generally, an almost sure invariance principle.

!partially supported by NSF grant #DMS-9403553.
2partially supported by grants NSF #NCR-9628193, JSEP #DAAH04-94-G-0058, ARPA #J-FBI-94-218-2.

AMS 1991 subject classification. Primary—60F15; secondary—60F10, 94A17.
Key words and phrases. Waiting times, string matching, large deviations, relative entropy, strong approximation, almost

sure invariance principle.



1. Introduction and Main Results. The problem of analyzing the asymptotic behavior of
waiting times between stationary processes has received a lot of attention in the literature over the past
few years (see Wyner and Ziv (1989), Shields (1993), Szpankowski (1993), Marton and Shields (1995),
Kontoyiannis (1998) and the references therein), primarily because of its important applications in several
fields, most notably in data compression and the analysis of string matching algorithms in DNA sequence
analysis. These applications are outlined in the next section.

Let X ={X,,; n>1}and Y = {Y,, ; n > 1} be two processes taking values in the Polish spaces
(AR, Fx) and (AS?, Fy ), and distributed according to the probability measures P and @, respectively. We
will assume throughout the paper that the processes X and Y are independent. By x = (x1,22,...) €
A% we denote an infinite realization of X, and for 1 < i < j < oo we write xf for the substring
(%i, Tit1,...,x;). Similarly we write Xl] for the vector (Xj,...,X;), and likewise for Y.

Given a measurable function p(-,-) : AxxAy — [0,00), the “distortion” between two finite strings

z} € A% and yi' € AV is measured by:
(=7, y1) Zp iy i)- (1)
For 27 € A% and D > 0 we write B(z7, D) for the ball of radius D around z7:
B(a,D) = {4} € A% : pu(al,y?) < D}.

Given D > 0 and two independent infinite realizations z, y from X and Y, respectively, our main quantity

of interest is the waiting time W, (D) until a D-close version of z7 first appears in y:
Wa(D) = Wa(al,y,D) = inf{k>1:y*""! € B(f,D)}.

In the special case where Ax and Ay are finite sets and W,, stands for the first time an ezact copy of

the string x7 appears in y, it is known that W,, increases exponentially with n,
1
—logW,, = R PxQ —as., (2)
n

when X is stationary ergodic and Y satisfies certain mixing conditions (Wyner and Ziv (1989), Shields

(1993), Marton and Shields (1995), Kontoyiannis (1998)); here and throughout the paper log denotes the



natural logarithm. The constant R can be expressed in terms of relative entropy; for example, when X is
composed of independent and identically distributed random variables (an “i.i.d. process”) with marginal
distribution Py, and Y is an i.i.d. process with marginal @1, then R = R(P,Q1) = H(P1) + H(P1|Q1),
where H(P;) = E[—log P(X1)] is the entropy of X and H(:|-) denotes the relative entropy between two

probability measures:

du log d—“, when® exists
H(/,I,|I/) _ f dv dv

0, otherwise.

Moreover, under more restrictive conditions on the mixing properties of X and Y, it is known that
[log W), — nR] satisfies a central limit theorem (CLT) (Wyner (1993)), and a law of the iterated logarithm
(LIL), as well as the functional counterparts of these results (Kontoyiannis (1998)).

Our purpose in this paper is to extend these asymptotic results to W, (D) (see Corollaries 1 through 4,
below). Little has been done in this direction: Recently, Yang and Kieffer (1998) showed that (2) holds
for W, (D) when Ax and Ay are finite sets, with R = R(Py,Q1, D) given as the solution to a variational
problem in terms of relative entropy (see Theorem 2 below). Related results were obtained by Luczak and
Szpankowski (1997), but neither of these papers addressed the problem of determining the second-order
asymptotic properties of log W, (D), and also left open the question of whether analogous results can be
established for general spaces Ax and Ay . In this paper we address both of these issues.

