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Abstract

We consider a stochastic version of the k-server problem, in which k servers move on a

circle to satisfy randomly generated requests. The requests are independent and identically

distributed, according to an arbitrary distribution that is either discrete or continuous. The

cost of serving a request is the distance that a server needs to travel in order to reach the

request. The goal is to minimize the steady-state expected cost induced by the sequence

of requests. We study the performance of a greedy strategy focusing, in particular, on its

convergence properties and the interplay between the discrete and continuous versions of

the process. Finally, we show that in the case of k = 2 servers the greedy policy is optimal.
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1 Introduction

The k-server problem first posed by Manasse, McGeoch, and Sleator [6, 7] is central to the study
of on-line algorithms. Let k ≥ 2 be an integer and consider a metric space M = (M,d) where
|M | > k is a set of points and d is the metric over M . A k-server problem is defined by a
sequence of requests, r1, r2, . . . , where each ri ∈M . A k-server algorithm controls k servers that
reside in, and move between, points of M . A request ri is satisfied when the algorithm moves
a server to that point. The algorithm must satisfy request i before it sees any future request.
The cost of serving a sequence of requests is the sum of the distances that servers have to
traverse in order to satisfy these requests. The k-server problem models a number of important
on-line computation problems such as paging and disk-scheduling [2]. So far, most studies of
the k-server problem have focused on the competitive analysis of the problem, culminating in
Koutsoupias and Papadimitriou’s [5] seminal results, establishing a worst-case competitive ratio
of Θ(k) for the problem.

An alternative approach to the study of on-line algorithms is probabilistic analysis. Instead of
taking a worst-case approach, we assume that the input (in this case, the sequence of requests)
follows some distribution, and we analyze the expected cost of a given algorithm over this
input distribution. As in the worst-case scenario, the algorithm satisfies each request without
information about the sequence of future requests, and we are interested in algorithms that are
not tuned to a particular input distribution.

1.1 The Stochastic Model

In this work we study a stochastic version of the k-server problem in which the k mobile servers
move on the circle of circumference k, which we denote by T and identify with the interval [0, k).
Throughout, we focus on the long-term behavior of the process induced by the following greedy
algorithm: “at each step i, send the server that is closest to the request ri.” We analyze and
compare two different models; in the continuous model, requests arrive anywhere on the circle
T = [0, k) according to some distribution with a continuous density; in the discrete case, requests
may arrive only at ℓ discrete stations, where k < ℓ <∞, and the positions of the stations are in
Tℓ = {ik/ℓ ; 0 ≤ i ≤ ℓ− 1} ⊂ T. The circle T is endowed with the distance,

d0(x, y) = min{|x− y| , |x− y − k| , |x− y + k|},

and Tℓ with the induced distance.
We assume that the requests are independent and identically distributed (i.i.d.) according

to a distribution supported either on T (in the continuous case) or on Tℓ (in the discrete case);
their common distribution is denoted either by µ or µℓ, respectively. For the sake of simplicity,
we will always assume that µ has a strictly positive density with respect to Lebesgue measure
on T and that µℓ has positive mass on all points x ∈ Tℓ.

In the continuous setting, we can model the process as a Markov chain (Sn)n≥0 evolving on
the state space,

Σ = {p = (p0, p1, . . . , pk−1) ∈ T
k; pj ≤ pj+1 ≤ · · · ≤ pk−1 ≤ p0 ≤ p1 ≤ · · · ≤ pj−1, for some j}.

Here pi corresponds to the position of the ith server. In the discrete setting, the servers move
only within the ℓ stations, and accordingly the state space is Σℓ = Σ ∩ T

k
ℓ . To avoid ambiguity,

in the case when the two closest servers to a given request ri are equidistant from ri, we specify
that the greedy algorithm moves the server which is to the left of the request (where the circle
is oriented in the usual way). In addition, if two or more servers are on the same location (i.e.,
we have pi = pi+1 = · · · = pj = x for i < j, or pi = pi+1 = · · · = pk−1 = p0 = · · · = pj = x

2



for i > j), and the new request is closer to x than to any other server, we choose server j if
the request is on the left of x and server i if it is on the right of x. Note that, under these
assumptions, the relative order of the servers on the circle does not change, and that, if at some
point all the servers are on different locations, then they will never be on the same location in
the future of the process.

The performance of the greedy algorithm is measured in terms of the total distance travelled
by the servers to fulfill the requests. Let d be the distance on T

k defined by

d(p,p′) =

k−1
∑

i=0

d0(pi, p
′
i).

Recalling that Sn denotes the position of the servers after satisfying the nth request, the cost of
the nth request is given by Cn = d(Sn−1, Sn). We are interested in the asymptotic behavior of
the average cost over a run of N requests, namely,

1

N

N
∑

n=1

Cn =
1

N

N
∑

n=1

d(Sn−1, Sn).

