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1. Introduction and Main Results. The problem of analyzing the asymptotic behavior of

waiting times between stationary processes has received a lot of attention in the literature over the past

few years (see Wyner and Ziv (1989), Shields (1993), Szpankowski (1993), Marton and Shields (1995),

Kontoyiannis (1998) and the references therein), primarily because of its important applications in several

�elds, most notably in data compression and the analysis of string matching algorithms in DNA sequence

analysis. These applications are outlined in the next section.

Let X = fXn ; n � 1g and Y = fYn ; n � 1g be two processes taking values in the Polish spaces

(A1X ;FX) and (A1Y ;FY ), and distributed according to the probability measures P and Q, respectively. We

will assume throughout the paper that the processes X and Y are independent. By x = (x1; x2; : : :) 2

A1X we denote an in�nite realization of X, and for 1 � i � j � 1 we write xji for the substring

(xi; xi+1; : : : ; xj). Similarly we write Xj
i for the vector (Xi; : : : ;Xj); and likewise for Y .

Given a measurable function �(�; �) : AX�AY ! [0;1), the \distortion" between two �nite strings

xn1 2 An
X and yn1 2 An

Y is measured by:

�n(xn1 ; y
n
1 ) =

1

n

nX
i=1

�(xi; yi): (1)

For xn1 2 An
X and D � 0 we write B(xn1 ;D) for the ball of radius D around xn1 :

B(xn1 ;D) = fyn1 2 An
Y : �n(xn1 ; y

n
1 ) � Dg:

Given D � 0 and two independent in�nite realizations x, y fromX and Y , respectively, our main quantity

of interest is the waiting time Wn(D) until a D-close version of xn1 �rst appears in y:

Wn(D) = Wn(xn1 ; y;D) = inf fk � 1 : yk+n�1k 2 B(xn1 ;D)g:

In the special case where AX and AY are �nite sets and Wn stands for the �rst time an exact copy of

the string xn1 appears in y, it is known that Wn increases exponentially with n,

1

n
logWn ! R P�Q� a.s.; (2)

when X is stationary ergodic and Y satis�es certain mixing conditions (Wyner and Ziv (1989), Shields

(1993), Marton and Shields (1995), Kontoyiannis (1998)); here and throughout the paper log denotes the
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natural logarithm. The constant R can be expressed in terms of relative entropy; for example, when X is

composed of independent and identically distributed random variables (an \i.i.d. process") with marginal

distribution P1, and Y is an i.i.d. process with marginal Q1, then R = R(P1; Q1) = H(P1) + H(P1jQ1),

where H(P1) = E[� logP (X1)] is the entropy of X and H(�j�) denotes the relative entropy between two

probability measures:

H(�j�) =

8><
>:
R
d� log d�

d� ; whend�
d� exists

1; otherwise.

Moreover, under more restrictive conditions on the mixing properties of X and Y , it is known that

[logWn�nR] satis�es a central limit theorem (CLT) (Wyner (1993)), and a law of the iterated logarithm

(LIL), as well as the functional counterparts of these results (Kontoyiannis (1998)).

Our purpose in this paper is to extend these asymptotic results to Wn(D) (see Corollaries 1 through 4,

below). Little has been done in this direction: Recently, Yang and Kie�er (1998) showed that (2) holds

for Wn(D) when AX and AY are �nite sets, with R = R(P1; Q1;D) given as the solution to a variational

problem in terms of relative entropy (see Theorem 2 below). Related results were obtained by  Luczak and

Szpankowski (1997), but neither of these papers addressed the problem of determining the second-order

asymptotic properties of logWn(D), and also left open the question of whether analogous results can be

established for general spaces AX and AY . In this paper we address both of these issues.

The �rst step in our analysis (carried out in Theorem 1) is to show that the waiting time Wn(D)

until a D-close match for Xn
1 occurs in Y is approximately equal to the reciprocal of the probability

Q(B(Xn
1 ;D)) that such a match indeed occurs. In the case when no distortion is allowed, Q(B(Xn

1 ;D))

simply reduces to Q(Xn
1 ), and applying the Shannon-McMillan-Breiman Theorem and its second-order

re�nements one gets a complete picture of the asymptotic behavior of Wn (cf. Kontoyiannis (1998)).

But when distortion is allowed, the asymptotic behavior (particularly the second-order behavior) of the

probabilities Q(B(Xn
1 ;D)) is not quite obvious a priori. The novelty in the approach we employ here

is the use of large deviations techniques to obtain corresponding results for Q(B(Xn
1 ;D)) in place of

Q(Xn
1 ): Theorems 2 and 3 relate Q(B(Xn

1 ;D)) to an associated random walk on R induced by Xn
1 ,
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and they provide natural generalizations of the Shannon-McMillan-Breiman theorem and its subsequent

re�nements [by Ibragimov (1962) and by Philipp and Stout (1975)] for processes with values in general

spaces, and to the case when distortion is allowed.

