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Outline

Motivation and Background: Lossless Data Compression

Lossy Data Compression: MDL Point of View

1. Ideal Compression: Kolmogorov Distortion-Complexity

2. Codes as Probability Distributions: A Lossy Kraft Inequality

3. Coding Theorems: Asymptotics, Finite Block-lengths

4. Code Performance: Generalized AEP

5. Solidarity with Shannon Theory: Stationary Ergodic Sources

6. Choosing a Code: The Lossy MLE & A Lossy MDL Proposal

7. Toward Practicality: Pre-processing in VQ Design[
8. Computational Issues

]
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Emphasis

Concentrate On:

� General sources, general distortion measures

� Nonasymptotic, “pointwise” results

� Precise performance bounds

� Systematic develompent of MDL point of view, parallel to lossless case

� Connections with VQ Applications . . .

Background Questions:

∗ Why is lossy compression so much harder?

∗ What’s so different (mathematically) between them?

∗ How much do the “right” models matter for real data?
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Lossy Compression: The Basic Problem

Consider

Data string xn
1 = (x1, x2, . . . , xn) to be compressed

Each xi taking values in the source alphabet A

e.g., A = {0, 1}, A = R, A = Rk, . . .

Problem

Find efficient approximate representation yn
1 = (y1, y2, . . . , yn) for xn

1

with yi taking values in the reproduction alphabet Â

Efficient means “simple” or “compressible”

Approximate means that the distortion dn(x
n
1 , y

n
1 ) is ≤ some level D

where dn : An × Ân is an “arbitrary” distortion measure
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Step 1. Ideal Compression:

Kolmogorov Distortion Complexity

For computable data and distortion:

Define (Muramatsu-Kanaya 1994)

The (Kolmogorov) distortion-complexity at distortion level D:

KD(xn
1) = min{�(p) : p s.t. U (p) ∈ B(xn

1 , D)} bits

where U (·) = universal Turing machine

B(xn
1 , D) = distortion-ball of radius D around xn

1 :

B(xn
1 , D) = {yn

1 ∈ Ân : dn(x
n
1 , y

n
1 ) ≤ D}

Properties

KD(xn
1) is: (a) “machine-independent” (b) not computable

(c) ≈ nR(D) for stationary ergodic data

� THE fundamental limit of compression
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Lossy Compression in More Detail

Data: Xn
1 = X1, X2, . . . , Xn with distribution Pn on An

Quantizer: qn : An → codebook Bn ⊂ Ân

Encoder: en : Bn → {0, 1}∗ (prefix-free)

Code-length: Ln(X
n
1 ) = Ln(qn(X

n
1 )) = length of en(qn(X

n
1 )) bits

qn en−→ −→ 0010111010110
101101000 . . .

e−1
n←−
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Step 2. Codes as Probability Distributions

The code (Cn, Ln) = (Bn, qn, en, Ln) operates at distortion level D, if

dn(x
n
1 , qn(x

n
1)) ≤ D for every xn

1 ∈ An

Kraft Inequality Theorem: Lossy Kraft Inequality

(⇐) For every lossless code (Cn, Ln) (⇐) For every code (Cn, Ln)

there is a prob measure Qn on An s.t. operating at distortion level D

there is a prob meas. Qn on Ân s.t.

Ln(x
n
1) ≥ − log Qn(x

n
1) bits Ln(x

n
1) ≥ − log Qn(B(xn

1 , D)) bits

for all xn
1 for all xn

1

(⇒) For any prob measure Qn on An (⇒) For any “admissible” sequence

there is a code (Cn, Ln) s.t. of measures {Qn} on Ân there are

codes {Cn, Ln} at dist’n level D s.t.

Ln(x
n
1) ≤ − log Qn(x

n
1) + 1 bits Ln(X

n
1 ) ≤ − log Qn(B(Xn

1 , D)) + log n

for all xn
1 bits, eventually, w.p.1
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Remarks on the Codes-Measures Correspondence

– The converse part is a finite-n result as in the lossless case

– The direct part is asymptotic (random coding)

but with (near) optimal convergence rate

– Both results are valid without ANY (...) assumptions on the source

or the distortion measure

– Similar results hold in expectation with a 1
2
log n rate

– Admissibility ⇔ the {Qn} yield codes with finite rate:

lim sup
n→∞

−1
n

log Qn(B(Xn
1 , D)) ≤ some finite R bits/symbol, w.p.1

– This suggests a natural lossy analog for the Shannon code-lengths:

Ln(X
n
1 ) = − log Qn

(
B(Xn

1 , D)
)

“bits”

“All codes are random codes ”
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Proof Outline

(⇐) Given a code (Cn, Ln), let Qn(y
n
1 ) ∝

{
2−Ln(yn

1 ) if yn
1 ∈ Bn

0 otherwise

Then for all xn
1 :

Ln(x
n
1) = Ln(qn(x

n
1)) ≥ − log Qn(qn(x

n
1)) ≥ − log Qn(B(xn

1 , D)) bits

(⇒) Given Qn, generate IID codewords Y n
1 (i) ∼ Qn:

Y n
1 (1) Y n

1 (2) Y n
1 (3) · · ·

Encode Xn
1 as the position of the first D-close match:

Wn = min{i : dn(X
n
1 , Y n

1 (i)) ≤ D}
This takes Ln(X

n
1 ) ≈ log Wn bits

≈ log[waiting time for a match]

≈ log[1/prob of a match]

≈ − log Qn(B(Xn
1 , D)) bits �
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Step 3. Coding Theorems: Best Achievable Performance

Let Q∗n achieve:

Kn(D)
�
= inf

Qn

E[− log Qn(B(Xn
1 , D))]

Theorem: Finite-n Bounds

i. For any code (Cn, Ln) operating at distortion level D :

E[Ln(X
n
1 )] ≥ Kn(D) ≥ Rn(D) bits

ii. For any (other) prob measure Qn on An and any K:

Pr
{
− log Qn(B(Xn

1 , D)) ≤ − log Q∗n(B(Xn
1 , D))−K bits

}
≤ 2−K

Proof. Selection in convex families:

Bell-Cover version of the Kuhn-Tucker conditions �
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Coding Theorems Continued

Theorem: Asymptotic Bounds

i. For any seq of codes {Cn, Ln} operating at distortion level D :

Ln(X
n
1 ) ≥ − log Q∗n(B(Xn

1 , D))− log n bits, eventually, w.p.1

with Q∗n as before

ii. There is a seq of codes {C∗n, L∗n} operating at distortion level D s.t.

L∗n(X
n
1 ) ≤ − log Q∗n(B(Xn

1 , D)) + log n bits, eventually, w.p.1

Proof.

i. Finite-n bound + Markov inequality + Borel-Cantelli + extra care

ii. Already proved �
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Interpretation

Target

Approximate the performance of the optimal Shannon code:

Find {Qn} that yield code-lengths

Ln(X
n
1 ) = − log Qn

(
B(Xn

1 , D)
)

bits

close to those of the optimal “Shannon code”:

L∗n(X
n
1 ) = − log Q∗n

(
B(Xn

1 , D)
)

bits

Performance?
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Step 4. Code Performance: Generalized AEP

Suppose

The source {Xn} is stationary ergodic with distribution P

{Qn} are the marginals of a stationary ergodic Q

dn(x
n
1 , y

n
1 ) = 1

n

∑n
i=1 d(xi, yi) is a single-letter distortion measure

Theorem: Generalized AEP [L. & Szpan.], [Dembo & K], [Chi], [...]

If Q is mixing enough and d(x, y) is not wild:

−1
n

log Qn(B(Xn
1 , D))→ R(P, Q, D) bits/symbol, w.p.1

where

R(P, Q, D) = lim
n→∞

1

n
inf

PXn
1
=Pn, E[dn(Xn

1 ,Y n
1 )]≤D

H(PXn
1 ,Y n

1
‖Pn ×Qn)

Proof. Based on very technical large deviations �
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Step 5. Sanity Check: Stationary Ergodic Souces

Suppose

The source {Xn} is stationary ergodic with distribution P

dn(x
n
1 , y

n
1 ) = 1

n

∑n
i=1 d(xi, yi) is a single-letter distortion measure

As before, Q∗n achieves Kn(D) = inf
Qn

E[− log Qn(B(Xn
1 , D))]

Theorem ([Kieffer], [K & Zhang])

i. K(D) = lim
n→∞

1
n
Kn(D) = lim

n→∞
1
n
Rn(D) = R(D)

ii. −1
n log Q∗n(B(Xn

1 , D))→ R(D) bits/symbol, w.p.1
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Outline

Recall our program:

1. Ideal Compression: Kolmogorov Distortion-Complexity

2. Codes as Probability Distributions: A Lossy Kraft Inequality

3. Coding Theorems: Asymptotics, Finite Block-lengths

4. Code Performance: Generalized AEP

5. Solidarity with Shannon Theory: Stationary Ergodic Sources

6. Choosing a Code: The Lossy MLE & A Lossy MDL Proposal

7. Toward Practicality: Pre-processing in VQ Design[
8. Computational Issues

]
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So far

Setting

We identified codes with prob measures

Ln(X
n
1 ) = − log Qn

(
B(Xn

1 , D)
)

bits

Design

– What are good codes like?