2 Main Results

2.1 Convergence to a Stationary Distribution

In the discrete setting, since requests may arrive at all stations with positive probability, the
finite state space Markov chain (Sn)n≥1 has the following structure; let,

Σ̃ = {p = (p0, p1, . . . , pk−1) ∈ T
k; pj < pj+1 < · · · < pk−1 < p0 < p1 < · · · < pj−1, for some j},

and Σ̃ℓ = Σ̃∩Tk
ℓ ; then every state in Σℓ\Σ̃ℓ is transient and Σ̃ℓ is the unique closed communication

class and it is aperiodic. As a consequence (see, for example, [9]), the Markov chain (Sn) has
a unique stationary distribution, say πℓ, supported on Σ̃ℓ, the distribution of the chain (Sn)
converges to πℓ exponentially fast, and the law of large numbers holds. In particular, the
average cost over N steps converges almost surely to the mean cost under πℓ, as N →∞.

The main contribution of this work is to obtain similar results in the continuous case. Under
the assumption that µ has a positive density, we show in Theorem 2.1 that the process has a
unique stationary distribution π, to which it converges exponentially fast.

Theorem 2.1 Assume that µ has a density with respect to the Lebesgue measure on T = [0, k)
that is uniformly bounded away from 0. Then the Markov chain (Sn)n≥0 on Σ induced by the
greedy algorithm has a unique stationary distribution π, and:

• for all n ≥ 1, sup
A,s0

|P (Sn ∈ A|S0 = s0)− π(A)| ≤ c1e
−c2n, the supremum being taken over

all measurable sets A of Σ and all s0 ∈ Σ;

•
1

N

N
∑

n=1

Cn → Eπ(C) with probability 1, as N →∞;

• Pr

(

1

N

N
∑

n=1

Cn > Eπ(C) + ǫ

)

≤ c3e
−c4(ǫ)n for all ǫ > 0, n ≥ 1,

where the finite constants c1, c2, c3, c4(ǫ) may depend on k but not on n; c2 > 0 and c4 = c4(ǫ)
is strictly positive for all ǫ > 0; Ci = d(Si−1, Si) is the cost of the ith request; and Eπ(C) is the
expected value of the one-step cost for a stationary version of the chain.
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In view of the well-known convergence results in [8] and the more recent large deviations esti-
mates in [4], in order to prove the theorem it suffices to verify that the Markov chain fulfills
Doeblin’s condition; see [8, page 391]. The proof is given in Appendix A.

In addition to the results of the theorem, since the cost function is bounded by definition, the
Doeblin (or uniform ergodicity) property implies finer asymptotic results for the convergence of
the averaged cost 1

n

∑N
n=1Ci. In particular, it is asymptotically normal, and the convergence to

normality can be further refined via an Edgeworth expansion. Moreover, the exponential bound
on the excess-cost probability can be sharpened to a precise asymptotic formula along the lines
of the Bahadur-Rao refinement to the classical large deviations principle [3]. See [4] for details.

2.2 Convergence of the Discrete Model to the Continuous One

When the number of stations ℓ in the discrete model is large, we naturally expect that it should
be possible to approximate the continuous model by an appropriately defined version of the
discrete one. A precise asymptotic version of the above statement is established in the following
proposition.

Proposition 2.2 Suppose that {µℓ} is a sequence of request distributions on Tℓ, ℓ ≥ 1, such
that µℓ → µ weakly, as ℓ goes to infinity, for some continuous request distribution µ on T. Then,
the corresponding sequence {πℓ} of stationary distributions for the discrete chains induced by
each of the µℓ also satisfies πℓ → π weakly, as ℓ→∞, where π is the stationary distribution of
the continuous chain induced by µ.

Proof. If the servers are in position p ∈ Σ and a request arrives at site x ∈ T, then the new
position of the servers after service is

Q(p, x) = (p0, . . . , pi−1, x, pi+1, . . . , pk−1) (2.1)

where pi is the nearest point of x (and the left such point in case of equality). The continuity
set of the map Q is exactly the set of points (p, x) such that there is a unique point pi nearest
to x.

Now suppose the sequences {µℓ} and {πℓ} are as in the statement of the proposition. Ac-
cording to Theorem 2.3 below, the stationary measures πℓ converge weakly to π, and so do the
corresponding expected costs. Note that the assumptions of the theorem are always satisfied
when µ is diffuse and, in particular, when µ has a density. �

Theorem 2.3 Let CQ ⊂ Σ×T denote the continuity set of the map Q defined in equation (2.1).
Assume that the Markov chain (Sn)n≥0 associated with the request distribution µ has a unique
invariant probability measure π, and that, for every probability measure π′ on T

k,

(π′ × µ)(CQ) = 1.

Then πℓ → π weakly and Eπℓ
(C) → Eπ(C), as ℓ → ∞, where Eπℓ

(C) and Eπ(C), denote the
expected costs under the stationary versions of the corresponding chains, respectively.

Proof. The only point of possible concern is that the map (p, x) 7→ Q(p, x) may not be
continuous everywhere, unless the minimum distance between x and p is attained at a single
point.