Our �rst result is a strong approximation theorem stating that the waiting time Wn(D) is asymptot-

ically almost surely close to the reciprocal of the probability Q(B(Xn
1 ;D)):

Theorem 1. Suppose Y is a stationary process with �-mixing coe�cients that satisfy
P

�(k) < 1,

and assume that Q(B(Xn
1 ;D)) > 0 eventually P�a.s. If fc(n)g is an arbitrary sequence of non-negative

constants such that
P

ne�c(n) <1, then

j log[Wn(D)Q(B(Xn
1 ;D))]j � c(n) eventually P�Q�a.s.

It will be evident from the proof of Theorem 1 that the result remains valid for general sequences of

distortion measures f�ng, not necessarily of the form of (1), under mild regularity conditions.

Recall that the �-mixing coe�cients of Y are de�ned by �(k) = supfjQ(BjA) � Q(B)jg where

the supremum is taken over all integers r � 1 and all pairs of events A and B such that B 2 �(Y1
r+k),

A 2 �(Y r
1 ), and Q(A) 6= 0; see Bradley (1986) for an extensive discussion.

From Theorem 1 we get that

logWn(D)� [� logQ(B(Xn
1 ;D))] = o(

p
n) P�Q� a.s. (3)

In contrast with the case of exact matching (i.e., when no distortion is allowed), here, � logQ(B(Xn
1 ;D))

cannot be readily expanded as the partial sum of the logarithms of conditional probabilities. Nevertheless,

we can relate � logQ(B(Xn
1 ;D)) to a di�erent random walk, which arises as a functional of the empirical

measure P̂n = n�1
Pn

i=1 �Xi
induced on AX by Xn

1 (Theorems 2 and 3). From that, we can read o� the

exact asymptotic behavior of � logQ(B(Xn
1 ;D)), and, via (3), the behavior of the waiting times Wn(D)

(Corollaries 1 through 4).

Let

Dmin = EP [ess inf
Y1

�(X1; Y1)];
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and for simplicity, assume hereafter that Y is an i.i.d. process, and that

Dmax = ess sup
(X1;Y1)

�(X1; Y1) 2 (Dmin;1):

For X stationary and ergodic, by the ergodic theorem, Wn(D) = 1 eventually P�Q�almost surely, for

any D > Dav = E�(X1; Y1), whereas Wn(D) = 1 eventually P�Q�almost surely, for any D < Dmin. Of

interest is the range D 2 (Dmin;Dav) where Wn(D) exhibits exponential behavior.

Theorem 2. Let X be a stationary ergodic process and Y be an i.i.d. process. Then for D 2

(Dmin;Dav) we have,

� logQ(B(Xn
1 ;D))� nR(P̂n) = o(

p
n) P � a.s.;

where R(P̂n) = R(P̂n; Q1;D) is de�ned by the following variational problem:

R(P̂n; Q1;D) = inf

Z
H(�(�jx)jQ1(�))dP̂n(x);

and the in�mum is taken over all probability measures � on AX�AY such that the AX-marginal of � is

P̂n and
R
�(x; y) d�(x; y) � D:

See Proposition 1 in Section 3 for an alternative characterization of R(P̂n; Q1;D). An easy consequence

of Theorem 2 is the following generalization of (2).

Corollary 1. Assume that X is stationary ergodic, Y is an i.i.d. process, and D 2 (Dmin;Dav).

Then R(P̂n) ! R(P1) P�almost surely, and hence

1

n
logWn(D) ! R(P1; Q1;D) P�Q� a.s.

Next we investigate the behavior of
p
n[R(P̂n)�R(P1)]. As it turns out (see Proposition 1 in Section 4),

the function R(P1) = R(P1; Q1;D) is the convex dual of the log-moment generating function �P1(�),

where, for any probability measure � on AX and any � 2 R, ��(�) is de�ned as

��(�) =

Z
log

�Z
e��(x;y)dQ1(y)

�
d�(x):

5



Write �(�) = �P1(�) when � = P1, �x(�) = ��x(�) for any x 2 AX , and ��Xi
(�) = �Xi

(�) � R �x(�)dP1(x).

Theorem 3 provides an explicit approximation of
p
n[R(P̂n)�R(P1)] by a random walk induced by Xn

1 .

[Recall that the �-mixing coe�cients of X are de�ned by �(k) = supfjP (A \ B) � P (A)P (B)j ; A 2

�(Xr
1 ); B 2 �(X1

r+k); r � 1g; see Bradley (1986) for details.]

Theorem 3. Let X be a stationary process with �-mixing coe�cients that satisfy
P

�(k) < 1, let

Y be an i.i.d. process, and D 2 (Dmin;Dav). Then for � = �(D) < 0 such that �0(�) = D we have

n[R(P̂n)�R(P1)] +

nX
i=1

��Xi
(�) = o(

p
n) P � a.s.