The first step in our analysis (carried out in Theorem 1) is to show that the waiting time W, (D)
until a D-close match for X' occurs in Y is approximately equal to the reciprocal of the probability
Q(B(X7, D)) that such a match indeed occurs. In the case when no distortion is allowed, Q(B(X7{, D))
simply reduces to Q(X7{"), and applying the Shannon-McMillan-Breiman Theorem and its second-order
refinements one gets a complete picture of the asymptotic behavior of W,, (cf. Kontoyiannis (1998)).
But when distortion is allowed, the asymptotic behavior (particularly the second-order behavior) of the
probabilities Q(B (X7, D)) is not quite obvious a priori. The novelty in the approach we employ here
is the use of large deviations techniques to obtain corresponding results for Q(B(X7, D)) in place of

Q(X7): Theorems 2 and 3 relate Q(B(X]", D)) to an associated random walk on R induced by X7,



and they provide natural generalizations of the Shannon-McMillan-Breiman theorem and its subsequent
refinements [by Ibragimov (1962) and by Philipp and Stout (1975)] for processes with values in general
spaces, and to the case when distortion is allowed.

Our first result is a strong approximation theorem stating that the waiting time W,, (D) is asymptot-

ically almost surely close to the reciprocal of the probability Q(B (X7, D)):

Theorem 1. Suppose Y is a stationary process with ¢p-mizing coefficients that satisfy > ¢(k) < oo,
and assume that Q(B(X7, D)) > 0 eventually P—a.s. If {c(n)} is an arbitrary sequence of non-negative

constants such that 3 ne™¢" < oo, then

|log[W,(D)Q(B(XT, D))]| < ¢(n) eventually PxQ—a.s.

It will be evident from the proof of Theorem 1 that the result remains valid for general sequences of

distortion measures {p, }, not necessarily of the form of (1), under mild regularity conditions.

Recall that the ¢-mixing coefficients of Y are defined by ¢(k) = sup{|Q(BJA) — Q(B)|} where
the supremum is taken over all integers r > 1 and all pairs of events A and B such that B € o(Y,%,),
A€ o(Y/), and Q(A) # 0; see Bradley (1986) for an extensive discussion.

From Theorem 1 we get that

log Wi(D) — [~ log QB(X}, D))] = o(vn) PxQ —as. 3)

In contrast with the case of exact matching (i.e., when no distortion is allowed), here, —log Q(B (X7, D))
cannot be readily expanded as the partial sum of the logarithms of conditional probabilities. Nevertheless,
we can relate —log Q(B(X7, D)) to a different random walk, which arises as a functional of the empirical
measure P, =n 13" §y, induced on Ax by XI* (Theorems 2 and 3). From that, we can read off the
exact asymptotic behavior of —log Q(B(X7, D)), and, via (3), the behavior of the waiting times W, (D)
(Corollaries 1 through 4).

Let

Dppin = Ep[ess),/inf p(X1,Y1)],
1
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and for simplicity, assume hereafter that Y is an i.i.d. process, and that

Dypax = esssup p(X1,Y1) € (Dmin, ).
(X1,Y1)

For X stationary and ergodic, by the ergodic theorem, W), (D) = 1 eventually P x @Q—almost surely, for
any D > D,, = Ep(X1,Y1), whereas W,,(D) = oo eventually P x@Q—almost surely, for any D < Dy;,. Of

interest is the range D € (Duin, Day) where W, (D) exhibits exponential behavior.

Theorem 2. Let X be a stationary ergodic process and Y be an i.i.d. process. Then for D €
(Dmin, Day) we have,

—1og Q(B(X}, D)) — nR(Py) = o(v/n) P—as.
where R(Pn) = R(Pn,Ql,D) is defined by the following variational problem:

R(PQu.D) = inf [ H(40)|Qa())dP ),
and the infimum is taken over all probability measures v on AxxAy such that the Ax-marginal of v is
P, and [ p(x,y) dv(z,y) < D.

See Proposition 1 in Section 3 for an alternative characterization of R(Pn, @1, D). An easy consequence

of Theorem 2 is the following generalization of (2).

Corollary 1. Assume that X is stationary ergodic, Y is an i.i.d. process, and D € (Duin, Day).

~

Then R(P,) — R(Py) P—almost surely, and hence

1
E log Wn(D) — R(Pl, Ql, D) PXQ — a.S.

Next we investigate the behavior of \/n[R(P,)—R(Py)]. As it turns out (see Proposition 1 in Section 4),
the function R(P1) = R(P1,Q1,D) is the convex dual of the log-moment generating function Ap, (),

where, for any probability measure pn on Ax and any A € R, A, ()) is defined as

Au(N) = / log{ / e*p("’”’y)dQl(y)}du(m)-

5



Write A(-) = Ap,(-) when g = Py, Ay(-) = As, () for any x € Ay, and Ax,(-) = — [Ay()dPi(z
Theorem 3 provides an explicit approximation of v/n[R(P,) — R(Py)] by a random walk induced by X7
[Recall that the a-mixing coefficients of X are defined by a(k) = sup{|P(ANB) — P(A)P(B)|; A €

o(X7), B € o(XX,), r > 1}; see Bradley (1986) for details.]