The invariance of πℓ implies that Q maps the measure πℓ × µℓ to πℓ. Moreover, the state
space Σ is compact, and hence the sequence (πℓ) is tight. Let π′ be an accumulation point of
(πℓ) and let (πℓi)i≥0 be a subsequence of (πℓ) converging to π′. By taking the limit i → ∞ in
Q(πℓi×µℓi) = πℓi , we obtain that Q(π′×µ) = π′, that is, π′ is invariant for (Sn); the hypothesis
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(π′×µ)(CQ) = 1 is used here to apply the continuous mapping theorem [1]. By the uniqueness of
the invariant measure (Theorem 2.1) we have that π′ = π. Since we have a unique accumulation
point, the convergence of the sequence (πℓ) follows, completing the proof. �

We provide further insight into the correspondence between the discrete and the continuous
models by constructing a coupling between the corresponding chains. Consider the continuous
model with a sequence of requests (rn)n≥1 that are i.i.d. with continuous distribution µ on T.
Let (Sn)n≥0 denote the associated Markov chain on Σ and let Θℓ : T→ Tℓ be the discretization
map defined by,

Θℓ(x) =
k

ℓ

⌊

ℓ

k
x

⌋

.

Similarly, let (rℓn)n≥1 = (Θℓ(rn))n≥1 denote the corresponding discretized requests, so that the
sequence (rℓn) is also i.i.d., with discrete distribution µℓ given by µℓ(x) = µ([x, x + k/ℓ)) for
x ∈ Tℓ. We consider the Markov chain (Sℓ

n) defined by the initial state Sℓ
0 = Θℓ(S0) and the

sequence of requests (rℓn)n≥1. Note that Sℓ
n is in general not the same as Θℓ(Sn). We assume

that ℓ is large enough so the image under Θℓ of the initial positions of the k servers is a set of
k distinct points.

As the number of stations ℓ goes to infinity, Θℓ converges to the identity map and µℓ converges
weakly to µ, so we naturally expect that the Markov chains (Sℓ

n) and (Θℓ(Sn)) will also be “close”
for large ℓ. In order to quantify this closeness, we examine the (de-)coupling time,

Tℓ = inf{n ≥ 1;Sℓ
n 6= Θℓ(Sn)}.

Our next result is the following:

Proposition 2.4 Let δ(ǫ) = sup{µ([x, x + ǫ]) ; x ∈ T} for ǫ > 0, and assume that δ(k/ℓ) is
strictly positive. Then the distribution of Tℓ stochastically dominates a geometric distribution
with parameter kδ(k/ℓ), i.e.,

Pr(Tℓ > n) ≥

(

1− kδ

(

k

ℓ

))n

.

As a consequence, E(Tℓ) ≥ (k δ(k/ℓ))−1. Moreover, if density of µ is uniformly bounded above
by some constant c′ > 0, then δ(ε) ≤ c′ε for all ε > 0, and E(Tℓ) ≥ ℓ/(c′k2).

Proof. The stochastic domination is a simple consequence of the following estimate,

Pr(Sℓ
n+1 = Θℓ(Sn+1)|S

ℓ
n = Θℓ(Sn)) ≥ 1− k δ

(

k

ℓ

)

,

which we show next. Assume that at time n we have Sℓ
n = Θℓ(Sn). For 0 ≤ i ≤ k − 1, let qℓn(i)

be the midpoint between the ith and the (i+1)st server in the discrete process (Sℓ
n)n≥0, i.e.,

qℓn(i) = (Sℓ
n(i)+Sℓ

n(i+1))/2, and let qn(i) denote the corresponding midpoint in the continuous
chain (Sn)n≥0, that is, qn(i) = (Sn(i) + Sn(i + 1))/2. We now show that for all i we have
qℓn(i) ≤ qn(i) and that qn(i) ≤ qℓn(i + 1) (where ≤ should be interpreted as “is not on the right
of”), which implies that the order of the midpoints on the circle is

· · · ≤ qℓn(i− 1) ≤ qn(i− 1) ≤ qℓn(i) ≤ qn(i) ≤ qℓn(i+ 1) ≤ qn(i+ 1) ≤ · · · .

First note that, for all i,
Sℓ
n(i) ≤ Sn(i) < Sℓ

n(i+ 1), (2.2)
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where the first inequality follows from the fact that Sℓ
n(i) = Θ(Sn(i)) and the second one since

if it were not true then we would have Sℓ
n(i) = Sℓ

n(i + 1), which cannot happen as initially all
the servers are on different locations (i.e., we have by assumption that that Sℓ

0(i) 6= Sℓ
0(j) for

i 6= j), and therefore we cannot reach a state with two servers on the same location. The two
inequalities qℓn(i) ≤ qn(i) and qn(i) ≤ qℓn(i+ 1) follow immediately from (2.2).