In particular, combining (3) with Theorems 2 and 3 gives

[logWn(D)� nR(P1; Q1;D)] +

nX
i=1

��Xi
(�) = o(

p
n) P�Q� a.s.; (4)

and it is now straightforward to harvest a series of corollaries. The following is an immediate consequence

of combining (4) with well-known CLT results (see, for example, Theorem 1.7 in Peligrad (1986)).

Corollary 2 (CLT). Let X be a stationary process with �-mixing coe�cients such that
P

�(k) <1,

let Y be an i.i.d. process, and D 2 (Dmin;Dav). Then, for � = �(D), the following series converges,

�2 = EP

�
��X1

(�)2
	

+ 2

1X
k=2

EP

�
��X1

(�)��Xk
(�)
	
; (5)

and

logWn(D)� nR(P1)p
n

D�! N(0; �2):

Moreover, when �2 > 0, the sequence of processes,

�
w(nt;D)

�
p
n

; t 2 [0; 1]

�
; n � 1;

converges in distribution to standard Brownian motion, where w(t;D) = [logWbtc(D) � btcR(P1; Q1;D)]

for t � 1, and w(t;D) = 0 for t < 1.

Similarly, Corollary 3 is a consequence of (4) combined with the LIL (Rio (1995)).
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Corollary 3 (LIL). Let X be a stationary process with �-mixing coe�cients such that
P

�(k) <1,

Y be an i.i.d. process, and D 2 (Dmin;Dav). Then, for �2 as in (5), with P�Q�probability one the set

of limit points of the sequence �
logWn(D)� nR(P1)p

2n log log n

�
; n � 3

coincides with the interval [��; �]. Moreover, when �2 > 0, with P�Q�probability one, the sequence of

sample paths �
w(nt;D)p
2n log logn

; t 2 [0; 1]

�
; n � 3;

is relatively compact in the topology of uniform convergence on D[0; 1], and the set of its limit points is the

collection of all absolutely continuous functions r : [0; 1] ! R, such that r(0) = 0 and
R 1
0 (dr=dt)2dt � �2.

Finally, Corollary 4 follows from (4) and an almost sure invariance principle proved by Philipp and

Stout (1975), Theorem 4.1.

Corollary 4 (Almost sure invariance principle). Let X be a stationary process with �-mixing

coe�cients that satisfy
Pp

�(k) < 1; Y be an i.i.d process, and D 2 (Dmin;Dav). Then, with �2 > 0

as in (5), there exists a Brownian motion fB(t) ; t � 0g such that

w(t;D)� �B(t) = o(
p
t) P�Q� a.s.; (6)

As usual we interpret (6) as saying that, without changing its distribution, w(t;D) can be rede�ned on

a richer probability space that contains a Brownian motion such that (6) holds. For some of the numerous

corollaries that can be derived from almost sure invariance principles as the one in (6) see Strassen (1964)

and Ch. 1 of Philipp and Stout (1975).

Remark 1. In Corollary 1, Wn(D) can be replaced by 1=Q(B(Xn
1 ;D)) to give a natural generalization

of the Shannon-McMillan-Breiman theorem (analogous to the one obtained by Yang and Kie�er for �nite

sets AX ; AY ) for the case when distortion is allowed, and for processes with values in general spaces. In

a similar fashion, from Corollaries 2 and 4 we can obtain corresponding generalizations of Ibragimov's

(1962) CLT-re�nement, and Philipp and Stout's (1975) almost sure invariance principle, respectively.
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Remark 2. Similar results as those obtained for the waiting times Wn(D) can also be obtained for

the sequence of recurrence times Rn(D): Given D � 0 and a realization x from a doubly-in�nite process

X = fXn ; n 2 Zg, Rn(D) is de�ned as the �rst time a D-close version of x�1�n appears in x10 :

Rn(D) = Rn(x;D) = inf fk � 0 : xk+n�1k 2 B(x�1�n;D)g:

Theorems 2 and 3 remain valid in this case with Xn
1 replaced by X�1

�n and Q = P; which forces us to

assume that X is an i.i.d. process. Under this assumption it is easy to see that Theorem 1 also remains

essentially unchanged, so that, combining Theorems 1, 2 and 3 as before, we recover the exact same

asymptotic behavior for Rn(D) as that for Wn(D) (Corollaries 1 through 4).

In the next section we outline two areas of applications of our results, in Section 3 we prove Theorem 1,

in Section 4 we prove our main results, Theorems 2 and 3, and in Section 5 we prove Theorem 4.

2. Applications. In this section we outline two potential applications of our results about the

asymptotic behavior of Wn(D).

