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Abstract

We consider two entropy estimators based on the Lempel-Ziv data com-
pression algorithm, and we study their theoretical properties and their
performance on estimating the information content of spike trains. The
first estimator is a known, widely used technique, and the second one is
a new estimator, which we prove can be applied to a broader range of
experimental data. Their major advantages are that: 1) They make mini-
mal assumptions on the nature of the data distribution; 2) They naturally
take into account finer dependence structure arising from long-range de-
pendence; and 3) Their parameters can be adjusted so as to balance the
bias-variance trade-off. We prove that the second estimator is “univer-
sal” (i.e., it converges on all stationary and ergodic processes), and we
examine the convergence rate (in term of bias and variance) for both
algorithms. Furthermore, we introduce a new nonparametric variance
estimation method, based on the stationary bootstrap. We report the per-
formances of our entropy estimators on the spike trains of 29 neurons
recorded simultaneously for a one-hour period from the primary motor
and dorsal premotor cortices of a quietly seated monkey not engaged in a
behavior, as well as on various types of simulated data. The results show
that the main drawback of these methods is their slow convergence rate.

1 Introduction

Information-theoretic methods have been widely used in neuroscience, and the entropy has
been adopted as the main measure for quantifying the amount of information transmitted by



a spike train. The most commonly used technique to estimate this entropy has been the so-
called “plug-in” (or maximum-likelihood) estimator and its various modifications, which
essentially counts the empirical frequencies of all words of a fixed length in the data, and
then calculates the entropy of this empirical frequency distribution; see, e.g., [10][4] [12]
[7][9]. For computational reasons, the plug-in estimator cannot go beyond word lengths of
about 10 or 20, and hence it does not take into account the longer time dependence in the
signal. Here we examine the performance of two entropy estimators based on the Lempel-
Ziv data compression algorithm. One of them has been widely and very successfully used
in various applications, and the other one is a new estimator with some more desirable
theoretical properties. As we will see, both estimators naturally incorporate dependence in
the process at much larger time scales, and they are consistent for a wide class of data types
generated from distributions that may posses arbitrarily long memory.

The Lempel-Ziv algorithm [15][16] is a universal compression scheme that achieves the
(optimal) entropy lower bound when applied to data generated by any stationary ergodic
process. As the conditions of stationarity and ergodicity are very weak (and in some sense
minimal), they appear well-suited for neural data, as we have no a priori bound on the
length of the memory in the data, and in fact the very length of this memory is one of the
main objects we intend to study.

The main gist in the workings of the Lempel-Ziv algorithm was revealed by Wyner and
Ziv in [14], where they studied the connection between the entropy of a process and the
longest match-lengths along a process realization. Roughly speaking, the match-lengths
measure the length of the longest string starting in a fixed position in the process which
re-appears somewhere else in the process (a detailed definition is given below). Intuitively,
the longer the match-lengths, the more regularity there is in the data, and hence the smaller
the entropy (and the more efficient the Lempel-Ziv compression). Partly motivated by this
connection, a number of entropy estimators have been proposed since then and have been
applied to many different kinds of data; for examples see [8][2] and the references therein.

Here we use two entropy estimators based on match-lengths, one described in [2], and
a new one. We study their theoretical properties and apply them to both simulated and
neuronal data. Due to space limitations we only state the main theoretical results we need
without proof, and we present the experimental results in more detail. We refer the reader
to [1] for a complete treatment.

Our neuronal data come from two multi-electrode arrays implanted on a monkey’s primary
motor cortex (MI) and dorsal premotor cortex (PMd). The arrays simultaneously recorded
neural activity from 29 different neurons. A Plexon acquisition system was used to collect
neural signal, and the units were spike-sorted using Plexon’s Offline Sorter. The monkey
was not engaged in any task when the data were collected, and the size of the data is
approximately an hour. A detailed description of recording techniques is given in [3].

2 The Methods

2.1 The Lempel-Ziv Estimators

Let (. . . , X−1, X0, X1, X2, . . .) be a random process with values in a finite set A. In the
case of neuronal data, the process {Xi} takes on the values 1 and 0, signifying whether or
not a spike occurred in a given neuron’s spike train within a given 1ms window. For every
position i in the data, and any “window length” n, we consider the length of the longest



segment in the data starting at i which also appears in the window (Xi−n, . . . , Xi−2, Xi−1)
of length n preceding position i. Specifically, we define Ln

i as 1+ that longest match length:

Ln
i = 1 +max{ℓ : (Xi, . . . , Xi+ℓ) = (Xj , . . . , Xj+ℓ) for some i− n ≤ j ≤ i− 1}.