Consider now the request rn+1. If qn(i − 1) < rn+1 ≤ qℓn(i) for some i, then in both the
discrete and the continuous process it will be served by the ith server and so we will have
Sℓ
n+1 = Θ(Sn+1). Otherwise (i.e., if qℓn(i) < rn+1 ≤ qn(i) for some i), the discrete process will

serve the request with server i + 1 while the continuous process will use server i, leading to
Sℓ
n+1 6= Θ(Sn+1), and the coupling fails. Therefore,

{Sℓ
n = Θℓ(Sn)}∩{S

ℓ
n+1 6= Θℓ(Sn+1)} = {S

ℓ
n = Θℓ(Sn)}∩

(

∪ki=1{rn+1 is between qℓn(i) & qn(i)}
)

,

Then, note that d(Sn(i), S
ℓ
n(i)) < k/ℓ so that, d(qn(i), q

ℓ
n(i)) < k/ℓ, for all 0 ≤ i ≤ k − 1. Using

the definition of δ(k/ℓ) and the independence of the events,

{Sℓ
n = Θℓ(Sn)} and ∪ki=1 {rn+1 is between qℓn(i) and qn(i)},

we obtain that,
Pr(rn+1 is between qℓn(i) and qn(i)) ≤ δ(k/ℓ),

and, finally,
Pr(Sℓ

n+1 6= Θℓ(Sn+1)|S
ℓ
n = Θℓ(Sn)) ≤ kδ(k/ℓ),

as required. �

2.3 The Case of Two Servers and Uniform Distribution

In the case of uniformly distributed requests for k = 2 servers, we show that the greedy policy
is optimal and that the steady-state (expected) cost is 5/18 = 0.2777 . . ..

Consider the greedy algorithm G and an arbitrary other algorithm A. Let CG
n (CA

n ) be the
cost incurred by algorithm G (resp., algorithm A) when serving the nth request, and let ZG

n

(resp., ZA
n ) be the minimum distance between the servers immediately after serving the nth

request (with Z0 = ZA
0 = ZG

0 = d(S0(1), S0(2))).

Theorem 2.5 If the requests are independent and uniformly distributed on T, then the greedy
algorithm is optimal in that, for any algorithm A,

E

[

∑

n

CG
n

∣

∣

∣

∣

Z0

]

≤ E

[

∑

n

CA
n

∣

∣

∣

∣

Z0

]

,

regardless of the initial position Z0 of the two servers.

The optimality of the greedy policy for k = 2 follows from the fact that serving each new
request with the closest server minimizes the cost to serve the request, while at the same time
maximizing the distance between the servers, resulting in a better covering of the space. This
is shown in the following lemma.

Lemma 2.6 For any position of the two servers on the circle and for any request, serving the
request with the closest server maximizes the new minimum distance between the two servers.

Proof. Let x denote the initial distance between the servers and assume, without loss of
generality, that the next request occurs on the upper part of the circle, closest to server 1; see
Figure 1. We distinguish three cases, depending on the actual position of the request:
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1. In Γ: If the request is served by server 1 the new minimum distance will become at least
x/2 while if it is served by server 2 it will become at most x/2.

2. In ∆: Assume that the request is at distance d from server 1. Then, serving the request
by server 1 will make the new minimum distance d + x, while serving it by server 2 will
make it d.

3. In E: If the request is served by server 1 the new minimum distance will become at least
1− x/2 while if it is served by server 2 it will become at most 1− x/2.

1− x

Sever 1

Server 2

x
ΓE

∆
x
2

x
2

x
2

x
2

1− x

Figure 1: An instance of the two servers’ position; x is the current (minimum) distance between
the servers.

Therefore, in all three cases the new minimum distance is maximized by serving the new request
with the server closest to it. �

Proof of Theorem 2.5. Assume that at some point the distance between the servers is x
and the next request that arrives is closer to server 1; see Figure 1. Let CC be the cost of serving
the request with the closest server (server 1), and ZC the new server distance after serving the
request with server 1.

For CC we have:
– With probability x

2 , the new request will occur in Γ, in which case CC ∼ Uniform
(

0, x2
)

.
– With probability 1 − x

2 the new request will occur in ∆ ∪ E, in which case CC ∼
Uniform

(

0, 1 − x
2

)

.
Therefore,

E
[

CC
∣

∣ x
]

=
x

2
·
x

4
+
(

1−
x

2

)

·

(

1

2
−

x

4

)

=
1

4
x2 −

1

2
x+

1

2
. (2.3)

Similarly we can compute:

E
[

ZC
∣

∣ x
]

=
x

2

∫ x

2

0

(x

2
+ z
) 2

x
dz + (1− x)

∫ 1−x

0
(x+ z)

1

1− x
dz +

x

2

∫ x

2

0
(1 − z)

2

x
dz

= −
1

4
x2 +

1

2
x+

1

2
; (2.4)

E
[

(ZC)2
∣

∣ x
]

=
x

2

∫ x

2

0

(x

2
+ z
)2 2

x
dz + (1− x)

∫ 1−x

0
(x+ z)2

1

1− x
dz +

x

2

∫ x

2

0
(1− z)2

2

x
dz

= −
1

4
x2 +

1

2
x+

1

3
. (2.5)
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Consider now the nth request. Using (2.3), the expected cost of the greedy algorithm is
computed as,

E
[

CG
n

∣

∣ Z0

]

= E
[

E
[

CG
n

∣

∣ ZG
n−1

] ∣

∣ Z0

]

= E

[

1

4
(ZG

n−1)
2 −

1

2
ZG
n−1 +

1

2

∣

∣

∣

∣

Z0

]

, (2.6)

and similarly for algorithm A,

E
[

CA
n

∣

∣ Z0

]

= E
[

E
[

CA
n

∣

∣ ZA
n−1

]

∣

∣

∣
Z0

]