Data Compression. The analysis of several data compression schemes based on string matching,

such as the celebrated Lempel-Ziv algorithm, is typically reduced to studying the following idealized

scenario (see Wyner and Ziv (1989, 1991), Steinberg and Gutman (1993), the discussion in Yang and

Kie�er (1998),  Luczak and Szpankowski (1997) and the references therein): An encoder and a decoder

have available to them a common in�nite \database" y = (y1; y2; : : :) generated by an i.i.d. process

Y � Q, and the encoder's task is to communicate the \message" xn1 = (x1; x2; : : : ; xn) to the decoder,

within some prescribed accuracy D with respect to a sequence f�ng of distortion measures of the form of

(1). This is done as follows; the encoder scans the database until a D-close version of xn1 is found in y,

and then \tells" the decoder the position Wn(D) where this match occurs. To describe Wn(D) it takes

logWn(D) + O(log logWn(D)) nats (or bits, if the logarithms are taken to be base-2), and therefore the

limiting compression ratio of the code in nats-per-symbol (by Corollary 1) is given by

logWn(D) + O(log logWn(D))

n
! R(P1; Q1;D) a.s.
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For example, in the case of lossless coding of an i.i.d. \message source" X, R(P1; Q1; 0) reduces to

H(P1) + H(P1jQ1), which is interpreted as the optimal limiting compression ratio H(P1), plus the addi-

tional \penalty" term H(P1jQ1) induced by the fact that the database was generated by the sub-optimal

distribution Q instead of P . Similarly, in the case of lossy coding we may choose to generate the database

y according to the product measure Q for which R(P1; Q1;D) is minimal; for an i.i.d. process X the

limiting compression ratio of this code, r(D) = infQ1
R(P1; Q1;D), equals the optimal compression ratio,

namely the rate-distortion function of X with respect to f�ng (see Berger (1971) for details).

Once the compression ratio is identi�ed, from Corollaries 2, 3 and 4 we get further information about

the rate at which it is achieved (the \redundancy" of the code), about the limiting distribution of the size

of the encoded data, and so on.

DNA Sequence Analysis. In the analysis of DNA or protein sequences the following problem is of

interest (see Karlin and Ost (1988), Pevzner, Borodovsky and Mironov (1991), Arratia and Waterman

(1994) and the references therein): Given a template x1; x2; : : : and a long but �nite \database" sequence

ym1 , �nd the longest contiguous substring in the database that matches an initial portion x`1 of the template

within accuracy D, with respect to the average of some score function �(�; �). The length Lm(D) of the

longest such match is of interest here:

Lm(D) = Lm(x; y;D) = supfn � 1 : yj+n�1j 2 B(xn1 ;D); for some j = 1; 2; : : : ;mg:

Clearly, there is a duality relationship between Lm(D) and Wn(D): Lm(D) � n if and only if Wk(D) � m

for some k � n. This relationship is exploited in the last section, where we read o� the asymptotics of

Lm(D) from the corresponding results for Wn(D), explicitly identifying the asymptotic mean, variance

and distribution of Lm(D):

Theorem 4. (i) Under the assumptions of Corollary 1,

Lm(D)

logm
! 1

R(P1; Q1;D)
P�Q� a.s.

(ii) Under the assumptions of Corollary 2, with �2 > 0 as in (5) and R = R(P1; Q1;D),

Lm(D)� logm
Rp

logm

D�! N(0; �2R�3)
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(iii) Under the assumptions of Corollary 3, with �2 > 0 as in (5) and R = R(P1; Q1;D),

lim sup
m!1

Lm(D)� logm
Rp

2 logm log log logm
= �R�3=2 P�Q� a.s.

3. Strong Approximation.

Proof of Theorem 1. Write P for the product measure P�Q, and for each integer m � 1 let

Gm = fx : Q(B(xn1 ;D)) > 0 for all n � mg.

For the upper bound we use a standard second-moment blocking argument (similar to the one by

Yang and Kie�er). Choose and �x any integer m � 1, pick an arbitrary x 2 Gm, and let n � m be large

enough so that ec(n) � n + 1. Let K � n + 1 and write Sn =
PV (K;n)

j=0 In(j), where In(j) is the indicator

function of the event fY (j+1)n
jn+1 2 B(xn1 ;D)g, and V (K;n) = b(K � 1)=nc. Then

P(Wn(D) > K jXn
1 = xn1 ) � Q(Sn = 0) � VarQ(Sn)

(EQSn)2
: (7)

By stationarity,

EQSn = [V (K;n) + 1]Q(B(xn1 ;D)) (8)

and EQ(In(0)In(j)) � Q(B(xn1 ;D))[�((j � 1)n + 1) + Q(B(xn1 ;D))], so that

VarQ(Sn) =

V (K;n)X
j;k=0

CovQ(In(j); In(k))

� [V (K;n) + 1]Q(B(xn1 ;D))

2
41 + 2

V (K;n)X
j=1

�((j � 1)n + 1)

3
5 : (9)