Theorem 3. Let X be a stationary process with a-mizing coefficients that satisfy > a(k) < oo, let

Y be an i.i.d. process, and D € (Dpin, Day). Then for A = A(D) < 0 such that A'(\) = D we have

n[R(P,) — R(P,)] +ZAX = o(y/n) P—a.s.

In particular, combining (3) with Theorems 2 and 3 gives

[log W,,(D) — nR(P1,Q1, D +ZAX = o(v/n) PxQ —as., (4)

and it is now straightforward to harvest a series of corollaries. The following is an immediate consequence

of combining (4) with well-known CLT results (see, for example, Theorem 1.7 in Peligrad (1986)).

Corollary 2 (CLT). Let X be a stationary process with c-mizing coefficients such that > a(k) < oo,

let Y be an i.i.d. process, and D € (Dwyin, Day). Then, for A = X(D), the following series converges,

o? = Ep{Ax,(\) }+2ZEP{AX1 JAx, (N}, (5)

and

log W, (D\)/ﬁ— nR(Py) D,

Moreover, when o2 > 0, the sequence of processes,

N(0,02).

ovn

converges in distribution to standard Brownian motion, where w(t; D) = [log W4 (D) — [t| R(P1, Q1, D))

;te[o,u}, s,

fort>1, and w(t; D) =0 fort < 1.

Similarly, Corollary 3 is a consequence of (4) combined with the LIL (Rio (1995)).



Corollary 3 (LIL). Let X be a stationary process with a-mizing coefficients such that > a(k) < oo,
Y be an i.i.d. process, and D € (Duin, Day). Then, for o? as in (5), with PxQ—probability one the set

of limit points of the sequence

n>3

{log Wn(D) — nR(Py) }
v2nloglogn

coincides with the interval [—o,o]. Moreover, when o > 0, with PxQ—probability one, the sequence of

sample paths

w(nt; D)
T te 07 1 ) > 37
{\/271 log log n | ]} "

is relatively compact in the topology of uniform convergence on DI[0,1], and the set of its limit points is the

collection of all absolutely continuous functions r : [0,1] — R, such that r(0) = 0 and fol(dr/dt)2dt <o

Finally, Corollary 4 follows from (4) and an almost sure invariance principle proved by Philipp and

Stout (1975), Theorem 4.1.

Corollary 4 (Almost sure invariance principle). Let X be a stationary process with ¢-mizxing
coefficients that satisfy > \/$(k) < oo, Y be an i.i.d process, and D € (Duyin, Day). Then, with o > 0

as in (5), there exists a Brownian motion {B(t) ; t > 0} such that

w(t; D) —oB(t) = o(Vt) PxQ — a.s., (6)

As usual we interpret (6) as saying that, without changing its distribution, w(¢; D) can be redefined on
a richer probability space that contains a Brownian motion such that (6) holds. For some of the numerous
corollaries that can be derived from almost sure invariance principles as the one in (6) see Strassen (1964)

and Ch. 1 of Philipp and Stout (1975).

Remark 1. In Corollary 1, W, (D) can be replaced by 1/Q(B(X7, D)) to give a natural generalization
of the Shannon-McMillan-Breiman theorem (analogous to the one obtained by Yang and Kieffer for finite
sets Ay, Ay) for the case when distortion is allowed, and for processes with values in general spaces. In
a similar fashion, from Corollaries 2 and 4 we can obtain corresponding generalizations of Ibragimov’s

(1962) CLT-refinement, and Philipp and Stout’s (1975) almost sure invariance principle, respectively.



Remark 2. Similar results as those obtained for the waiting times W,,(D) can also be obtained for
the sequence of recurrence times R, (D): Given D > 0 and a realization x from a doubly-infinite process

X ={X,; n€Z}, R,(D) is defined as the first time a D-close version of z_% appears in 2§°:

R,(D) = Ry(z,D) = inf{k>0: 2! ¢ Bz}, D)}

—n>

Theorems 2 and 3 remain valid in this case with X' replaced by X:,ll and Q = P, which forces us to
assume that X is an i.i.d. process. Under this assumption it is easy to see that Theorem 1 also remains

essentially unchanged, so that, combining Theorems 1, 2 and 3 as before, we recover the exact same

asymptotic behavior for R, (D) as that for W, (D) (Corollaries 1 through 4).