≥ E

[

1

4
(ZA

n−1)
2 −

1

2
ZA
n−1 +

1

2

∣

∣

∣

∣

Z0

]

, (2.7)

where the inequality follows from (2.3) and the fact that, conditioned on ZA
n−1, the cost of serving

the nth request is minimized when it is served by the closest server.
From equations (2.6), (2.7) and Lemma 2.7 below, it follows that, for every n ≥ 0,

E
[

CG
n

∣

∣ Z0

]

≤ E
[

CA
n

∣

∣ Z0

]

and, therefore,

E

[

∑

n

CG
n

∣

∣

∣

∣

Z0

]

≤ E

[

∑

n

CA
n

∣

∣

∣

∣

Z0

]

,

as claimed. �

Lemma 2.7 For any algorithm A and for any n ≥ 0,

E
[

(ZG
n )2 − 2ZG

n

∣

∣ Z0

]

≤ E
[

(ZA
n )

2 − 2ZA
n

∣

∣ Z0

]

.

Proof. The result holds trivially for n = 0. Assume, inductively, that it holds for some
fixed n. For the (n+1)st request, applying (2.4) and (2.5), yields,

E
[

(ZG
n+1)

2 − 2ZG
n+1

∣

∣ ZG
n

]

= −
1

4
(ZG

n )2 +
1

2
ZG
n +

1

3
− 2

(

−
1

4
(ZG

n )2 +
1

2
ZG
n +

1

2

)

=
1

4
(ZG

n )2 −
1

2
ZG
n −

2

3

and hence,

E
[

(ZG
i+n)

2 − 2ZG
n+1

∣

∣ Z0

]

= E
[

E
(

(ZG
n+1)

2 − 2ZG
n+1

∣

∣ ZG
n

)

∣

∣

∣
Z0

]

= E

[

1

4
(ZG

n )2 −
1

2
ZG
n −

2

3

∣

∣

∣

∣

Z0

]

. (2.8)

Suppose the (n+1)st request is at some point P . In order to serve it, the algorithm can either
send the closest or the furthest server. Let the lengths of the gaps that will be produced by using
the closest or the furthest server be denoted by Y C

P and Y F
P , respectively. Then, Lemma 2.6

together with the fact that x2 − 2x is decreasing for x ∈ [0, 1], imply that for any P ,

(Y C
P )2 − 2Y C

P ≤ (Y F
P )2 − 2Y F

P .

Therefore, for any ZA
n , the value of,

E
[

(ZA
n+1)

2 − 2ZA
n+1

∣

∣ ZA
n

]

,

is minimized when the algorithm moves the closest server.
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Using again (2.4) and (2.5), we obtain,

E
[

(ZA
n+1)

2 − 2ZA
n+1

∣

∣ ZA
n

]

≥
1

4
(ZA

n )
2 −

1

2
ZA
n −

2

3
,

and,

E
[

(ZA
n+1)

2 − 2ZA
n+1

∣

∣ Z0

]

= E
[

E
[

(ZA
n+1)

2 − 2ZA
n+1

∣

∣ ZA
n

]

∣

∣

∣
Z0

]

≥ E

[

1

4
(ZA

n )
2 −

1

2
ZA
n −

2

3

∣

∣

∣

∣

Z0

]

. (2.9)

Combining (2.8), (2.9) and the inductive hypothesis, completes the proof. �

Finally, we examine the cost distribution induced by the greedy algorithm. Let (Yn)n≥0

denote the Markov chain defined by the clockwise distance between the two servers. Due to the
rotation-invariance of the uniform distribution, the following simple recurrence formula holds
for the process (Yn)n≥0 ,

Yn+1 =
1

2
Yn + εn+1, all n ≥ 1,

where the (εn)n≥1 are i.i.d. Uniform[0, 1]. This is exactly the statistical setting of an auto-
regressive AR(1) process; see, e.g., [8]. In particular, under appropriate assumptions on the
innovation sequence (εn)n≥1, the Markov chain (Yn)n≥0 has a unique invariant distribution and
it can be shown to satisfy an array of classical limit theorems, including the strong law of
large numbers, the central limit theorem, the law of iterated logarithm, and so on. Here we
establish some simple properties of the limiting distance limn Yn, and we compute the steady-
state expected cost.

By induction, for every n ≥ 1,

Yn =
Y0

2n
+

n−1
∑

k=0

εn−k

2k
,

and, therefore,

Z = lim
n→∞

Yn =

∞
∑

k=0

εn−k

2k
.

Hence, the characteristic function of Z satisfies the functional equation,

φ(θ) = φ

(

θ

2

)

φU (θ) =

∞
∏

k=0

φU

( θ

2k

)

,

where φU (θ) =
eiθ−1
iθ is the characteristic function of the uniform distribution in [0, 1].