Writing � = 1 + 2
P

�(k), and substituting (8) and (9) in (7) we get

P(Wn(D) > K jXn
1 = xn1 ) � �

[V (K;n) + 1]Q(B(xn1 ;D))
: (10)

Choosing K = ec(n)=Q(B(xn1 ;D)) we have [V (K;n) + 1]Q(B(xn1 ;D)) > ec(n)=2n, and (10) yields

P(log[Wn(D)Q(B(Xn
1 ;D))] > c(n) jXn

1 = xn1 ) � 2�ne�c(n):
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Since the above bound is uniform over x 2 Gm and summable, by the Borel-Cantelli lemma we obtain

that

log[Wn(D)Q(B(xn1 ;D))] � c(n) eventually for P�Q�almost all (x; y) 2 Gm �A1Y . (11)

For the lower bound, we observe that for an arbitrary constant K > 1 and any x 2 Gm,

P(Wn(D) < K jXn
1 = xn1 ) �

bKcX
j=1

Q(Y j+n�1
j 2 B(xn1 ;D)) � KQ(B(xn1 ;D)): (12)

Since Wn(D) � 1, this inequality holds also for K 2 [0; 1]. In particular, setting K = e�c(n)=Q(B(xn1 ;D))

gives

P(log[Wn(D)Q(B(Xn
1 ;D))] < �c(n) jXn

1 = xn1 ) � e�c(n);

and summing this over n, by the Borel-Cantelli lemma we get

log[Wn(D)Q(B(Xn
1 ;D))] � �c(n) eventually for P�Q�almost all (x; y) 2 Gm �A1Y . (13)

Finally, combining (11) and (13) with the assumption that P f[mGmg = 1 completes the proof. 2

4. Large Deviations. Lemma 1 below provides some easily checked facts needed in the proofs of

Theorems 2 and 3. The variational characterization of the rate function R in terms of relative entropy is

established next in Proposition 1, and the proofs of Theorem 2, Corollary 1 and Theorem 3 are given.

Lemma 1. Let � be an arbitrary probability measure on AX , � 2 R, and de�ne 0 � D�
min < D�

av <

D�
max <1 like Dmin, Dav and Dmax, respectively, with X1 � �.

(i) j��(�)j � j�jD�
max.

(ii) The Fenchel-Legendre transform of ��,

��
�(x) = sup

�2R
[�x� ��(�)]

exists and is �nite for all x 2 (D�
min;D

�
av).

(iii) �� 2 C1, �0
�(0) = D�

av, �00
�(�) > 0 for all � 2 R, and �0

�(�) # D�
min as �! �1.
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(iv) For each D 2 (D�
min;D

�
av), there exists a unique � < 0 such that �0

�(�) = D, and ��
�(D) =

�D � ��(�).

(v) For �-almost any x 2 AX , �x 2 C1, and its derivatives are uniformly bounded over �-almost all

x 2 AX and all � in a compact subset of R.

Proposition 1. In the notation of Lemma 1, let � be an arbitrary probability measure on AX and

D 2 (D�
min;D

�
av). Then, R(�;Q1;D) = ��

�(D), i.e.,

inf

Z
H(�(�jx)jQ1(�))d�(x) = sup

�2R

�
�D �

Z
log

�Z
e��(x;y)dQ1(y)

�
d�(x)

�
; (14)

where the in�mum is taken over all probability measures � on AX�AY such that the AX-marginal of � is

� and
R
�(x; y) d�(x; y) � D.

Proof of Proposition 1. By Lemma 1 we may �x � < 0 for which the supremum on the right side of

(14) is achieved. Consider the probability measure � de�ned by

d�(x; y)

d��Q1
=

d�(yjx)

dQ1
=

e��(x;y)R
e��(x;z)dQ1(z)

in the left side of (14). The AX-marginal of � is �,
R
�(x; y)d�(x; y) = �0

�(�) = D, and

Z
H(�(�jx)jQ1(�))d�(x) = �D �

Z
log

�Z
e��(x;y)dQ1(y)

�
d�(x) = ��

�(D);

and hence the left side of (14) is no greater than ��
�(D). To prove the reverse inequality we recall that

for any probability measure � and any bounded measurable function � : AY ! R,

H(�(�jx)jQ1(�)) �
Z
�(y)d�(yjx) � log

�Z
e�(y)dQ1(y)

�

(c.f. Lemma 3.2.13 in Deuschel and Stroock (1989)). In particular, choosing �(�) = ��(x; �) and then

integrating both sides with respect to � yields the required inequality and completes the proof. 2

Proof of Theorem 2. Let D
(n)
av =

R
�(x; y) dP̂n(x)dQ1(y), so that, by the ergodic theorem,

D
(n)
av ! Dav P � a.s. (15)

12



Similarly let D
(n)
min = EP̂n

[ess infY1 �(X1; Y1)]; so that

D
(n)
min ! Dmin P � a.s. (16)