In the next section we outline two areas of applications of our results, in Section 3 we prove Theorem 1,

in Section 4 we prove our main results, Theorems 2 and 3, and in Section 5 we prove Theorem 4.

2. Applications. In this section we outline two potential applications of our results about the
asymptotic behavior of W, (D).

Data Compression.  The analysis of several data compression schemes based on string matching,
such as the celebrated Lempel-Ziv algorithm, is typically reduced to studying the following idealized
scenario (see Wyner and Ziv (1989, 1991), Steinberg and Gutman (1993), the discussion in Yang and
Kieffer (1998), Luczak and Szpankowski (1997) and the references therein): An encoder and a decoder
have available to them a common infinite “database” y = (y1,ys2,...) generated by an i.i.d. process
Y ~ @, and the encoder’s task is to communicate the “message” =] = (z1,22,...,%,) to the decoder,
within some prescribed accuracy D with respect to a sequence {p,} of distortion measures of the form of
(1). This is done as follows; the encoder scans the database until a D-close version of z7 is found in y,
and then “tells” the decoder the position W, (D) where this match occurs. To describe W, (D) it takes
log Wy, (D) 4+ O(loglog Wy, (D)) nats (or bits, if the logarithms are taken to be base-2), and therefore the

limiting compression ratio of the code in nats-per-symbol (by Corollary 1) is given by

log W, (D) + O(log log Wy, (D)) R
n

(Pl,Ql,D) a.s.



For example, in the case of lossless coding of an ii.d. “message source” X, R(P;,Q1,0) reduces to
H(Py) + H(Pi|Q1), which is interpreted as the optimal limiting compression ratio H(P), plus the addi-
tional “penalty” term H (P;|Q1) induced by the fact that the database was generated by the sub-optimal
distribution () instead of P. Similarly, in the case of lossy coding we may choose to generate the database
y according to the product measure @) for which R(P;, @1, D) is minimal; for an i.i.d. process X the
limiting compression ratio of this code, r(D) = infg, R(P;,Q1, D), equals the optimal compression ratio,
namely the rate-distortion function of X with respect to {p,} (see Berger (1971) for details).

Once the compression ratio is identified, from Corollaries 2, 3 and 4 we get further information about
the rate at which it is achieved (the “redundancy” of the code), about the limiting distribution of the size
of the encoded data, and so on.

DNA Sequence Analysis. In the analysis of DNA or protein sequences the following problem is of
interest (see Karlin and Ost (1988), Pevzner, Borodovsky and Mironov (1991), Arratia and Waterman
(1994) and the references therein): Given a template 1, x2,... and a long but finite “database” sequence
y1", find the longest contiguous substring in the database that matches an initial portion x{ of the template
within accuracy D, with respect to the average of some score function p(-,-). The length L,,(D) of the

longest such match is of interest here:
L, (D)= Ly(z,y,D) =sup{n >1 : y;-urn*l € B(z7,D), forsome j=1,2,...,m}.

Clearly, there is a duality relationship between Ly, (D) and W,,(D): L;,(D) > n if and only if W;(D) < m
for some k > n. This relationship is exploited in the last section, where we read off the asymptotics of
L,,(D) from the corresponding results for W,, (D), explicitly identifying the asymptotic mean, variance

and distribution of L,,(D):

Theorem 4. (i) Under the assumptions of Corollary 1,

Lu(D) |
logm R(PlanaD)

PxQ — a.s.

(ii) Under the assumptions of Corollary 2, with 0® > 0 as in (5) and R = R(P1,Q1, D),

logm
Im(D) — 75" o, N(0,02R™?)
Viegm ’



11) Under the assumptions of Corollary 3, with o= > 0 as in an = 1,1, 10),
111) Under th ] f Corollary 3, with o >0 as in (5 dR=R(P,Q1,D

L D _ logm
lim sup m(D) L

= oR%? PxQ - a.s.
m—oo v/2logm logloglogm 7 @-as

3. Strong Approximation.

Proof of Theorem 1. Write P for the product measure Px(Q), and for each integer m > 1 let
G ={z: Q(B(z},D)) >0 for all n > m}.
For the upper bound we use a standard second-moment blocking argument (similar to the one by
Yang and Kieffer). Choose and fix any integer m > 1, pick an arbitrary = € Gy, and let n > m be large
V(K,n)

enough so that e >n + 1. Let K > n + 1 and write S, = >j=0  In(j), where I,(j) is the indicator

function of the event {Y TJLE) € B(z},D)}, and V(K,n) = |[(K —1)/n]. Then

Varg(Sy)