The expected cost in this case can be computed explicitly as,

E[C] = E[E[C|Z]] = E

[

∫ Z/2

0
x dx+

∫ (2−Z)/2

0
x dx

]

=
1

4
E[Z2]−

1

2
E[Z] +

1

2
,

and substituting the values of the first and second moments of Z gives the expected cost as,

E(C) =
5

18
= 0.27777 . . . .
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From the characteristic function of Z we can also obtain additional information. Noting
that, for all k ≥ 1, φ(θ) can be rewritten as,

φ(θ) = eiθ
∞
∏

k=0

sin(θ/2k+1)

θ/2k+1
,

it is easily verified that |θ|kφ(θ) is integrable and that then Z admits a density f which is
infinitely differentiable and satisfies,

f(x) =
1

π

∫ +∞

0
cos(θ(1− x))

∞
∏

k=0

sin(θ/2k+1)

θ/2k+1
dθ

Moreover, the derivative of f equals,

f ′(x) =
1

π

∫ +∞

0
θ sin(θ(1− x))

∞
∏

k=1

sin(θ/2k+1)

θ/2k+1
dθ.

From these expressions we deduce that, for every x ∈ [0, 2], f(x) = f(2−x) and that the function
f ′ vanishes at x = 1. A closed formula for the density distribution appears difficult to obtain.

3 Open Problems

We are interested in the mean cost to serve a request when it arrives with distribution µ. When
the k servers are in position p = (p1, . . . , pk), the mean cost to serve a new request is given by,

∫

T

(

min
i=1,...,k

d0(x, pi)

)

dµ(x),

and the asymptotic cost is,

C(µ, k) =

∫

Tk

∫

T

(

min
i=1,...,k

d0(x, pi)

)

dµ(x)dπk(p1, . . . , pk).

• Scaling the problem with respect to k, so that k servers move on a circle of circumference
k, how does C(µ, k) behave as a function on k? Figure 2 gives simulation results for the
uniform distribution, showing that C(uniform, k) is monotonically increasing with k.

• When k = 2, is it possible to characterize the steady-state distribution π when µ is not
the uniform distribution?

• Which parts of the above analysis extend to the case of servers moving on the surface of
a ball?
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Figure 2: The expected cost of serving a request as a function of k.

A Proof of Theorem 2.1

Recall that a Markov chain with state space Σ and transition kernel P(·, ·) satisfies Doeblin’s
condition [8, page 391] if there exists a probability measure λ on Σ with the property that for
some m ≥ 1 and ε ∈ (0, 1),

Pm(p, S) ≥ ελ(S),

for every p ∈ Σ and every (measurable) S ⊂ Σ.
We define now the probability measure λ that we will use. For δ < 1/8 arbitrary but fixed,

define the intervals I0 = [k− δ, k)∪ [0, δ] and Ii = [i− δ, i+ δ] for 1 ≤ i ≤ k− 1. Let (Yi)0≤i≤k−1

be independent random variables, with each Yi distributed according to µ(·|Ii). Then λ is the
probability measure on Σ induced by the joint distribution of Y0, Y1, Y2, . . . , Yk−1, so that, in
particular, for any set S of the form S = S0 × S1 × · · · × Sk−1 ⊂ Σ, where each Si ⊂ T:

λ(S) =

k−1
∏

i=0

µ(Si ∩ Ii)

µ(Ii)
. (A.1)

Notice that for the verification of the Doeblin condition it suffices to consider sets of the form
S = S0 × S1 × · · · × Sk−1 ⊂ Σ, where each Si ⊂ Ii.

To that end we we need to show that, for any initial position p of the servers, there is a
sequence of requests that has probability at least ελ(S), such that the greedy algorithm sends
every server to a final position p′ ∈ S in exactly m moves. We will establish this by describing
a procedure (defined by a sequence of requests) that leads the greedy algorithm to move the
servers to S.

The basic steps of the procedure are the following:

1. Send each server i to the corresponding interval Ii;
2. Perform some additional moves until m− k moves have been made;
3. Send each server to its final position in k moves.

Step 2 is necessary, since Doeblin’s condition requires that the greedy algorithm reaches the
final position in exactly m moves. Below, each step is described and analyzed in detail; first
recall that p = (p0, p1, . . . , pk−1), where each pi is the position of the ith server, and define the

11



clockwise “distance” function,

d̄(x, y) =

{

y − x if x ≤ y

k + y − x otherwise.

We also define:

• d̄i = d̄(pi, pi+1), the distance between servers i and i+ 1.

• A function A that maps two points of the circle to the interval between them,

A(x, y) =

{

[x, y) if x ≤ y

[x, k) ∪ [0, y) otherwise.

• The point-to-interval distances,

d̄(x, I) = inf
y∈I

d̄(x, y)

d̄(I, x) = inf
y∈I

d̄(y, x).

Finally, let c > 0 be a constant such that the density f of µ with respect to the Lebesgue measure
on T satisfies, infx∈T f(x) ≥ c.

Step 1.

Lemma A.1 For any initial position of the servers, the greedy algorithm will send each server

i to Ii in at most 12k2 − 8k moves with probability at least
(

c
4k

)12k2−9k (2δc
k

)k
.

Proof. We describe a procedure defined by a sequence of requests for which the greedy
algorithm sends each server i to Ii. The probability that this procedure will be followed is at

least
(

c
4k

)12k2−9k (2δc
k

)k
.

Procedure P:

1.1. Send server 0 to I0
1.2. Send each server i to Ii

We describe and analyze each step separately.

