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Let X = {X, ; n € Z} be a discrete-valued stationary ergodic process distributed according to P
and let ¥ = (..., x_1, 0,21, ...) denote a realization from X. We investigate the asymptotic behavior
of the recurrence time R, defined as the first time that the initial n-block 7 = (z1,z2,...,z,) re-
appears in the past of z. We identify an associated random walk, — log P(X]"), on the same probability
space as X, and we prove a strong approximation theorem between log R,, and —log P(X]'). From
this we deduce an almost sure invariance principle for log R,,. As a byproduct of our analysis we get
unified proofs for several recent results that were previously established using methods from ergodic
theory, the theory of Poisson approximation and the analysis of random trees.

Similar results are proved for the waiting time W, defined as the first time until the initial n-block
from one realization first appears in an independent realization generated by the same (or by a different)

process.
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1. INTRODUCTION

Recurrence properties are important in the study of stationary processes in probability theory, and dy-
namical systems in ergodic theory. In this paper we investigate the asymptotic behavior of recurrence
and waiting times for finite-valued stationary processes, under various mixing conditions.

Let X = {X,, ; n € Z} be a stationary ergodic process on the space of infinite sequences (S, B, P),
where S is a finite set, B is the o-field generated by finite-dimensional cylinders, and P is a shift-invariant
ergodic probability measure. By © € S%, . = (..., x_1, %0, 21,...) we denote an infinite realization of X,
and for i < j we write xf for the finite substring (z;, ;11,...,2;) and P(xf ) for the probability of the
cylinder {y : yf = a:f }+. Similarly we write Xij for the vector (Xj,..., X;), z’ o« for the semi-infinite string
(...,xj—1,2;), and so on. Given two independent realizations z, y, our main quantities of interest are

the recurrence time R, defined as the first time until the opening string =7 recurs in the past of z, and
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the waiting time W, until the opening string 7 from the realization x first appears in the independent

realization y:

R, = Ry(z)=inf{k>1: m:’,sz =i}

W, = Wy(z],y) =inf{k>1": y,ljJ“"*l =7}

There has been a lot of work on calculating the exact asymptotic behavior of R, and W,. Wyner and
Ziv, motivated by coding problems in information theory, drew a deep connection between these quantities
and the entropy rate of the underlying process.(22) They proved that R, and W,, both grow exponentially
with n and that the limiting rate is equal to the entropy rate H = H(P) = lim,, E[—log P(Xo|X~})].
(Here and throughout the paper ‘log’ will denote the logarithm to base 2, and ‘In’ the logarithm to base e.)
Specifically, they showed that for stationary ergodic processes (1/n)log R,, converges to H in probability,
that for stationary ergodic Markov chains (1/n)log W,, — H in probability, and they also suggested that
these results hold in the almost sure sense. Indeed this was later established by Ornstein and Weiss(1®)

who showed that for stationary ergodic processes
1
—logR, - H P —as., (1.1)
n
and by Shields(!”) who showed that for functions of stationary ergodic Markov chains
1
—logW,, > H PxP —as. (1.2)
n

The waiting time results were further extended, first by Nobel and Wyner(!?) who showed that the
convergence in probability holds for processes that are a-mixing with a certain rate, and then by Marton
and Shields(!)), who extended (1.2) to weak Bernoulli processes. Shields also provided a counter-example
to show that (1.2) does not hold in the general ergodic case.(1?)

Wyner and Ziv used in their analysis a theorem of Kac,(!?) which can be phrased as follows: If X is
stationary ergodic, then for any opening string =] we have F(R, | X]' = «1') = 1/P(z}). This provides a
strong formal connection between R,, and H: Taking logarithms of both sides in Kac’s theorem, dividing

by n and applying the Shannon-McMillan-Breiman theorem®) yields
1 1
lim —log E(R, | X{') =lim —log[l/P(X{)]=H as. (1.3)
n n n n

We can therefore rephrase the Wyner-Ziv-Ornstein-Weiss result (1.1) by saying that they strengthened

(1.3) by removing the conditional expectation
1 .1 "
hran - log R, = hran - log[l/P(XT")]=H as. (1.4)
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The crucial observation here is that Eq. (1.4) can be thought of as a strong approximation result between
log R, and —log P(X7"):
log[R,P(X]")] = o(n) as. (1.5)

Our first result is a sharper form of (1.5), and a corresponding result for W,,.