Given a realization of the X process such that both (15) and (16) hold, for n large enough the given D

will be strictly between D
(n)
min and D

(n)
av , so by Lemma 1 we can choose, for each n, a negative �n such

that �0
P̂n

(�n) = D, ��
P̂n

(D) = �nD � �P̂n
(�n), and �00

P̂n
(�n) > 0. We similarly choose � < 0 such that

�0(�) = D, and claim that

�n ! � P � a.s. (17)

To see this suppose, for example, that lim infn!1 �n � � � �, for some � > 0, so that �nk � �� �=2 for

some nk !1. Then, by the ergodic theorem and the strict monotonicity of �0 we get a contradiction:

D = lim inf
n!1 �0

P̂n
(�n) � lim sup

n!1
�0
P̂n

(�� �=2) = lim
n!1n�1

nX
i=1

�0
Xi

(�� �=2) = �0(�� �=2) < �0(�) = D:

The case lim supn!1 �n > � is ruled out similarly.

Before we move to the main part of the proof, we need to show that

�00
P̂n

(�n) ! �00(�) > 0 P � a.s. (18)

Writing

j�00
P̂n

(�n)� �00(�)j � 1

n

nX
i=1

j�00
Xi

(�n)� �00
Xi

(�)j +

����� 1n
nX
i=1

�00
Xi

(�)� �00(�)

����� ; (19)

we can bound the �rst term above, for any � > 0 and n large enough, by

ess sup
X1

j�00
X1

(�n)� �00
X1

(�)j � j�n � �j ess sup
X1

sup
�������+�

j�000
X1

(�)j

and this converges to zero, by (17) and part (v) of Lemma 1. As for the second term of (19), by the

ergodic theorem it converges to zero, P�almost surely.

Now choose and �x a realization fxig of X such that the statements (15) (16) (17) and (18) all hold.

De�ne �i = �(xi; Yi); Tn =
Pn

i=1 �i; and T̂n = Tn=n, with �n denoting the law of �n1 . With a slight abuse

13



of notation we write P̂n for the (non-random, since x11 is �xed) empirical measure induced by xn1 on AX .

In this notation, Q(B(xn1 ;D)) = Pr(T̂n � D), and, if we de�ne

Jn = e
n��

P̂n
(D)

Pr(T̂n � D);

then in view of Proposition 1 the statement of the theorem can be rephrased as

log Jn = o(
p
n) P � a.s. (20)

The upper-bound part of (20) follows from

Jn = e
n��

P̂n
(D)

E
n

1fT̂n�Dg
o
� e

n��

P̂n
(D)

E
n
en�n(T̂n�D)

o
= e

n[��

P̂n
(D)��nD]

E
n
e�nTn

o
= 1

(by the choice of �n and the de�nition of �P̂n
).

Turning to the proof of the lower bound, suppose n is large enough so that �n exists, and de�ne a

new probability measure �n by

d�n
d�n

(zn1 ) = exp

(
�n

nX
i=1

zi � n�P̂n
(�n)

)
:

Let

Gn = �
Pn

i=1[�i �E�n�i]q
n�00

P̂n
(�n)

; when �n1 � �n:

It is easy to see that Gn is a partial sum process of zero mean random variables, normalized so that

Var(Gn) = 1. Observe that when �n1 is distributed according to �n,

T̂n
D
= D �

r
�P̂n

00(�n)

n
Gn;

so that we can expand

Jn = e
n��

P̂n
(D)

E�n

n
1fT̂n�Dge

�n�nT̂n+n�P̂n(�n)
o

= E�n

�
1fGn�0ge

�n
q
n�00

P̂n

(�n)Gn

�

� E�n

n
1f0<Gn<�ge

��npnGn

o
� e��n

p
n �Pr�n(0 < Gn < �); (21)

14



for any � > 0, and where �n = ��n
q

�00
P̂n

(�n) > 0 and �n = O(1), by (17) and (18).

Since the random variables �i are uniformly bounded, and also �00
P̂n

(�n) is bounded away from zero

by (18), it is easy to check that the Lindeberg condition for the CLT is satis�ed by Gn, from which it

follows that the probability Pr�n(0 < Gn < �) ! � > 0 as n ! 1. Now choose M > 0 large enough so

that M � �n is bounded away from zero, and get from (21) that

lim inf
n!1 log

h
eM

p
n�Jn

i
� log � > �1;

i.e.,

lim inf
n!1

p
n

�
M� +

1p
n

log Jn

�
> �1;

from which we conclude that

lim inf
n!1

1p
n

log Jn � �M�:

Since � > 0 was arbitrary and M > 0 was chosen independent of �, letting � # 0 completes the proof. 2