P(W,(D) > K| X =a7) < Q(S,=0) < (BoSn)? (7)

By stationarity,
EQSy = [V(K,n) +1]Q(B(a1, D)) (8)

and Eq(I,(0)In(j)) < Q(B(a1, D))[¢((j — 1)n + 1) + Q(B(a1, D))], so that

I\n
Varg(S,) = Z Cov(In(5), In(k))
7,k=0
V(K,n)
< [V(K,n)+1]Q(B(z},D)) |1+2 Z ((j —Dn +1) (9)

Writing ® =142 ¢(k), and substituting (8) and (9) in (7) we get

n __ n (P
POW\(D) > K|X{ =) < g romor s (10)

Choosing K = ™ /Q(B(x}, D)) we have [V (K,n) + 1]Q(B(z%}, D)) > €™ /2n, and (10) yields

P (log[W,(D)Q(B(X}, D))] > c(n)| X} =af) < 2®ne ("),

10



Since the above bound is uniform over x € G,, and summable, by the Borel-Cantelli lemma we obtain

that
log[W,,(D)Q(B(z7,D))] < ¢(n) eventually for Px@Q—almost all (z,y) € G, x AY. (11)

For the lower bound, we observe that for an arbitrary constant K > 1 and any x € G,
LK)
P(W.(D) <K|X{ =27) < Y Q] ' eBat},D)) < KQ(B(at,D)). (12)
=1

Since W,,(D) > 1, this inequality holds also for K € [0,1]. In particular, setting K = e~ /Q(B(x7}, D))

gives
P (log[Wo(D)Q(B(X], D))] < —c(n) | X = a}) < e=),
and summing this over n, by the Borel-Cantelli lemma we get
log[W,(D)Q(B(X{,D))] > —c(n) eventually for PxQ—almost all (z,y) € G, x AF. (13)

Finally, combining (11) and (13) with the assumption that P {U,,Gy,} = 1 completes the proof. O

4. Large Deviations. Lemma 1 below provides some easily checked facts needed in the proofs of
Theorems 2 and 3. The variational characterization of the rate function R in terms of relative entropy is

established next in Proposition 1, and the proofs of Theorem 2, Corollary 1 and Theorem 3 are given.

Lemma 1. Let i1 be an arbitrary probability measure on Ax, A € R, and define 0 < D!. < Dk, <

min

Dhiax < 00 like Dyin, Day and Dyyay, respectively, with Xy ~ p.
(i) 1Au(N)] < NI D
(i1) The Fenchel-Legendre transform of A,

Aj () = sup[Az — A, (N)]
AER

exists and is finite for all x € (D!

min’

Dhy).
(111) Ay € C®, A}, (0) = Dhy, Aj(X) >0 for all X € R, and A}, (X) | DL, as X — —oo0.

min

11



(iv) For each D € (D"

min’

Diy), there exists a unique A < 0 such that Aj,(\) = D, and A} (D) =

AD — Ay ().

(v) For p-almost any x € Ax, A, € C, and its derivatives are uniformly bounded over p-almost all

z € Ax and all X in a compact subset of R.

Proposition 1. In the notation of Lemma 1, let j be an arbitrary probability measure on Ax and

D e (D"

min’®

ng)- Then, R(ManaD) = AZ(D)7 i.e.,

it [ HOC) QDo) = sup a0 [1og{ [ naqu faute)). (14)

AER

where the infimum is taken over all probability measures v on AxxAy such that the Ax-marginal of v is
pand [ p(x,y)dv(z,y) < D.