1.1 Main Results

For —o0 <1 <75 < o0 let Bg denote the o-field generated by Xg and define, for d > 1:

d) = max E ‘ log P(Xo = 5| X~L) — log P(Xo = S|X:;)‘
sE

a(d) = sup {|P(BNA)— P(B)P(A)| : AeB’, Be By},

BeBg"}

where 0/0 is interpreted as 0. X is called ¢-mizing if 1)(d) — 0 as d — oo, and strongly mizing if a(d) — 0

as d — oo.

Theorem 1. Let X be a finite-valued stationary ergodic process, and {c(n)} an arbitrary sequence of

non-negative constants such that Y, n2¢" < co. For the recurrence times R, we have

(1) log[R,P(X7)] < ¢(n), eventually a.s.

(i1) log[R,P(X}'|X° )] > —c(n), eventually a.s.
For the waiting times Wy, we have
(i3i) log[W,P(X7)] > —c(n), eventually a.s.
and if, in addition, X s -mizing, then
(iv) log[W,P(X7)] < ¢(n), eventually a.s.
with respect to the product measure P = Px P.

From Theorem 1 we can easily deduce:

Corollary 1. Strong approximation: Let X be a finite-valued stationary ergodic process.

(@) If > v(d) < oo then for any B >0

log[R,P(X1)] = o(n”) a.s.



(b) If X is y-mizing then for any >0
log[W,,P(X)] = o(n®) a.s.

with respect to the product measure P = PxP.

(¢) In the general ergodic case we have
log[R,P(X7")] = o(n) a.s.

The coefficients y(d) were introduced by Ibragimov in Ref. 8. If X is a Markov chain of order m > 1
then y(d) = 0 for all d > m, so the rate at which v(d) decays may be interpreted as a measure of how
well X can be approximated by finite-order Markov chains. Theorem 1 and Corollary 1 are proved in
section 2.

We can now use Corollary 1 to read off the exact asymptotic behavior of log R,, and log W,, from that
of —log P(X{"). This quantity can be interpreted in information theoretic terms as the ideal Shannon
codeword length for the string X{', and its asymptotics are well-understood. If X is ergodic, the Shannon-
McMillan-Breiman theorem says that (—1/n)log P(X7') converges almost surely to H, and combining this
with Corollary 1 we get (1.1), and also (1.2) in the case when X is ¢-mixing.

If X is a Markov chain or, more generally, if it satisfies certain conditions on the rate of decay of a(d)
and ~y(d), then — log P(X7") behaves like the partial sum sequence of a strongly mixing stationary process
(Ref. 15, chapter 9), and so it satisfies satisfies a central limit theorem, a law of the iterated logarithm, their
infinite dimensional (functional) counterparts, as well as an almost sure invariance principle. Combining
this with Corollary 1 gives us almost sure invariance principles for log R, and log W,,: Let {R(¢t) ; ¢t > 0}
denote the continuous-time path obtained by letting R(t) = 0 for ¢ < 1, and R(t) = [log R;| — [t]H] for

t > 1, where |t]| denotes the largest integer not exceeding ¢.

Theorem 2. Almost sure invariance principle: Let X be a finite-valued stationary process such
that a(d) = O(d=23%) and ~(d) = O(d=*8). The following series converges:
0% = E[-log P(Xo| X_L)— H]? +2 f: E[(-log P(Xo | X_L) — H)(—log P(X; | X*}) — H)).
If 02 > 0, then without loss of gen’;;;lity in the sense of Strassen, there exists a Brownian motion
{B(t); t > 0} such that for any A\ < 1/294,

R(t) —oB(t) = O(Y?*)  as.

Corresponding results hold for the waiting times Wy, in place of Ry, under the additional assumption

that X s p-mizing.



