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Emphasis

Concentrate On:
~» General sources, general distortion measures
~» Nonasymptotic, “pointwise” results
~» Precise performance bounds
~» Systematic develompent of MDL point of view, parallel to lossless case

~» Connections with VQ Applications . . .

Background Questions:
* Why is lossy compression so much harder?
* What's so different (mathematically) between them?

* How much do the “right” models matter for real data?
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Lossy Compression: The Basic Problem

Consider

Data string =} = (z1,29,...,2,) to be compressed
g 11 P

Each x; taking values in the source alphabet A
eg, A={0,1}, A=R, A=R" ...

Problem

Find efficient approximate representation y{" = (y1, 42, ..., y,) for x¥
with y; taking values in the reproduction alphabet A

Efficient means “simple” or “compressible”

Approximate means that the distortion d,(x7,y}) is < some level D
where d,, : A" x A" is an “arbitrary” distortion measure




Step 1. Ideal Compression:
Kolmogorov Distortion Complexity

For computable data and distortion:

Define (Muramatsu-Kanaya 1994)
The (Kolmogorov) distortion-complexity at distortion level D:
Kp(x}) =min{l(p) : pst. U(p) € Bz}, D)} bits

where U(-) = universal Turing machine
B(x', D) = distortion-ball of radius D around x:

Properties

Kp(x?) is: (a) “machine-independent” (b) not computable
(c) = nR(D) for stationary ergodic data
~» THE fundamental limit of compression




Lossy Compression in More Detail

Data: X! = X1, Xy, ..., X, with distribution P, on A"
Quantizer: g, : A" — codebook B, C An
Encoder: e, B, — {0,1}*  (prefix-free)

Code-length:  L,(X7) = L,(q,(X7)) = length of e,(q,(X7)) bits
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Step 2. Codes as Probability Distributions

The code (C,, L,,) =

(Bn, @n, €n, L) operates at distortion level D, if

d,(x}, gn(2])) < D for every z} € A"

Kraft Inequality
(«<=) For every lossless code (C,,, L)

there is a prob measure (), on A" s.t.

Ln(z}) >

for all x¥

—log Q,(x7) bits

(=) For any prob measure @), on A"
there is a code (C),, L,) s.t.

Lp(xf) <

for all z}

—log Q,(z7) + 1 bits

Theorem: Lossy Kraft Inequality

(<«=) For every code (C,,, L)
operating at distortion level D
there is a prob meas. (),, on A" s.t.

Ln(2) =2 —log Qu(B(x7, D)) bits
for all x}
(=) For any “admissible” sequence

of measures {Q,} on A" there are
codes {C,,, L, } at dist'n level D s.t.

Lu(X]) < —log Qu(B(X], D)) +logn
bits, eventually, w.p.1



Remarks on the Codes-Measures Correspondence

— The converse part is a finite-n result as in the lossless case

— The direct part is asymptotic (random coding)
but with (near) optimal convergence rate

— Both results are valid without ANY (...) assumptions on the source
or the distortion measure

— Similar results hold in expectation with a %logn rate
— Admissibility < the {Q,} yield codes with finite rate:
limsup —+ log Q,,(B(X7{, D)) < some finite R bits/symbol, w.p.1

n—aoo

— This suggests a natural lossy analog for the Shannon code-lengths:

La(XT) = —logQu(B(X],D)) “bits

“All codes are random codes "




Proof Qutline

0 otherwise

(«<=) Given a code (C,,, L,), let Q,(y}) {
Then for all x7 :

Ln(aY) = Lu(gn(77)) = —log Qulgu(zY)) = —logQu(B(zY, D)) bits

(=) Given Q,, generate |ID codewords Y{"(7) ~ Q,:
Yr Y2 Y'e)
Encode X' as the position of the first D-close match:
W, =min{: : d,(X{,Y{"(7)) < D}

Q

This takes  L,(X{) =~ logW, bits

log|waiting time for a match|

Q

Q

log|1/prob of a match|
o 1Og QTL(B(Xlnv D)) bits

Q
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Step 3. Coding Theorems: Best Achievable Performance

Let ()’ achieve:

K.(D) = int B[~ log Q(B(X{, D))

Theorem: Finite-n Bounds
i. For any code (C,,, L,) operating at distortion level D :

E[L,(XT)] > K,(D) > R,(D) bits

ii. For any (other) prob measure ,, on A" and any K:
Pr{ log Qu(B(X", D)) < —log Q*(B(XT, D)) — K bits} < oK

Proof. Selection in convex families:
Bell-Cover version of the Kuhn-Tucker conditions
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Coding Theorems Continued