In [14] it was shown that, if the entropy of the process is H , then for any fixed position i, the
match lengths grow logarithmically with the window size n, and in fact Ln

i / log n → 1/H
as n → ∞. This result suggests that the quantity log n/Ln

i can be used as an entropy
estimator, and, clearly, in order to make more efficient use of the data and reduce the
variance, it would be more reasonable to look at the average value of various match-lengths
Ln
i taken at different positions i; see the discussion in [2]. To that effect, the following

estimator is considered in [2]:

Ĥn,k =

[
1

k

k∑
i=1

Ln
i

log n

]−1

, (1)

where it is shown that, under appropriate conditions and when the number of matches
k equals the window length n, the estimator Ĥn,k is consistent, i.e., it converges to the
entropy of the underlying process as n → ∞. To be specific, it is assumed that the process
is stationary, ergodic, it takes on only finitely many values, and most importantly that it
satisfies the Doeblin Condition (DC). This condition says that there is a finite number of
steps, say r, in the process, such that, after r time steps, no matter what has occurred before,
anything can happen with positive probability. Formally, it is assumed that there exists an
integer r ≥ 1 and a real number β > 0 such that, Pr(Xr = a |X0, X−1, . . .) > β, for all
a and with probability one in the conditioning [i.e., for almost all semi-infinite realizations
of the past (X0, X−1, . . .)]. Although condition (DC) is not very restrictive, and one can
easily argue that it is probably satisfied for neural data, we will see that estimator Ĥn,k can
be modified so as to make (DC) irrelevant. To that end, we introduce:

H̃n,k =
1

k

k∑
i=1

log n

Ln
i

. (2)

Below we list three basic properties of Ĥn,k and H̃n,k.

Theorem 1 Let (. . . , X−1, X0, X1, X2, . . .) be an arbitrary random process with values
in a finite set A.

(i) For any values of k and n, with probability one we have H̃n,k ≥ Ĥn,k.

(ii) If the process is stationary, ergodic, and it satisfies Doeblin’s condition (DC), then
with probability one we have:

Ĥn,k → H, as k, n → ∞.

(iii) If the process is stationary and ergodic (even if (DC) does not hold), then with prob-
ability one we have:

H̃n,k → H, as k, n → ∞.

We only give a brief outline of the proof; see [1] for full details. But first some remarks
are in order. Note that in parts (ii) and (iii) we did not specify in what way the parameters
k and n go to infinity. From the proof it is immediate that we have convergence in the



following cases: 1. If k and n both go to infinity at roughly the same rate so that k/n → 1;
2. If n → ∞ and k varies arbitrarily but stays bounded; 3. If n → ∞ and k = kn varies
with n in such a way that it increases to infinity as n → ∞; and 4. If the two limits as n
and k tend to infinity are taken separately, i.e., first k → ∞ and then n → ∞, or vice versa.
More general cases are considered in [1].

Proof Outline. Part (i) follows by Jensen’s inequality applied to the convex function 1/x,
and with respect to the uniform distribution (1/k, 1/k, . . . , 1/k). Part (ii) was proved in
[2] for the case k = n. The additional cases mentioned above follow easily from the same
proof. Part (iii) is proved in an analogous way in [1], using Maker’s theorem and Kac’s
lemma. 2

2.2 Bias and Variance

In practical applications with a finite amount of data, we need to choose the values of the
parameters k and n so that k + n is approximately equal to our total data length. Here we
are faced with the following trade-off: Using a long window size n we are more likely to
capture the longer-term dependence in the data, but as shown in [5][11] the match lengths
Ln
i starting at different positions i have great fluctuation. So a large window size n and

a small number of matching positions k will yield estimates with high variance. On the
other hand, if we take n small and average a large number k of estimates we reduce the
variance but we increase the bias, since the expected value of Ln

i / log n converges to 1/H
very slowly [13].

Therefore we need to choose n and k such the above bias/variance trade-off is balanced.
Looking at the earlier theoretical results of [5][11][13] in more detail, we argue in [1] that
under appropriate conditions, the bias varies approximately as O(1/ log n), whereas the
variance is approximately O(1/k). This indicates that we should probably choose values
of n and k such that k ≈ O(log n)2.