The phrase “without loss of generality in the sense of Strassen” means, as usual, that without changing
its distribution, R(t) can be redefined on a richer probability space, that contains a Brownian motion
such that Theorem 2 holds. Theorem 2 is an immediate consequence of combining our Corollary 1 with

Theorem 9.1 of Philipp and Stout.()

1.2 Consequences
The numerous corollaries that can be derived from the almost sure invariance principles of Theorem 2

(18)

are well-known:\*® log R, and log W,, satisfy a central limit theorem and a law of the iterated logarithm

(and also their functional counterparts — see Corollary 2, below), as well as stronger results such as

Y llog R, — kH
lim sup > i1 | log Ry, | — 3-1/2

n—00 g4/ 2n3 LLg(n)

where LLg(-) denotes the function LLg(-) = Inln(- A e).

a.S.,

Corollary 2. Under the assumptions of Theorem 2, if 0% > 0:

(i) CLT:
log R,, — nH R N0, 1)
ovn

Moreover, the sequence of processes

2

converges in distribution to standard Brownian motion.

(i) LIL:

756[0,1]}7 n>1,

limsup —————= = a.s.
n—)oop o+/2nLLg(n)

Moreover, with probability one, the sequence of sample paths

R(nt) '
{W,te[o71]}7 n>1,

is relatively compact in the topology of uniform convergence, and the set of its limit points is the collection
of all absolutely continuous functions r : [0,1] — R, such that r(0) =0 and fol(dr/dt)zdt <1
(ii1) Corresponding results hold for the waiting times W, in place of Ry, under the additional assump-

tion that X is ¢-mizing.

In the special case when X is an irreducible, aperiodic Markov chain, the one-dimensional version of
the central limit theorem for W,, was first proved by Wyner,?!) who remarked that his methods can be

modified to handle the case of R,, as well.



1.3 Match Lengths
The story of the asymptotics of R, and W,, can equivalently be told in terms of match lengths along
a realization. Given a realization = we define L,, as the length n of the shortest prefix 7 that does not

appear starting anywhere else in the previous m positions z° L

Ly, =Lp(z)=inf{n >1 : 2 # x:g:i;n, forall j =1,2,...,m}.

(22)

Following Wyner and Ziv we observe that R, > m if and only if L,, < n, and consequently all

asymptotic results about R, can be translated into results about L,,: The almost sure convergence of

(1/n)log R, to H is equivalent to

L, 1
— .S. 1.6
logm%H a5 (16)

and the central limit theorem and law of the iterated logarithm for log R,, (Corollary 2) translate to:

Corollary 3. Under the assumptions of Corollary 2:

(i) CLT:
Lm o IO%m .
oH—3/2\/logm — N1
(i1) LIL:
L _ logm
lim sup - L =1 a.s

n—oo  oH=3/2,/2logm LLg(log m)

In the case of the waiting time, given two independent realizations x, y from X, the dual quantity is

the length n of the shortest prefix 7' of x that does not appear in y starting anywhere in y*:

My, = My, (z,y) =inf{n >1 : 2} # y;:"i'n_l, forall j=1,2,...,m}.

Here W,, > m if and only if M,, < n and results about W,, can be equivalently stated in terms of M,,.

In particular, (1.6) and the results of Corollary 3 hold with M, in place of L,, when X is ¢-mixing.

1.4 History

Some brief remarks about the history of these results are in order here. The first explicit connection
between match lengths and entropy seems to have been made by Pittel,1®) whose results are phrased in
terms of path lengths in random trees. Aldous and Shields™) first pointed out the relationship between

the random tree interpretations of these results and coding algorithms. Recurrence times in relation to

(20) (22) Wyner and Ziv discovered the results

coding theory first appeared in Willems'<?) and Wyner and Ziv.

(1.1) and (1.2), which were formally established by Ornstein and Weiss(*3) and Shields,'”) using methods



from ergodic theory. The waiting time results were further extended to mixing processes by Nobel and
Wyner!?) and Marton and Shields.(!V) In the Markov case, Wyner(2!) used the Chen-Stein method for
Poisson approximation and Markov coupling to prove the one-dimensional central limit theorem for W,.