Step 1.1

loop

if p0 ∈ I0 then

end

else if I0 ⊂ A(p0, p0 + d̄0/2) then {move of type 1 (see Figure 3(a))}
send server 0 to I0 {probability ≥ (2δc)/k}

else {move of type 2 (see Figure 3(b))}
ℓ← argmaxi d̄i {therefore d̄ℓ ≥ 1}
send server ℓ to A(pℓ + d̄ℓ/4, pℓ + d̄ℓ/2) {probability ≥ c/4k}

end if

end loop

�
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I0

0
p0

p1

d̄0
2

(a) Move of type 1. The interval
I0 is entirely contained in the sec-
tion of the circle served by server 0
according to the greedy algorithm,
so server 0 will move inside I0 with
probability at least (2δc)/k.

I0

A(pℓ+ d̄ℓ/4, pℓ+ d̄ℓ/2)

0

pℓ+1

pℓ

d̄ℓ

(b) Move of type 2. The gap d̄ℓ is the maxi-
mum gap between two consecutive servers, so
d̄ℓ ≥ 1. Thus, there is probability at least c/4k
that a request will fall on the highlighted area
A(pℓ + d̄ℓ/4, pℓ + d̄ℓ/2), decreasing the poten-
tial Φ by at least d̄ℓ/4 ≥ 1/4.

Figure 3: Examples of moves in Step 1.1

Lemma A.2 In at most 8k2−4k moves and with probability at least
(

c
4k

)8k2−4k−1
· (2δc)k , step 1.1

will send server 0 to I0.

Proof. We define the following potential function:

φ(p) = 1{p0 /∈I0} ·

(

k · d̄(p0, 0) +
k−1
∑

i=1

d̄(pi, p0)

)

,

with 1A being the indicator function of event A. We will show the following facts:

Fact 1. 0 ≤ φ(p) ≤ 2k2 − k.

Fact 2. φ(p) = 0 if and only if p0 ∈ I0.

Fact 3. At each move, φ(p) either becomes 0 with probability at least (2δc)/k and step 1.1
ends, or decreases by at least 1/4 with probability at least c/4k.

Fact 1 holds since 1{p0 /∈I0} ∈ {0, 1} and 0 ≤ d̄(·, ·) ≤ k.
Fact 2 is obvious.
In order to show fact 3, we consider the two types of moves of the procedure described earlier.

In the case of a type-1 move, the probability to be executed is (2δc)/k and step 1.1 terminates.
For a type-2 move we consider the following two cases:

• ℓ 6= 0: In this case, notice that the total length of the circle is k and the total number of
gaps is k. Therefore the length of the largest gap d̄ℓ is at least 1. Hence we have that the
probability of the move is at least c/4k, and the distance d̄(pℓ, p0) decreases by at least
1/4 (with the rest of the distances remaining the same), resulting to a decrease of φ(p) by
at least 1/4.
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• ℓ = 0: Again using the previous reasoning, the move is performed with probability at
least c/4k. If server 0 moves into I0, φ(p) becomes zero (and notice that the probability
c/4k ≥ (2δc)/k for δ ≤ 1/8) and step 1.1 ends. Otherwise, assume that server 0 moves by
t ≥ 1/4. Then d̄(p0, 0) decreases by t and every other distance d̄(pi, p0) increases by t. So
the value of φ(p) decreases by:

k · t−
k−1
∑

i=1

t = kt− (k − 1)t = t ≥ 1/4.

From the above facts we deduce that the total number of moves that will be performed
cannot be more than

2k2 − k
1
4

= 8k2 − 4k,

and they all have probability at least c/4k except possibly for the last one, which has probability
at least (2δc)/k. Hence the probability of the first server moving inside I0 is at least:

( c

4k

)8k2−4k−1
·
2δc

k
.

�

Step 1.2.

To send each server i to Ii, we define the following procedure:

Procedure P2(ps, ps+1, . . . , pt):
Input: ps, ps+1, . . . , pt ps ∈ Is, pt ∈ It
Output: p′s, p

′
s+1, . . . , p

′
t pi ∈ Ii, i = s, s+ 1, . . . , t

if t = s then

p′s ← ps
end

else if t = s+ 1 then

p′s ← ps
p′t ← pt
end

else if there exists a j, s < j < t such that pj ∈ Ij then

P2(ps, ps+1, . . . , pj)
P2(pj , pj+1, . . . , pt)
end

else

find a good server j {to be defined next}
send server j to Ij {using the procedure we describe next}
P2(ps, ps+1, . . . , pj)
P2(pj , pj+1, . . . , pt)
end

end if

We can now define what we mean by a “good” server; we say server j is good if there are no
other servers between server j and the corresponding interval Ij , and the rest of the servers are
all sufficiently far from Ij. An example is shown in Figure 4. Formally, we define:

A server j is good if, for every i 6= j, either pi 6∈ A(pj , j) and d̄(Ij , pi) > 1 − 2δ (left type),
or pi 6∈ A(j, pj) and d̄(pi, Ij) > 1− 2δ (right type).
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p j

I j

≥ 1−2δ

p j+1
j

Figure 4: An example of a good server of left type. There are no servers between the position
of server j (pj) and Ij and the distance (to the right) of all the other servers from Ij is at least
1− 2δ.