– How de we find them?

How can we empirically design/choose a good code?

Given a parametric family {Qθ ; θ ∈ Θ} of codes how do we choose θ?
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Step 6. Choosing a Code:

The Lossy MLE & A Lossy MDL Principle

Greedy empirical code selection

Given a parametric family {Qθ ; θ ∈ Θ} of codes, define:

θ̂MLE

�
= arg inf

θ∈Θ

[
− log Qθ(B(Xn

1 , D))
]

Problems With the MLE: As with classical MLE

Encourages overfitting
Does not lead to real codes

Solution: Follow coding intuition

For the MLE to be useful, it needs to be described as well

⇒ Consider two-part codes with code-lengths

Ln(X
n
1 ) = − log Qθ(B(Xn

1 , D)) + �n(θ)︸︷︷︸
“description” of θ

where: either (cn, �n) is a prefix-free code on Θ

or �n(θ) is an appropriate penalization term
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Two Lossy MDL Proposals

Two Specific MDL-like proposals: Define:

θ̂MDL

�
= arg inf

θ∈Θ

[
− log Qθ(B(Xn

1 , D)) + �n(θ)
]

with either: (a) �n(θ) = dim(Qθ)
2 log n

(b) �n(θ) =

⎧⎪⎨
⎪⎩

�(θ) for θ in some countable Γ ⊂ Θ;

∞ otherwise

Consistency?

Does θ̂MLE /θ̂MDL asymptotically lead to optimal compression?

What is the optimal θ∗?

What if θ∗ is not unique? (the typical case)

As in the classical case: Often hard to prove

Proof is often example-specific

19



Motivation For The Lossy MDL Estimate

1. Leads to realistic code selection

2. An example:

Theorem

Let {Xn} be real-valued, stationary, ergodic, E(Xn) = 0, Var(Xn) = 1

Take dn(x
n
1 , y

n
1 ) = MSE, let D ∈ (0, 1) fixed

Θ: Qθ ∼ IID 1
2
N(0, 1−D) + 1

2
N(0, θ), θ ∈ [0, 1]

With �n(θ) = dim(Qθ)
2 log n we have:

(a) θ̂MLE and θ̂MDL both → θ∗ = 1−D w.p.1

(b) θ̂MLE �= (1−D) i.o., w.p.1

(c) θ̂MDL = (1−D) ev., w.p.1
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Example Interpretation and Details

Although artificial, the above example illustrates a general phenomenon:

“θ̂MLE overfits whereas θ̂MDL doesn’t”

Proof. To compare the θ̂MLE with θ̂MDL, need estimates of the “log-likelihood”

log Qθ(B(Xn
1 , D))

with accuracy better than O(log n), uniformly in θ. This involves very intricate

large deviations: STEPS 1 & 2:

− log Qθ(B(Xn
1 , D)) = − log Pr

{
1
n

n∑
i=1

d(Xi, Yi) ≤ D

∣∣∣∣ Xn
1

}
≈ nR(P̂Xn

1
, Qθ, D) + 1

2
log n + O(1) w.p.1

≈
n∑

i=1

gθ(Xi) + 1
2 log n + O(log log n) w.p.1

STEP 3: Implicitly identify gθ(x) as the “derivative” a convex dual

STEP 4: Expand gθ(x) in Taylor series around θ∗

STEP 5: Use the LIL to compare θ̂MLE with θ̂MDL

STEP 6: Justify a.s.-uniform approximation �
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Another Example of Consistency: Gaussian Mixtures

Let: The source {Xn} be Rk-valued, stationary, ergodic

finite mean and covariance, arbitrary distr P

Θ be Gaussian mixtures: Qθ ∼ IID
∑L

i=1 piN(µi, Ki)

where θ =
(
(p1, . . . , pL), (µ1, . . . , µL), (K1, . . . ,KL)