(19) made explicit the equivalence between match lengths along random sequences and feasible

Szpankowski
paths in random trees.

The approach introduced in this paper provides a probabilistic framework for studying the asymptotic
behavior of R, and W, . From Theorem 2 we can deduce strong results that were not previously known,
as well as several known results that were previously established using involved arguments and methods
from other areas. Moreover, and, perhaps, more importantly, Theorem 1 tells us why these results are
true: Because, in a strong pointwise sense, the recurrence time is asymptotically equal to reciprocal of the
probability of the recurring string. We should also mention that this approach can be extended to random
fields on Z9, though, of course, new subtleties arise in this case regarding the conditional structure of the
measures and their mixing rates.

Some of the ideas in the proof of Theorem 1 can be traced in the work of Wyner and Ziv,(#?) Ornstein
and Weiss,13) and Shields.(!) We also mention that ideas related to the use of —log P(XJ') (or a similar
random walk) as an approximating sequence were used by Ibragimov(g) in proving a refinement to the

3) in proving the Shannon source coding theorem in the

Shannon-McMillan-Breiman theorem, by Barron!
almost sure sense, and by Algoet and Cover(® in an elementary proof of the Shannon-McMillan-Breiman
theorem.

Apart from their theoretical interest, the results in this paper may be relevant to several areas of

(20,22) (14) (7,9)

applications such as coding theory, DNA sequence analysis,\**) and string searching algorithms.

In section 2 we prove our main result, Theorem 1, and we deduce Corollary 1 from it. In section 3
we briefly discuss the special case when X is a Markov chain, and we give an explicit characterization
(Theorem 3) of the degenerate case when the asymptotic variance in Theorem 2 is zero. Section 4 contains
an extension of our waiting time results to the case when the independent realizations « and y are produced

by different processes, and section 5 contains the proof of Theorem 3.

2. STRONG APPROXIMATION

We first deduce Corollary 1 from Theorem 1 and then we give the proof of Theorem 1.

Proof of Corollary 1. For part (a) let 5 > 0 arbitrary; since Zn2_€”6 < oo for any € > 0, from ()



and (ii) of Theorem 1 we get

1
limsup — log [R,P(X7)] <0 as. (2.1)
n—oo T
.. 1 n 0
liminf — log [R,P(XT | X2)] = 0 as. (2.2)

Therefore to prove (a) it suffices to show
log P(X?") —log P(XT| X% ) =0(1) as. (2.3)

Observe that |log P(X}) — log P(X}|X%)| < 0, | log P(X; | Xi 1) — log P(X; | X L) |. Taking
expectations of both sides we get E| log P(X{") —log P(X{ | X5 ,)| < >0itq (i), and since Y27, (i) <
00, this implies Eq. (2.3).

Part (b) follows immediately from (ii7) and (iv) of Theorem 1, upon noticing that En2_€"ﬁ < oo for
any €, 3 > 0. For part (c), taking 3 =1 in Eqgs. (2.1) and (2.2) we see that to prove (c¢) it suffices to show
that

% [log P(X}) —log P(X]'| X°)] = 0 as. (2.4)

By the Shannon-McMillan-Breiman theore, the first term converges almost surely to —H, and the second
term is equal to (1/n) 27— [—log P(X;| X"})] which converges to H = E[—log P(Xy| X{°)], almost

surely, by the ergodic theorem. This proves (2.4) and completes the proof of Corollary 1. a

Proof of Theorem 1. Part (i). Given an arbitrary positive constant K, by Markov’s inequality and
Kac’s theorem,

E(R, | X{ = 27) 1
n n
(R, > K|X{ =2a1) < K K P(z})’

for any opening sequence z} with non-zero probability. Since P(z}) is constant with respect to the

conditional measure P(-| X} = z}) we can let K = 2¢")/P(27) to get
P(log[R,P(X)] > c(n) | X} =a}) = P (Rn > 2¢€) /p(a}) | XT = m’f) < 27,