Proof of Corollary 1. Since D > Dmin, by (16) also D > D
(n)
min eventually P�almost surely. Con-

sequently, Q(B(Xn
1 ;D)) > 0 eventually P�almost surely. Thus, Corollary 1 follows by combining Theo-

rem 2 with (3), provided we show that R(P̂n) ! R(P1) almost surely, or, equivalently (by Proposition 1),

that ��
P̂n

(D) ! ��(D) almost surely. Recall that for all n large enough ��
P̂n

(D) = �nD � �P̂n
(�n) and

��(D) = �D��(�), as in the proof of Theorem 2, where �n ! � almost surely by (17). So we only have

to show that �P̂n
(�n) ! �(�) which comes from an obvious adaptation of the derivation of (18). 2

Proof of Theorem 3. Let � and f�ng be chosen as in the beginning of the proof of Theorem 2, so that,

in particular, ��(�) = �D��(�) and �00(�) > 0. By the continuity of �00 we can choose constants �; � > 0

such that �00(� + �) > � whenever j�j < �: Also, from (17), we can pick N = N(X1
1 ) < 1 P�almost

surely, such that j�n � �j < � for all n � N .

In view of Proposition 1 it su�ces to show that

p
n
n

[��
P̂n

(D)� ��(D)]� [�(�)� �P̂n
(�)]

o
! 0 : (22)
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From the de�nition of ��
P̂n

and our choice of N , ��
P̂n

(D) is given by the supremum of [�D��P̂n
(�)] over

all � 2 (�� �; � + �), so (22) is the same as

p
n sup
j�j<�

h
�D � �P̂n

(� + �) + �P̂n
(�)
i
! 0 (23)

Since this supremum is always non-negative (take � = 0), (23) is equivalent to

lim inf
n!1

p
n inf
j�j<�

1

n

nX
i=1

[f(�;Xi)� f(0;Xi)] � 0 ; (24)

where f(�; x) = �x(� + �) � (� + �)D. By Taylor's theorem we can expand g(�) = n�1
Pn

i=1 f(�;Xi)

around � = 0, to obtain

1

n

nX
i=1

[f(�;Xi)� f(0;Xi)] = �An +
�2

2
Bn(�) ; (25)

where An = n�1
Pn

i=1 f
0(0;Xi) and Bn(�) = 1

n

Pn
i=1 f

00(�n;Xi) for some �n(�) such that j�nj < �.

The family of functions ff 00(�; �) ; � 2 (��; �)g is uniformly bounded and equicontinuous (by Lemma 1),

so by the uniform ergodic theorem (Rao (1962), Section 6),

sup
j�j<�

����� 1n
nX
i=1

f 00(�;Xi)�EP f
00(�;X1)

�����! 0 P � a.s.

Therefore, P�almost surely, by the choice of �,

lim inf
n!1 inf

j�j<�
Bn(�) � lim inf

n!1

(
inf
j�j<�

EP f
00(�;X1)� sup

j�j<�

����� 1n
nX
i=1

f 00(�;Xi)�EPf
00(�;X1)

�����
)

� inf
j�j<�

EP f
00(�;X1) = inf

j�j<�
�00(� + �) � � > 0 : (26)

By our choice of �, we have EP f
0(0;X1) = �0(�)�D = 0, so An is the partial sum corresponding to the

zero-mean stationary process ff 0(0;Xn) ; n � 1g. Since
P

�(k) <1 and the random variables f 0(0;Xi)

are bounded, the LIL (Rio (1995)) implies that
p
nA2

n ! 0 P�almost surely. Since the in�mum over

j�j < � of the right side of (25) is bounded below by �A2
n= inf j�j<� Bn(�), combining this with (26) gives

(24) and completes the proof. 2
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5. Duality: Match Lengths. Let R denote R(P1; Q1;D). De�ne Tn(D) = infk�nWk(D) and

~Tn(D) = minn�k�2nWk(D). As mentioned in Section 2, there is a duality relationship between Tn(D)

and Lm(D):

Lm(D) � n () Tn(D) � m : (27)

When combined with Lemma 2 below, (27) allows us to deduce (i); (ii) and (iii) in Theorem 4 from

corresponding results for ~Tn(D), namely, in the notation, and under the corresponding assumptions, of

Theorem 4:

(i0)
log ~Tn(D)

n
! R P�Q� a.s.

(ii0)
log ~Tn(D)� nRp

n

D�! N(0; �2)

(iii0) lim inf
n!1

log ~Tn(D)� nRp
2n log log n

= �� P�Q� a.s.

Lemma 2. Assume that X is stationary ergodic, Y is an i.i.d. process, and D 2 (Dmin;Dav).

Then, Tn(D) = ~Tn(D) eventually P�Q-almost surely.