Proof of Proposition 1. By Lemma 1 we may fix A\ < 0 for which the supremum on the right side of
(14) is achieved. Counsider the probability measure v defined by

dv(z,y)  dv(ylz) M)
duxQ1  dQ1 [ eM®2)dQ;(2)

in the left side of (14). The Ax-marginal of v is u, [ p(x,y)dv(z,y) = Aj,(X\) = D, and

[ HOCDI@ ) = AD~ [ 10g [ / eAp(m’y)dQl(y)] dulz) = A%(D),

and hence the left side of (14) is no greater than A}, (D). To prove the reverse inequality we recall that

for any probability measure v and any bounded measurable function ¢ : Ay — R,

HOCDIQ0) 2 [ swivle) - 1oe { [ #0dar)}

(c.f. Lemma 3.2.13 in Deuschel and Stroock (1989)). In particular, choosing ¢(-) = Ap(z,-) and then

integrating both sides with respect to u yields the required inequality and completes the proof. a
Proof of Theorem 2. Let D = [ p(x,y) dP,(x)dQ1(y), so that, by the ergodic theorem,
D — Dy, P —as. (15)

12



Similarly let D™ = Ep [essinfy; p(Xi,Y1)], so that

min

D" 5 Dpin P —as. (16)

min

Given a realization of the X process such that both (15) and (16) hold, for n large enough the given D
will be strictly between Dgfl)n and D;(f\f), so by Lemma 1 we can choose, for each n, a negative A, such
that Alﬁn()\") =D, A’I‘sn (D) = AuD — Ap (An), and A'Ign()\n) > 0. We similarly choose A < 0 such that

A (\) = D, and claim that
Ap — A P —as. (17)

To see this suppose, for example, that liminf, ;o A, < A — ¢, for some € > 0, so that \,, < X\ —¢€/2 for

some nj — oo. Then, by the ergodic theorem and the strict monotonicity of A’ we get a contradiction:

D = liminf A’y ()\ ) < limsup A, ( —€/2) = hm n IZA' A—¢€/2) =N (A—¢/2) < N'()\) =D.

n—ro0 n—o00

The case limsup,,_,, A, > A is ruled out similarly.

Before we move to the main part of the proof, we need to show that
A'Ign()\n) = A'"N\) >0 P-—as. (18)

Writing
1 n

i=1

we can bound the first term above, for any € > 0 and n large enough, by

esssup [Ax (A,) — A%, (A)] < [Ay — A esssup sup  |AY, (¢)]
X1 X1 A—e<E<A+e

and this converges to zero, by (17) and part (v) of Lemma 1. As for the second term of (19), by the
ergodic theorem it converges to zero, P—almost surely.
Now choose and fix a realization {x;} of X such that the statements (15) (16) (17) and (18) all hold.

Define ¢; = p(;,Y;), T, = > 1y i, and T, = T, /n, with p, denoting the law of ({'. With a slight abuse

13



of notation we write P, for the (non-random, since x° is fixed) empirical measure induced by 27 on Ax.
In this notation, Q(B(z}, D)) = Pr(T}, < D), and, if we define

nA% (D)

J, = €\ Pr(T), < D),

then in view of Proposition 1 the statement of the theorem can be rephrased as
logJ, = o(v/n) P —a.s. (20)

The upper-bound part of (20) follows from

g, = enA}n(D)E{l{TngD}} < enA;,n(D)E{enAn(Tn_D)}

_ OO o) g

(by the choice of A, and the definition of Ap ).
Turning to the proof of the lower bound, suppose n is large enough so that A\, exists, and define a

new probability measure v,, by

dv -
WZ(Z?) = exp {)\n ;:1 zi — nApn()\n)} .
Let
Y06 — By G
G, = _ 2=l ”C], when (7' ~ v,.

nAlzgn()‘")
It is easy to see that G, is a partial sum process of zero mean random variables, normalized so that

Var(Gy,) = 1. Observe that when (7 is distributed according to v,

m D

L
i A" ()

n

D — Gn.,

so that we can expand

J, = e"A?’n(mEyn{1{:,;“@}6*“””*"%“")}
A, /nAL (An) G
N E””{I{GnZO}e o }

> by, {1{0<Gn<5}€_ﬂ"‘/ﬁan}

> e PViipr, (0< @, <6), (21)
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for any 6 > 0, and where 3, = —An\/zw >0 and B, = O(1), by (17) and (18).