Averaging over all opening patterns z} € S", P(log[R,P(X})] > ¢(n)) <27 and the Borel-Cantelli
lemma gives ().
Part (ii). We now condition on the infinite past X°_ instead of the opening string XJ'. Fix any 2%

and consider
P (log[Ry(X)P(XT | X2 )] < —e(n) | X2, = a2 ) =

—0o0

P <z? es": P(XP =21 X" )<
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where * denotes concatenation of strings. If we let G,, = G, (2% ) denote the set

{Aesm s Pl |0 ) < 27O Ry (2% o )}

then the above probability can be written as

P |at) < Y 2Ry (2% o x2) < 27 DT 1Ry (2 # 2). (2.5)
21 €Gn 21 EGy 2L Ees”
Since x° _ is fixed, for each j > 1 there is exactly one string 24 from S™ with R, (2% * 2}') = 7, so the

sum in Eq. (2.5) is bounded above by
Sn
Y URn(a%x2f) < Y 1/j < Dn
zpesn j=1

for some positive constant D, where s = |S| is the cardinality of S. Therefore
P(log[R,P(XI'| X° )] < —¢(n) | X% =2 ) < Dn2=(™),

and since this bound is independent of 2% and summable over n, from the Borel-Cantelli lemma we
deduce (i7).
Part (i7i). Consider the joint process (X,Y) distributed according to the product measure P = PxP.

Given an arbitrary constant K > 1, for any opening string " with non-zero probability we have

| K| LK
B(W, < K|X=af) < S BW,=j|X{ =af) < 3 P(Y/*" 1 =a}) < KP(}).
i=1 j=1

Setting K = 2~ e(n /p( ") gives
P(log[W,P(X7{)] < —¢(n) | X7 =) < 9—c(n)

(If K =27 /P(z%) < 1 then P(W,, < K | X} = 2}) = 0 since W,, > 1 by definition so the above bound
will trivially hold.) This is independent of =7, so by the Borel-Cantelli lemma we get (7i).

Part (vi). Let § € (0,1) arbitrary and choose d such that 1)(d) < §. Fix an integer N large enough so
that 2¢€(") > 2(n+4d) for all n > N, fix an n > N, and let K > 2(n + d) arbitrary. Then for any sequence

z] with non-zero probability, we can expand

P(W, > K| X! =a]) = P[0, Yo £a],. Y ET T £al)
/)= +d)+ (n+d) +
<-PEh) [T PSS # et | Vi £t 0<i < )
=1
|K/(n+d)]—1
= [1 - P(2})] [1— P(B;| Aj)], (2.6)
j=1



where A; and B; are the events,

d) . j d)—d
4; = {Y nn:dfln# =0,1,....5—1} € gl
_ J(n+d)+n _
B] = {Y n+d +1 —.Tl} & Bj(n+d)+1‘

By the choice of d and stationarity we have P(B;|A;) > (1 —6)P(B;) = (1 — 0)P(a}), for all j, and

substituting in Eq. (2.6) we get

P(Wo > K|X{ =af) < [L—(1=0)P(af) "/ "+

< - (- PEp).

For any n > N let K = 2¢") /P(2%) > 2(n + d) to obtain:

1 2¢()

(1= (1= 0)P(a})) 7D

(1-5)2¢(n)
n—+d

Plog[W, P(XT)] > e(n) [ X1 = 271) <

1
=%
1
< =
=%

?

where ¢ = sup{(1 —2)%/%; 0 < 2 <1 -6} < 1. Since 3. n2 " < 00, (1/n)2™) — 0o as n — 0o and we

can choose N’ large enough such that (¢(1_5))2c(n>/(”+d) < 2n27¢() for all n > N’. Consequently,
n n n 2 —c(n)
P(log[Wy P(XT)] > ¢(n) [ X[ = 21) = 5n277",
for all n > M = max{N, N'}. Since this bound is independent of z7,
> P(log[W, P(XT)] > c(n)) < M+ = Z n2=¢

n>1 n>M

and the Borel-Cantelli lemma gives (iv) and completes the proof of the Theorem. a

Remark. In the proofs of (i7) and (iii) only the stationarity (and not the ergodicity) of X was used.