Theorem: Asymptotic Bounds
i. For any seq of codes {C,,, L,,} operating at distortion level D :
L,(X7) > —logQ, (B(X{,D))—logn bits, eventually, w.p.1

with () as before

ii. There is a seq of codes {C, L} operating at distortion level D s.t.
L) (X]) < —logQ) (B(X{,D))+logn bits, eventually, w.p.1

Proof.
i. Finite-n bound + Markov inequality + Borel-Cantelli 4+ extra care
il. Already proved
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Interpretation

Target

Approximate the performance of the optimal Shannon code:
Find {Q,,} that yield code-lengths

L(X") = —logQ, (B(Xf, D)) bits
close to those of the optimal “Shannon code”:

Li(X}) = —logQ;(B(X{, D)) bits

Performance?
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Step 4. Code Performance: Generalized AEP

Suppose

The source {X,,} is stationary ergodic with distribution P
{Q,} are the marginals of a stationary ergodic Q

dy (2, y!) = 230 d(x;,y;) is a single-letter distortion measure

Theorem: Generalized AEP [L. & Szpan.], [Dembo & K], [Chi], [...]

If Q is mixing enough and d(x,y) is not wild:
—Llog Q,(B(X].D)) — R(P,Q,D) bits/symbol, w.p.1

where

1
R(P, @, D) = lim — inf H(PXH ynHPn X Qn)
=00 1 Pyn=Py, Eldn(X{.Y{)|<D L

Proof. Based on very technical large deviations
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Step 5. Sanity Check: Stationary Ergodic Souces

Suppose
The source {X,,} is stationary ergodic with distribution P
do (2, y!) = 230 d(x;,y;) is a single-letter distortion measure

As before, Q* achieves K,(D) = icrgle[_ log Q,,(B(X{, D))]
Theorem ([Kieffer], [K & Zhang])
i. K(D)=lim 1K,(D)= lim iR,(D)= R(D)

n—aoo n—aoo

ii. —=ilogQ:(B(X{,D))— R(D) bits/symbol, w.p.1
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Outline

Recall our program:
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Ideal Compression: Kolmogorov Distortion-Complexity
Codes as Probability Distributions: A Lossy Kraft Inequality
Coding Theorems: Asymptotics, Finite Block-lengths

Code Performance: Generalized AEP

Solidarity with Shannon Theory: Stationary Ergodic Sources

Choosing a Code: The Lossy MLE & A Lossy MDL Proposal
Toward Practicality: Pre-processing in VQ Design

Computational Issues
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So far

Setting

We identified codes with prob measures

L(XT) = —losQu(B(X{, D)) bits

Design
— What are good codes like?
— How de we find them?

How can we empirically design/choose a good code?

Given a parametric family {Qy ; 6 € ©} of codes how do we choose 67
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Step 6. Choosing a Code:
The Lossy MLE & A Lossy MDL Principle

Greedy empirical code selection

Given a parametric family {Qy ; 6 € ©} of codes, define:

- A . i
Onie = areggnf [ — log Qy(B(XY, D))}
€

Problems With the MLE: As with classical MLE

Encourages overfitting
Does not lead to real codes

Solution: Follow coding intuition
For the MLE to be useful, it needs to be described as well
= Consider two-part codes with code-lengths
Ln(X1) = —1log Qo(B(XT, D))+ (n(0)
“descri?i,g;” of 0
where:  either (¢, ;) is a prefix-free code on ©
or £,(0) is an appropriate penalization term
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Two Lossy MDL Proposals

Two Specific MDL-like proposals: Define:

A . .
Ovipr, = ar@g 1@nf —log Qy(B(X{, D)) + gn(@ﬂ
c

with either: (a) £,(0) = w logn

( ¢(f) for 6 in some countable [' C ©;

= otherwise

Consistency?
Does éMLE /éMDL asymptotically lead to optimal compression?
What is the optimal 6*?
What if 8* is not unique? (the typical case)
As in the classical case: Often hard to prove

Proof is often example-specific

19



Motivation For The Lossy MDL Estimate

1. Leads to realistic code selection
2. An example:

Theorem
Let {X,,} be real-valued, stationary, ergodic, F(X,) =0, Var(X,,) =1
Take d,(z7,y) = MSE, let D € (0,1) fixed
©: @y ~ 1IID IN(0,1—D)+iN(0,6), 6€]0,1]
With 7,(0) = % logn we have:

(a) éMLE and éMDL both — 0* =1-—D Wp].