Although the above theoretical estimates yield useful guidelines for choosing n and k, we
also need a method for evaluating the relative estimation error on particular data sets. To
that effect we consider the following procedure, which adapts the stationary bootstrap of
[6] to our problem. Let L = (Ln

1 , L
n
2 , . . . , L

n
k ) be the sequence of match-lengths computed

directly from the data. For m = 1, 2 . . . , , B, let L∗m be the m-th resampled pseudo-
time series with the same length as L, which yields the estimates Ĥ∗(m) and H̃∗(m)
corresponding to (1) and (2) respectively. The bootstrap estimate of the variance of Ĥ is

σ̂2 =

B∑
b=1

[Ĥ∗(b)− Ĥ∗(·)]2/(B − 1),

where Ĥ∗(·) =
∑B

b=1 Ĥ
∗(b)/B; similarly for H̃ . Finally, the resampling of L is done

as follows: Each time we randomly draw a subblock of L with random length, geometri-
cally distributed with mean 1/p, and then we concatenate the blocks together until reaching
length k. Finally, the choice of p is done by studying the autocorrelogram of L (which is
typically decreasing with the lag) and choose a cutoff threshold. We then take the corre-
sponding lag to be the average block size, and choose p as the reciprocal of that lag.



3 Entropy Estimates of Spike Trains

Our spike train data are binned with 1 ms bin size, and have total length T = 3, 606, 073.
For the estimation we chose the window size n to be 99.4% of T , so that n = 3, 584, 463
and and the number of matches k = T −n = 21, 610. Table 1 show the estimates produced
by Ĥn,k and H̃n,k and compares them with other entropy estimation methods.

plug-in
neuron word=20ms Ref. [10] Ĥ H̃

1 1.9330 1.6389 0.7290 1.5241
2 4.9075 4.7458 2.5020 3.7588
3 4.5934 4.0868 1.4481 2.8372
4 2.8103 2.5679 1.0962 1.6583
5 2.9040 2.3871 1.5636 2.6849
6 2.6641 2.3677 1.1090 2.8625
7 3.3830 2.6269 1.3786 3.5143
8 1.7815 1.8208 0.7406 2.3843
9 1.9040 1.7852 0.6644 1.7293
10 2.3764 2.5448 1.2055 3.2562
11 14.0634 13.6261 5.7085 8.7684
12 0.3142 0.3262 0.2796 1.0902
13 7.2784 7.4749 3.8182 5.5020
14 0.4695 0.5022 0.1965 0.8127
15 3.7516 4.2728 2.7643 4.8172
16 0.1045 0.0778 0.0896 0.4336
17 4.4711 3.4756 1.2266 3.3472
18 5.7890 6.2609 1.8508 3.3505
19 4.9886 4.7457 1.6807 3.3362
20 2.4904 2.8044 0.9557 1.7657
21 0.1933 0.1428 0.3988 1.0176
22 0.2350 0.2334 0.4006 1.7245
23 1.8215 1.4728 0.9895 2.3280
24 4.0583 3.8855 2.2699 3.1679
25 2.5494 1.8335 1.6671 4.2782
26 3.7618 2.3589 2.1744 3.2721
27 0.9157 0.6415 0.4143 1.2433
28 2.0656 1.9417 1.2165 2.4484
29 2.9396 2.6239 1.5072 2.7408

Table 1: Entropy estimates by several methods in bits per 50ms

The main limitation of the plug-in estimate is that it can only use words of length up to
20ms, and for word lengths around 20ms the undersampling problem makes the estimate
unstable. Moreover, this method completely misses the effects of longer term dependence.
The method in [10] also begins with the plug-in for relatively short word lengths, and then
extrapolates in an ad hoc fashion to “infinite” word lengths (which would correspond to the
true entropy rate of the underlying process). It is worth noting that, although the plug-in
estimator always has negative bias, when used with a finite word length ℓ it only gives an
estimate of the order-ℓ entropy, which is typically larger than the entropy rate itself.



Match-length estimators, on the other hand can deal with a much longer window size. As
we see from Table 1, Ĥ is much lower than both versions of plug-in for 26 out of 29 cells,
which indicates that the Ĥ estimate is more accurate.

Figure 1: Bootstrap estimate of the standard error of Ĥ and H̃ for two cells. The first
subplot shows how the average block size p is chosen (cutoff threshold is 0.05), and the
second and third plots show the histogram of the bootstrap replications.

The main drawback of the match-length estimators is their slow rate of convergence. The
bias is relatively and very hard to evaluate analytically. The variance on the other hand
can be estimated using the bootstrap technique described above. See Figure 1. Note that
the histogram of the bootstrap replications looks not very far from Gaussian, which indi-
cates that the standard error estimate has approximately converged to its limiting Gaussian
distribution.