3. MARKOV CHAINS

If X is a stationary irreducible aperiodic Markov chain, then a(d) and ¢ (d) both decay exponentially
fast, and y(d) = 0 for all d > 1, so X satisfies all the conditions of Theorem 1 and Corollary 1. Consider the
chain X = {X,, = (X,,, Xot1) ; n € Z} with state-space T' = {(s,t) € SxS : P(Xj11 =t| X; = s) > 0};
X is also stationary irreducible and aperiodic.

Let f(s,t) =[—log P(X;+1 =t|X; = s)], f:T — R, and observe that here the entropy rate H of X
is equal to Ef(X;), so that, with probability one, [— log P(X7)—nH] behaves like the sequence of partial
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sums of a centered bounded function of a Markov chain, up to a bounded term:

n—1
—log P(X]) —nH = [f(Xi) — Ef(X;)] + [~log P(X;) — HJ. (3.1)
i=1

In this case the asymptotic variance of Theorem 2 reduces to

1
o? = lim —Var(—log P(X})). (3.2)

n—oo n,

The following characterization of the degenerate case 02 = 0 was stated by Yushkevich.(23) We supply a

proof of a slightly stronger result in section 5.

Theorem 3. Let X be a finite-valued stationary irreducible aperiodic Markov chain with entropy rate
H, and let 02 be defined by Eq. (3.2). Then o® = 0 if and only if every string X?H that starts and
ends in some fized state j € S, has probability (given that X1 = j) either zero or q", for some constant q

depending on X.

4. WAITING TIMES BETWEEN DIFFERENT PROCESSES

Let X, Y be two independent stationary processes distributed according to the measures P and @),
respectively, with values in the finite set S. We consider the waiting time W, («7,y) until the opening
string =7 in the realization = of the X-process first appears in an independent realization y produced
by the Y -process. We generalize our earlier results about W), to this case, under the additional natural
assumption that all finite-dimensional marginals P, of P are dominated by the corresponding marginals
Qn of Q. If this is not satisfied then there will exist finite strings z7 such that P(z}) > 0 but Q(z}) =0,
and W, will be infinite with positive probability.

The analog of Theorem 1 (parts (ii) and (iv)), reads:

Theorem 4. Let X, Y be independent stationary processes, distributed according to P, Q), respec-
tively. Assume that P, < Q, for all n, and write P for the product measure PX(Q). For any sequence

{c(n)} of non-negative constants such that 3" n2-¢") < oo,

logW,Q(X{")] > —c(n), eventually P — a.s.,
and if, in addition, Y 1is 1-mizing, then

log[W,Q(XT)] < ¢(n), eventually P — a.s.

The proof of Theorem 4 is a simple modification of the proof of the corresponding waiting time results

in Theorem 1. Simply replace P by @ throughout the arguments that lead to (ii7) and (iv), and note

11



that under the additional assumption that P, < @, for all n it suffices to condition on opening strings
x} of non-zero P,-probability.
Now assume X is ergodic and Y is a Markov chain and define the relative entropy rate between P

and @ as

P(Xo| X!
D(PIQ) = lim Bp |log LX) |
If for any € > 0 we let ¢(n) = en in Theorem 4, apply the generalized Shannon-McMillan-Breiman

theorem® and let € decrease to zero, we get:

Corollary 4. If X is ergodic and Y is a Markov chain

1
lim — log W, = H(P)+D(P|Q) P—as.

n—oo M

Next, suppose that X and Y are both stationary Markov chains and that X is irreducible and
aperiodic. Define a continuous-time process {q(t) ; t > 0} by letting ¢(¢) = 0, for ¢ < 1, and ¢(t) =
[— log Q(le) — |t](H(P) + D(P||Q))], for t > 1. Consider the chain X of section 3, let g : T" — R
be defined by g(s,t) = [~log Q(X;41 = t| X; = s)], and notice that Eg(X;) = H(P) + D(P||Q). As
in Eq. (3.1), we can think of [—log Q(X{) — n(H(P) + D(P||Q))] as the sequence of partial sums of a