(C) éMDL = (1 — D) ev., Wp].
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Example Interpretation and Details

Although artificial, the above example illustrates a general phenomenon:

“O\r overfits whereas 6, doesn't”

Proof. To compare the éMLE with éMDL, need estimates of the “log-likelihood”

1Og @9<B<X{L7 D))

with accuracy better than O(logn), uniformly in . This involves very intricate
large deviations: STEPS 1 & 2:

~log QuB(X}, D)) = —logPr {1 32d(x, ¥) < D\ X}
i=1
R nR(]gXiz, Qp, D) + 2logn+O(1) w.p.1
~ > go(Xi) + 3logn + O(loglogn) w.p.1
i=1

STEP 3: Implicitly identify gg(x) as the “derivative” a convex dual
STEP 4: Expand gg(x) in Taylor series around 6*

STEP 5: Use the LIL to compare Ouiir With Oy
STEP 6: Justify a.s.-uniform approximation O
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Another Example of Consistency: Gaussian Mixtures

Let: The source {X,,} be R¥-valued, stationary, ergodic
finite mean and covariance, arbitrary distr P

© be Gaussian mixtures: Qy ~ [ID Zf_lpiN(NmKO

where 0 = ((p1,...,po), (1, ), (K, K1)
k, L fixed, u, € [-M, M|*, K; has eigenvalues in some [\, A]

do (2", y") = MSE, D > 0 fixed

Motivation: Practical quantization/clustering schemes
e.g., Gray's Gauss mixture VQ and MDI selection

Theorem: There is a “unique” optimal 6* characterized by
a k-dimensional variational problem,

ng(g R(Py, Qo D) = R(Py, Qo 1, D),

and éMLE; éMDL both — 6* Wp]. and in Ll
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Weak Consistency: A General Theorem

Given our present setup: {X,}, ©, and a d,(z}, y})
Suppose
(a) The generalized AEP holds for all Qg in ©
(

b)
(c) The lower bound of the AEP holds uniformly on compacts in ©
d)

(
Then dist(Oyis, {0°}) — 0 w.p.1
dist(Oypr, {6°}) — 0 w.p.1

The rate function R(IP,Qy, D) of the AEP is lower semicont's in 6

0 stays in a compact set, eventually, w.p.1

Proof. Based on epiconvergence (or I'-convergence); quite technical
Conditions.
(a) we saw; (c) often checked by Chernov bound-like arguments;

(b) and (d) need to be checked case-by-case
~> These sufficient conditions can be substantially weakened
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Strong Consistency: A Conjecture

Under conditions (a)—(d) above:

Conjecture

For “smooth enough” parametric families, under regularity conditions:
always dim(éMDL) = dim(0") ev., w.p.1

typically - dim(Oyig) # dim(6*) i.0., w.p.1

Proof 7' Saw the “brutal” technicalities in simple Gaussian case;
general result is still open
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Step 7. Applications: Preprocessing in VQ Design

Remarks
So far, everything based on “measures < (random) codes” correspondence

Practical implications?!

Candidate Application #1: Gaussian-mixture VQ

stationary, ergodic, R*-valued source {X,,}
finite mean and covariance, arbitrary distr P

© are Gaussian mixtures: Qg ~ [ID ZlepiN(/,Li,Ki)
p; € [—M, M]*, K; has eigenvalues in some [\, A
d,(z],yy) = MSE, D > 0 fixed

Problem: Choose L

MDL Estimate: L

| # of components in éMDL]
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Candidate Application #2: Codebook Support

Let: The source {X,,} be arbitrary stationary, ergodic
The reproduction alphabet A be finite

O : all IID measures on A

d,(z},yy) = “arbitrary” single-letter dist measure

Motivation:

— Covers classical (Shannon) case

— Except for IID assumption, covers “all” cases

— Since all good VQ codebooks look like they come from Qg

important to know the support S C A of (Qy+ before designing VQ
~» Hard problem!

MDL Estimate:

A

S = support(él\,,IDL)
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Step 8. Implementation

Recall:

A . .
Ovipr, = ar@g glf —log Qy(B(X{, D)) + En(e)}
c

Questions

Is this calculable?

The ball B(x7}, D) typically has exponentially many elements —
Is Qy(B(x, D)) calculable even for one 67

A Quick Answer

In special cases YES, in O(n?) time
with a dynamical-programming-like algorithm
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Final Remarks: The MDL Point of View

Guideline: Kolmogorov Distortion-Complexity: Not computable

Codes-Measures Correspondence: “All codes are random codes

Lo(X") = —1oan(B(Xf,D)) bits
Optimal code: Q* = arginf, E[—log(Q,(B(X{,D))]
Generalized AEP(s):
—log Qu(B(X], D)) — R(P,Q, D)

Lossy MLE: consistent but overfits

rA . "
Ouup = argin |~ log Qu(B(X], D))
c
Lossy MDL: consistent and does NOT overfit

~A . .
bypy, = arg inf [ ~log Qy(B(X", D)) + gn(e)}
HcO

VQ Design: Preprocessing with Lossy MDL reduces problem dimensionality
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