4 Results for Simulated Data

To get a better idea of how quickly Ĥ and H̃ converge, we first apply them to simulated data
generated from an i.i.d. process (also sometimes referred to as a homogeneous Poisson
model) and to a homogeneous Markov chain. In Table 2 we show the resulting entropy
estimates on five realizations of an i.i.d. process with rate 50 Hz, which is close to the
typical firing rate of a neuron In Table 3 we show corresponding results on five realizations
of homogeneous Markov chain with transition matrix P =[ 0.1 0.9 ; 0.9 0.1 ]. In both cases
we chose the window size n=3,590,000, and the number of matches k=10,000, as in the
neuronal data. The resulting bias is about -11% for Ĥ , and +13% for H̃ , so the large bias
is indeed the major problem of these match-length estimators.

We also applied Ĥ and H̃ to data from a slightly more realistic model for neuronal data,



namely, an independent process with varying rate (also referred to as an “inhomogeneous
Poisson process”) with a rate function drawn from a Gaussian process with varying kernel
width, which is supposed to simulate the slow varying rates of neurons. The data length
and the parameter choices are the same as above. Table 4 shows entropy estimates for
two different kernel widths. Each time, a rate function is first drawn at random, and an
inhomogeneous Poisson process is generated with that rate function. The results show that
the estimates are varying wildly.

plug-in
No. word=20ms Ref. [10] Ĥ H̃
1 7.0943 6.9841 5.8309 7.3311
2 7.0298 7.1576 6.3735 8.0865
3 7.0804 7.1496 6.6101 8.4944
4 7.0713 7.0087 6.0549 7.6590
5 7.0621 7.0914 6.4599 8.2073

bootstrapped σ̂ 0.2751 0.4749

Table 2: Entropy estimates on simulated data from a homogeneous Poisson process, in bits
per 50ms. The true entropy is Htrue=7.072. The bootstrap estimated standard errors are
for the first realization.

plug-in
No. word=20ms Ref. [10] Ĥ H̃
1 24.7004 23.1110 22.1769 24.3011
2 24.7196 23.2915 21.7436 24.0792
3 24.7087 23.1009 21.9016 24.5349
4 24.6937 23.1689 21.8957 24.3082
5 24.7182 23.2156 21.7458 24.0298

bootstrapped σ̂ 0.4397 0.5221

Table 3: Entropy estimates on simulated data from a Markov Chain, in bits per 50ms. The
true entropy is Htrue=23.4498. The bootstrap estimated standard errors are for the first
realization.

5 Concluding Remarks

We examined the performance of two entropy estimators inspired by the Lempel-Ziv com-
pression algorithm, and based on match-lengths. These estimators are consistent under
very weak conditions, but their convergence rate is slow. In cases when the memory of
the process generating the data is short, the plug-in estimator is an adequate method, and it
actually outperforms the match-length estimators. But in cases when the memory length is
not known or is to be tested (as in the case of neural data), the match-length estimators are
more appropriate and their estimates are at least known to be consistent in the large data
limit, whereas those of the plug-in method is not.



5 sec 200 sec
plug-in plug-in

No. word=20ms Ref. [10] Ĥ H̃ word=20ms Ref. [10] Ĥ H̃
1 7.0362 7.2129 7.2501 9.4366 7.0530 2.1632 5.0155 6.5355
2 7.0342 6.9179 6.1985 7.6106 7.0414 8.4571 7.4371 9.0451
3 7.0446 6.9657 5.1667 6.3577 7.0310 4.6627 8.6755 11.3509
4 7.0681 6.9708 4.8771 6.7595 7.0589 9.0950 5.5526 7.0706
5 7.0530 6.2969 7.7206 10.1253 7.0284 6.8757 6.9882 9.0128
6 7.0464 6.8660 6.4834 8.6458 7.0257 6.666 4.7727 6.3624
7 7.0517 7.2284 5.6214 7.7639 7.0552 2.9313 9.1142 11.5276
8 7.0827 6.7124 7.1077 9.4711 7.0636 7.2763 6.0086 7.5258
9 7.0726 7.3780 7.0379 9.3916 7.0817 5.6254 6.9552 8.8151
10 7.0690 7.0543 5.3524 7.0504 7.0953 6.1526 7.1462 8.9858

Table 4: Entropy of simulated data from inhomogeneous Poisson process in bits per 50ms.
The rate functions are drawn from Gaussian process with different kernel width. Bootstrap
estimated standard errors are for the first realization.
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