)
k, L fixed, µi ∈ [−M,M ]k, K i has eigenvalues in some [λ, Λ]

dn(x
n
1 , y

n
1 ) = MSE, D > 0 fixed

Motivation: Practical quantization/clustering schemes

e.g., Gray’s Gauss mixture VQ and MDI selection

Theorem: There is a “unique” optimal θ∗ characterized by

a k-dimensional variational problem,

inf
θ∈Θ

R(Pk,Qθ,k, D) = R(Pk, Qθ∗,k, D),

and θ̂MLE, θ̂MDL both → θ∗ w.p.1 and in L1
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Weak Consistency: A General Theorem

Given our present setup: {Xn}, Θ, and a dn(x
n
1 , y

n
1 )

Suppose

(a) The generalized AEP holds for all Qθ in Θ

(b) The rate function R(P, Qθ, D) of the AEP is lower semicont’s in θ

(c) The lower bound of the AEP holds uniformly on compacts in Θ

(d) θ̂ stays in a compact set, eventually, w.p.1

Then dist(θ̂MLE, {θ∗}) → 0 w.p.1

dist(θ̂MDL, {θ∗}) → 0 w.p.1

Proof. Based on epiconvergence (or Γ-convergence); quite technical �

Conditions.

(a) we saw; (c) often checked by Chernov bound-like arguments;

(b) and (d) need to be checked case-by-case

� These sufficient conditions can be substantially weakened
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Strong Consistency: A Conjecture

Under conditions (a)–(d) above:

Conjecture

For “smooth enough” parametric families, under regularity conditions:

always : dim(θ̂MDL) = dim(θ∗) ev., w.p.1

typically : dim(θ̂MLE) �= dim(θ∗) i.o., w.p.1

Proof ?! Saw the “brutal” technicalities in simple Gaussian case;

general result is still open �
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Step 7. Applications: Preprocessing in VQ Design

Remarks

So far, everything based on “measures↔ (random) codes” correspondence

Practical implications?!

Candidate Application #1: Gaussian-mixture VQ

stationary, ergodic, Rk-valued source {Xn}
finite mean and covariance, arbitrary distr P

Θ are Gaussian mixtures: Qθ ∼ IID
∑L

i=1 piN(µi, Ki)

µi ∈ [−M, M ]k, Ki has eigenvalues in some [λ, Λ]

dn(x
n
1 , y

n
1 ) = MSE, D > 0 fixed

Problem: Choose L

MDL Estimate: L̂ = [ # of components in θ̂MDL]
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Candidate Application #2: Codebook Support

Let: The source {Xn} be arbitrary stationary, ergodic

The reproduction alphabet Â be finite

Θ : all IID measures on Â

dn(x
n
1 , y

n
1 ) = “arbitrary” single-letter dist measure

Motivation:

– Covers classical (Shannon) case

– Except for IID assumption, covers “all” cases

– Since all good VQ codebooks look like they come from Qθ∗,

important to know the support S ⊂ Â of Qθ∗ before designing VQ

� Hard problem!

MDL Estimate:

Ŝ = support(θ̂MDL)
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Step 8. Implementation

Recall:

θ̂MDL

�
= arg inf

θ∈Θ

[
− log Qθ(B(Xn

1 , D)) + �n(θ)
]

Questions

Is this calculable?

The ball B(xn
1 , D) typically has exponentially many elements –

Is Qθ(B(xn
1 , D)) calculable even for one θ?

A Quick Answer

In special cases YES, in O(n3) time

with a dynamical-programming-like algorithm
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Final Remarks: The MDL Point of View

Guideline: Kolmogorov Distortion-Complexity: Not computable

Codes-Measures Correspondence: “All codes are random codes ”

Ln(X
n
1 ) = − log Qn

(
B(Xn

1 , D)
)

bits

Optimal code: Q∗ = arg infQn
E[− log(Qn(B(Xn

1 , D))]

Generalized AEP(s):

−1
n log Qn(B(Xn

1 , D))→ R(P, Q, D)

Lossy MLE: consistent but overfits

θ̂MLE

�
= arg inf

θ∈Θ

[
− log Qθ(B(Xn

1 , D))
]

Lossy MDL: consistent and does NOT overfit

θ̂MDL

�
= arg inf

θ∈Θ

[
− log Qθ(B(Xn

1 , D)) + �n(θ)
]

VQ Design: Preprocessing with Lossy MDL reduces problem dimensionality
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