centered bounded function of a Markov chain (up to a bounded term):

n—1

> l9(Xi) = Eg(Xi)] + [~logQ(X1) — (H(P) + D(P||Q))].
=1

From well-known Markov chain results (Ref. 15, Theorem 10.1) it follows that {q(¢)} satisfies an almost
sure invariance principle with asymptotic variance 0? = lim,, Var(—log Q(X}')). We can therefore combine
this with Theorem 4 to obtain an analog of Theorem 2 in the case P # @Q: Let W (t) =0 for ¢ < 1 and
W(t) = log Wy, — [t (H(P) + DPIQ)), for ¢ > 1.

Corollary 5. Let X and Y be stationary Markov chains and suppose that X s irreducible and
aperiodic.

If 0% = lim,, Var(—log Q(X}')) > 0, then, without loss of generality in the sense of Strassen, there
exists a Brownian motion {B(t) ; t > 0} such that for any > 1/4

W(t)—oB(t) = O(t%), a.s.

In the special case where both X and Y are independent and identically distributed, Wyner(2!)

proved Corollary 4 and the one-dimensional version of the central limit theorem in Corollary 5.

12



5. PROOF OF THEOREM 3

2 = 0 if and only if all

In this section we prove the following strengthened version of Theorem 3: o
the nonzero transition probabilities from state i to state j are of the form 27 v;/ vj, for some positive
constants v;, i € S. Theorem 3 now follows with ¢ = 2.

We begin by deriving a generalization of a formula due to Fréchet,(®) for the asymptotic variance of
Markov chains. Let Z = {Z,, ; n € Z} be a stationary irreducible aperiodic Markov chain with finite

state-space T', stationary distribution (¢;);cr, and kth order transition probabilities (qg-g))i,jeT. Let f be
a real-valued function on T and write f(-) for f(-) — Ef(X1). Define

— i+ Var <Zf ) = +2ZE F(Zes))
i=1
= > 70 qJ+QZZqqu F@)F() (5.1)

jeT k=1ijeT

Letting s;; = > 72 {qg-c) — qj] < oo (for i,j € T') the second term above becomes

22Qz32]f —22(12

where 0; = 3 si;f(j) (for j € T), and substituting this in Eq. (5.1) gives

=Y G [f) + 0" =D ait? = > a5 | D qii(F0) +6:)7 — 62| (5.2)
i i F i

Expanding
Z%’iei = ZjSZSimf(m
= Zf( ZQJzzqzm_Qm)
i k>1
= Zf )Y (@ — )
k>1
= Zf Zq )_Qm) (Qjm_Qm)
k>1
= Zsjmfm —qu'mf_(m)
= oj - Z Qjmf(m)7 (53)
and so

Z%’i(ﬂi) Zqﬂ i) +0; — 0;) + 0, = Zqﬂ (i) + 0; — 0;)% + 62], (5.4)

13



since by Eq. (5.3) the cross terms vanish

Z qﬂ29 —|— 0; —0,; ) = 29j (Z qﬂf_(z) — 9]' + Z jS9i>
= 20, (Z qﬂf(z) —0;+0; — ZQJmf(m)> = 0.

Substituting Eq. (5.4) into (5.2) and interchanging ¢ and j yields

Zq]zqﬂ i)+ 60; — 0;)%, (5.5)

which is the generalization of Fréchet’s formula for the variance.

Now consider the chain X defined in section 3. For i,j € S we write p; = P(X1 = i) and p;; =
P(X; = j| X1 = i), so that X has stationary distribution (¢ij) = (pipij) and transition probabilities
(¢ij k1) = (Ojkpri)- Let f be defined as in section 3. Since here 6;; = 6; is independent of 7, using Eq. (5.5)

we get
of = > pipi; Y, Sppr(f(k1) + O — 0i5)°
(i,)ET (k)eT
= > wiy Y, palfG1) +6 -6
(i,J)€T 1€S:p;>0

For any (j,1) € T we have pj; > 0 and the result stated in the beginning of this section follows, with
v; = 2_0i, e S.

The converse is obvious. O
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