Proof of Lemma 2. Note that Tn(D) � ~Tn(D) �Wn(D) and that Tn(D) = ~Tn(D) whenever T2n(D) >

Wn(D). Therefore, if

lim inf
n!1 n�1 log T2n(D) � 4R

3
P�Q� a.s. (28)

then, by Corollary 1, Tn(D) = ~Tn(D) eventually P�Q-almost surely. For any x11 2 A1X , for any positive

integer m and any n large enough, by the union bound and (12),

P(T2n(D) � m jX1
1 = x11 ) �

X
k�2n

P(Wk(D) � m jXk
1 = xk1) � m

X
k�2n

Q(B(xk1 ;D)): (29)

It follows from Theorem 2 and Corollary 1 that, with P -probability one, limk!1 k�1 logQ(B(Xk
1 ;D)) =

�R. In particular, eventually P -almost surely, supk�n k�1 logQ(B(Xk
1 ;D)) � �3R=4. Substituting this

in (29) with m = exp(4Rn=3) gives,

P(T2n(D) � exp(4Rn=3) jX1
1 = x11 ) � Ce�nR=6 eventually P -a.s.,
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for some �xed C <1. Hence, by the Borel-Cantelli lemma, T2n(D) > exp(4Rn=3) eventually P�Q-almost

surely, implying (28) and the conclusion of the lemma. 2

Proof of Theorem 4. As already stated, it su�ces to prove (i0) { (iii0). To this end, �rst observe that

combining Theorem 1 and Theorem 2,

lim inf
n!1

1

n
min

n�k�2n

h
logWk(D)� kR(P̂k)

i
� 0 P�Q� a.s.; (30)

and from Corollary 1 it follows that

1

n
min

n�k�2n
kR(P̂k) ! R P�Q� a.s. (31)

By (30) and (31) we have

1

n
log ~Tn(D) � 1

n
min

n�k�2n

h
logWk(D)� kR(P̂k)

i
+

1

n
min

n�k�2n
kR(P̂k) ! R; P�Q� a.s.

Since ~Tn(D) �Wn(D), the corresponding upper bound also holds by Corollary 1, proving (i0).

Next let � > 0 arbitrary, so that in the notation of Corollary 2,

P

(
log ~Tn(D)p

n
� logWn(D)p

n
< ��

)
= P

�
inf

1�t�2

�
w(nt;D)

�
p
n

� w(n;D)

�
p
n

+

�bntc � n

�
p
n

�
R

�
� � �

�

�
:

For any � > 0 and n large enough this is bounded above by

P

�
inf

1�t�1+�

�
w(nt;D)

�
p
n

� w(n;D)

�
p
n

�
� � �

�

�
+ P

�
inf

1+��t�2

�
w(nt;D)

�
p
n

� w(n;D)

�
p
n

�
� � �

�
�K

p
n

�
; (32)

where K = �R=(2�). By the functional CLT of Corollary 2 (extended in the obvious way to t 2 [0; 2]),

the �rst term of (32) converges, as n!1, to Prfinf0�t�� Bt � ��=�g, where fBtg is standard Brownian

motion, and this can be made arbitrarily small by taking � small enough. Similarly for any C > 0 the

second term in (32) is asymptotically bounded above by Prfinf0�t�1Bt � �Cg which can also be made

arbitrarily small by taking C large enough. Combining these with the fact that ~Tn(D) �Wn(D) implies

that [log ~Tn(D)� logWn(D)] = o(
p
n) in probability, which, together with Corollary 2, gives (ii0).

We similarly obtain (iii0) by applying the functional LIL instead of the functional CLT: Set sn =

�
p

2n log logn noting that,

log ~Tn(D)

sn
� logWn(D)

sn
= inf

1�t�2

�
w(nt;D)

sn
� w(n;D)

sn
+

�bntc � n

sn

�
R

�
:
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For any � > 0 and n large enough this is bounded below by

min

�
inf

1�t�1+�

�
w(nt;D)

sn
� w(n;D)

sn

�
; inf
1+��t�2

�
w(nt;D)

sn
� w(n;D)

sn

�
+K

r
n

log logn

�
: (33)

By the functional LIL of Corollary 3 (extended in the obvious way to t 2 [0; 2]), the �rst term in (33) is

asymptotically P�Q-almost surely bounded below by

inf
r

inf
1�t�1+�

[r(t)� r(1)] � �
p
�;

where the outermost in�mum is taken over all absolutely continuous functions r with
R 2
0 (dr=dt)2dt � 1

and r(0) = 0. Similarly,

lim inf
n!1 inf

1+��t�2

�
w(nt;D)

sn
� w(n;D)

sn

�
� inf

r
inf

1+��t�2
[r(t)� r(1)] � �

p
1� � P�Q� a.s. ;

so that the second term in (33) converges to +1 with probability one, and hence

lim inf
n!1

log ~Tn(D)

�
p

2n log log n
� logWn(D)

�
p

2n log log n
� �

p
� P�Q� a.s.

Letting � # 0, recalling that ~Tn(D) � Wn(D) and applying Corollary 3 gives (iii0) and completes the

proof. 2
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