Lemma A.3 Let 0 ≤ s < t ≤ k (≡ 0 (mod k)), with ps ∈ A(k − δ, s + δ) and pt ∈ A(t− δ, δ).
Then there exists a good server j ∈ {s+ 1, . . . , t− 1}.

Proof. The proof is by induction on the distance t − s. The base cases t − s = 2 and 3 are
easy to verify by enumerating all possible position situations of the server(s) between s and t.

Assume now that the lemma holds for all r < t− s. We will show that it also holds for t− s.
We consider the following three cases:

1. ps+1 6∈ A(k− δ, s+1+ δ): Then notice that there is no server between s+1 and ps+1, and
we have s+ 1− δ − ps > s+ 1− δ − (s+ δ) = 1− 2δ, and thus, d̄(ps, Is+1) > 1− 2δ (the
same holds trivially for the rest of the servers), which means that server s + 1 is a good
server (of right type), and so we select j = s+ 1.

2. pt−1 6∈ A(t− 1− δ, δ): Similarly to the first case, we have that server t− 1 is a good server
(of left type) and we select j = t− 1.

3. ps+1 ∈ A(k− δ, s+1+ δ) and pt−1 ∈ A(t− 1− δ, δ): Then by the induction hypothesis we
know that there exists a j′ ∈ {s+ 2, . . . , t− 2} that satisfies the conditions and hence we
can select j = j′. �

Having proven Lemma A.3, we can now describe the procedure that sends the good server j to
Ij:

if j is a left-type good server then

loop

if pj ∈ Ij then

end

else if Ij ⊂ A(pj , pj + d̄j/2) then

send server j to Ij {probability ≥ (2δc)/k}
else

send server j to A(pj + d̄j/4, pj + d̄j/2) {probability ≥ c/4k}
end if

end loop

else {j is a right-type good server}
loop

if pj ∈ Ij then

end

else if Ij ⊂ A(pj − d̄j−1/2, pj) then

send server j to Ij {probability (2δc)/k}
else

send server j to A(pj − d̄j−1/2, pj − d̄j−1/4) {probability ≥ c/4k}
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end if

end loop

end if

Notice that, at each move, either j enters Ij (with probability at least (2δc)/k) or moves by
a distance of at least d̄j/4 ≥ 1/4 (or d̄j−1/4 ≥ 1/4) with probability at least c/4k and remains
a good server. Since the distance between j and Ij cannot be more than k, the total number of
moves required to move j into Ij is bounded by 4k and their probability is at least:

( c

4k

)4k−1
·
2δc

k
.

Also note that we can execute the procedure P2 for s = 0, t = k (≡ 0 (mod k)) in order to
send all the servers to their corresponding intervals.

Lemma A.4 In at most 4k2 − 4k moves and with probability at least
(

c
4k

)(4k−1)(k−1) (2δc
k

)k−1
,

step 1.2 will send each server i 6= 0 to Ii.

Proof. The procedure sending the good server j to Ij will be executed at most k − 1 times.

Each time requires at most 4k moves and takes place with probability at most
(

c
4k

)4k−1
· 2δck . �

Combining Lemmas A.2 and A.4 completes the proof of Lemma A.1. �

Step 2.

For any possible initial configuration of the servers and any sequence of requests complying
with step 1, the k moves of step 2 will be performed. However, as mentioned above, in order to
satisfy Doeblin’s condition we must show that we can reach the final configuration in exactly m
moves, but for step 1 we only gave and upper bound of 12k2−8k for the total number of moves.
Hence, additional moves may be required in order to reach exactly that bound. The additional
moves that we allow, are induced by requests that are close to the intervals Ii. In particular,
they may fall in

(

k −
1

4
, k

)

⋃

[

0,
1

4

)

⋃

[

k−1
⋃

i=1

(

i−
1

4
, i+

1

4

)

]

It is easy to see that for any sequence of requests that falls in the above set, none of the servers
moves far away from its interval, which will allow them at the end to move close to their final
positions.

Each request takes place with probability c/2, which is higher than any single request of
step 1, and consequently the lower bound on the probability that we gave at step 1, holds even
when fewer than 12k2−8k moves are performed during step 1 and the rest are performed during
the current step.

Step 3.

The last k requests will send the servers to a final configuration in S = S0×S1× · · · ×Sk−1.
Specifically, every server i will enter Si ⊂ Ii, as we argued in step 2.

Consider now the probability that the last k requests send each server i to Si. The total
number of permutations for the order to send the servers is k! and for each of them the probability
that it happens is,

∏k−1
i=0 µ(Si), so the total probability is

k!

k−1
∏

i=0

µ(Si) ≥ k!

k−1
∏

i=0

µ(Si ∪ Ii) ≥ k!

(

2δc

k

)k

·

k−1
∏

i=0

µ(Si ∪ Ii)

µ(Ii)
= k!

(

2δc

k

)k

λ(S),
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using (A.1).

Taking into account all the moves of the three steps and the corresponding probabilities, we
have that Doeblin’s condition holds for

m = 12k2 − 7k

and

ε = k!
( c

4k

)12k2−9k
(

2δc

k

)2k

.
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