Since the random variables (; are uniformly bounded, and also A’Ign()\n) is bounded away from zero
by (18), it is easy to check that the Lindeberg condition for the CLT is satisfied by G,,, from which it
follows that the probability Pr,, (0 < G, < 6) = p > 0 as n — co. Now choose M > 0 large enough so

that M — 3, is bounded away from zero, and get from (21) that

liminf log [eM\/mJn] >log p > —o0,

n—00

ie.,

.. 1
hnrgloréf NG [Mé—i— %loan] > —o0,

from which we conclude that

1
liminf —log J,, > —MaJ.
Vvn

n—00 n

Since § > 0 was arbitrary and M > 0 was chosen independent of §, letting 0 | 0 completes the proof. O

Proof of Corollary 1.  Since D > Dyin, by (16) also D > p eventually P—almost surely. Con-

min
sequently, Q(B(X7, D)) > 0 eventually P—almost surely. Thus, Corollary 1 follows by combining Theo-
rem 2 with (3), provided we show that R(P,) — R(P;) almost surely, or, equivalently (by Proposition 1),
that A% (D) — A*(D) almost surely. Recall that for all n large enough A% (D) = AyD — Ap (An) and

A*(D) = AD — A()), as in the proof of Theorem 2, where \,, — X almost surely by (17). So we only have

to show that Ap (A) — A(A) which comes from an obvious adaptation of the derivation of (18). O

Proof of Theorem 3. Let X and {\,} be chosen as in the beginning of the proof of Theorem 2, so that,
in particular, A*(\) = AD —A(\) and A”()\) > 0. By the continuity of A” we can choose constants 6,1 > 0
such that A”(X\ 4 6) > n whenever |f| < §. Also, from (17), we can pick N = N(X{°) < co P—almost
surely, such that [\, —A| < ¢ for all n > N.

In view of Proposition 1 it suffices to show that

Vi { [N, (D) = A*(D)] = [AQ) = Ap, (]} =0 (22)

15



From the definition of A* and our choice of N, A% ( ) is given by the supremum of [/D — Ay (6)] over

all @ € (A —9,A+9), so (22) is the same as

¢ﬁwppD—Aﬁw+A%H¥(M =0 (23)
16]<6 " "

Since this supremum is always non-negative (take 6 = 0), (23) is equivalent to

n

lim inf \/ﬁ\éffa - Zl [f(6, Xi) — f(0,X3)] =0, (24)
where f(6,2) = Az(A+6) — (A + 6)D. By Taylor’s theorem we can expand g(f) = n 1> " | f(0,X;)
around 0 = 0, to obtain
1 ¢ 6>
=~ L0, Xi) = £(0.X3)] = 0An + 5 Ba(0) . (25)
i=1

where A, =n 13" £(0,X;) and B, () = L 31 | f"(¢n, X;) for some &,(6) such that [&,| < 6.
The family of functions { f"(¢,-) ; € € (—4,9)} is uniformly bounded and equicontinuous (by Lemma 1),

so by the uniform ergodic theorem (Rao (1962), Section 6),

sup —+0 P —as.

l¢<o

- Zf” & Xi) — Epf" (¢, X1)

Therefore, P—almost surely, by the choice of §,

n

liminf inf B,(f) > liminf {mf Epf"(¢,X1) — sup ! Zf”(g,Xi) — Epf"(¢,X71)

o 1€1< lg|<6 | }

n—o00 ‘0|<5 n—00
> ﬁﬂEw%£Xﬂ—fﬁA%A+®>n>0 (26)

By our choice of A, we have Epf'(0, X1) = A'(A\) — D =0, so A, is the partial sum corresponding to the
zero-mean stationary process {f'(0,X,); n > 1}. Since > a(k) < oo and the random variables f'(0, X;)
are bounded, the LIL (Rio (1995)) implies that \/nA2 — 0 P—almost surely. Since the infimum over
0] < & of the right side of (25) is bounded below by —A2 /inf|g 5 B,,(#), combining this with (26) gives

(24) and completes the proof. O
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5. Duality: Match Lengths. Let R denote R(P;,Q1, D). Define T,,(D) = infy>, Wj(D) and

Tn(D) = min,<g<o, Wi(D). As mentioned in Section 2, there is a duality relationship between T, (D)

and L, (D):
Ln(D)>n < Tp(D)<m. (27)

When combined with Lemma 2 below, (27) allows us to deduce (i), (i7) and (iii) in Theorem 4 from

corresponding results for Tn(D), namely, in the notation, and under the corresponding assumptions, of

Theorem 4:
. long(D)
(i") — — R PxQ — a.s.
log Ty, (D) —
(id") 0 Tn(D) —nk L2, N(0,0?)
N
log Ty, (D) —
(14i") lim inf —2 n(D) — nft = —0 PxQ —as.

n—oo  4/2n loglogn

Lemma 2.  Assume that X is stationary ergodic, Y is an i.i.d. process, and D € (Duin, Day).

Then, Ty, (D) = Tp(D) eventually PxQ-almost surely.

Proof of Lemma 2. Note that T, (D) < Ty,(D) < Wy (D) and that T},(D) = T,,(D) whenever T5, (D) >

Wy(D). Therefore, if

lim inf n~ ! log Ty, (D) >

n—00

4R
3 PxQ — a.s. (28)
then, by Corollary 1, Tj,(D) = T,,(D) eventually PxQ-almost surely. For any z5° € A%, for any positive
integer m and any n large enough, by the union bound and (12),

P(Thn(D) < m|X{° =2(°) < Y P(Wi(D) <m|Xf =2f) <m > Q(B(z},D)). (29)
k>2n k>2n

It follows from Theorem 2 and Corollary 1 that, with P-probability one, limy_,o k= log Q(B(X}, D)) =
—R. In particular, eventually P-almost surely, supy,, k~'log Q(B(XF, D)) < —3R/4. Substituting this

in (29) with m = exp(4Rn/3) gives,

P(Ty, (D) < exp(4Rn/3)| X = 23°) < Ce ™% cventually P-a.s.,

17



for some fixed C' < co. Hence, by the Borel-Cantelli lemma, T5,(D) > exp(4Rn/3) eventually PxQ-almost

surely, implying (28) and the conclusion of the lemma. O

Proof of Theorem 4. As already stated, it suffices to prove (') — (zii'). To this end, first observe that

combining Theorem 1 and Theorem 2,

1 .
liminf~ min [long(D) —kR(Pk)] >0 PxQ—as., (30)

n—o00 N n<k<2n
and from Corollary 1 it follows that

1 ~
— min kR(P,) » R PxQ—as. (31)

n n<k<2n

By (30) and (31) we have

1 1 A 1 .
—logT,(D) > — min |logWy(D)—kR(P;)| + — min kR(P.) — R, PxQ — a.s.

n n n<k<2n n n<k<2n
Since T, (D) < W,(D), the corresponding upper bound also holds by Corollary 1, proving (i').

Next let € > 0 arbitrary, so that in the notation of Corollary 2,

(e ) o [0 (5204}

For any § > 0 and n large enough this is bounded above by

R I P

where K = dR/(20). By the functional CLT of Corollary 2 (extended in the obvious way to ¢ € [0, 2]),

the first term of (32) converges, as n — oo, to Pr{info<;<s By < —€/o}, where {B;} is standard Brownian
motion, and this can be made arbitrarily small by taking § small enough. Similarly for any C' > 0 the
second term in (32) is asymptotically bounded above by Pr{info<;<; B; < —C} which can also be made
arbitrarily small by taking C' large enough. Combining these with the fact that T),(D) < W, (D) implies
that [log T}, (D) — log Wy, (D)] = o(,/n) in probability, which, together with Corollary 2, gives (ii').

We similarly obtain (i7i’) by applying the functional LIL instead of the functional CLT: Set s, =
ov/2nloglogn noting that,

w(nt; D) w(n; D) N (Lnt] - n) R] ‘

log T, (D) log W,(D) f
_ — i _
Sn Sp, 1<t<2 Sn, Sn

18



For any § > 0 and n large enough this is bounded below by

t: D : D t; D : D
mind e |20ED) _wmD)] oo e et D) wmiD) g [ m 1 (33)
1<t<1+44 Sn Sn 14+6<t<2 Sn Sn log logn

By the functional LIL of Corollary 3 (extended in the obvious way to ¢ € [0,2]), the first term in (33) is

asymptotically Px@Q-almost surely bounded below by

: : _ S
Hrlf1§;2{+5[r(t) r(1)] > =V,

where the outermost infimum is taken over all absolutely continuous functions r with foz(dr /dt)?dt < 1
and r(0) = 0. Similarly,

t; D ;D
liminf inf w(nt; D) _ w(n; D) >inf inf [r(t) —r(1)] > —-V1—0 PxQ—as.,
n—00 145<t<2 Sn Sn r148<t<2

so that the second term in (33) converges to +o0o with probability one, and hence

o logTu(D)  logWa(D)
lim inf — > Vi PxQ-—as.
00 ov2nloglogn  ov/2nloglogn — @—as

Letting 0 | 0, recalling that T,,(D) < W,(D) and applying Corollary 3 gives (iii') and completes the

proof. a
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