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Let X � fXn � n � Zg be a discrete�valued stationary ergodic process distributed according to P

and let x � �� � � � x
��� x�� x�� � � �� denote a realization from X� We investigate the asymptotic behavior

of the recurrence time Rn de�ned as the �rst time that the initial n�block xn
�
� �x�� x�� � � � � xn� re�

appears in the past of x� We identify an associated random walk	 � logP �Xn

�
�� on the same probability

space as X	 and we prove a strong approximation theorem between logRn and � logP �Xn

�
�� From

this we deduce an almost sure invariance principle for logRn� As a byproduct of our analysis we get

uni�ed proofs for several recent results that were previously established using methods from ergodic

theory	 the theory of Poisson approximation and the analysis of random trees�

Similar results are proved for the waiting time Wn de�ned as the �rst time until the initial n�block

from one realization �rst appears in an independent realization generated by the same �or by a di
erent�

process�
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 almost�sure invariance principles�

�� INTRODUCTION

Recurrence properties are important in the study of stationary processes in probability theory� and dy�

namical systems in ergodic theory� In this paper we investigate the asymptotic behavior of recurrence

and waiting times for �nite�valued stationary processes� under various mixing conditions�

Let X � fXn 
 n � Zg be a stationary ergodic process on the space of in�nite sequences 
S��B� P ��

where S is a �nite set� B is the ���eld generated by �nite�dimensional cylinders� and P is a shift�invariant

ergodic probability measure� By x � SZ� x � 
� � � � x��� x�� x�� � � �� we denote an in�nite realization of X�

and for i � j we write xji for the �nite substring 
xi� xi��� � � � � xj� and P 
xji � for the probability of the

cylinder fy � yji � xjig� Similarly we write Xj
i for the vector 
Xi� � � � �Xj�� x

j
�� for the semi�in�nite string


� � � � xj��� xj�� and so on� Given two independent realizations x� y� our main quantities of interest are

the recurrence time Rn de�ned as the �rst time until the opening string xn� recurs in the past of x� and
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the waiting time Wn until the opening string xn� from the realization x �rst appears in the independent

realization y�

Rn � Rn
x� � inf fk � 	 � x�k�n�k�� � xn�g

Wn � Wn
x
n
� � y� � inf fk � 	 � yk�n��

k � xn�g�

There has been a lot of work on calculating the exact asymptotic behavior of Rn and Wn� Wyner and

Ziv� motivated by coding problems in information theory� drew a deep connection between these quantities

and the entropy rate of the underlying process����� They proved that Rn and Wn both grow exponentially

with n and that the limiting rate is equal to the entropy rate H � H
P � � limn E�� logP 
X� jX��
�n���


Here and throughout the paper �log� will denote the logarithm to base �� and �ln� the logarithm to base e��

Speci�cally� they showed that for stationary ergodic processes 
	�n� logRn converges to H in probability�

that for stationary ergodic Markov chains 
	�n� logWn � H in probability� and they also suggested that

these results hold in the almost sure sense� Indeed this was later established by Ornstein and Weiss����

who showed that for stationary ergodic processes

	

n
logRn � H P � a�s�� 
	�	�

and by Shields���� who showed that for functions of stationary ergodic Markov chains

	

n
logWn � H P�P � a�s� 
	���

The waiting time results were further extended� �rst by Nobel and Wyner���� who showed that the

convergence in probability holds for processes that are ��mixing with a certain rate� and then by Marton

and Shields����� who extended 
	��� to weak Bernoulli processes� Shields also provided a counter�example

to show that 
	��� does not hold in the general ergodic case�����

Wyner and Ziv used in their analysis a theorem of Kac����� which can be phrased as follows� If X is

stationary ergodic� then for any opening string xn� we have E
Rn jXn
� � xn� � � 	�P 
xn� �� This provides a

strong formal connection between Rn and H� Taking logarithms of both sides in Kac�s theorem� dividing

by n and applying the Shannon�McMillan�Breiman theorem�	� yields

lim
n

	

n
logE
Rn jXn

� � � lim
n

	

n
log�	�P 
Xn

� �� � H a�s� 
	���

We can therefore rephrase the Wyner�Ziv�Ornstein�Weiss result 
	�	� by saying that they strengthened


	��� by removing the conditional expectation

lim
n

	

n
logRn � lim

n

	

n
log�	�P 
Xn

� �� � H a�s� 
	���

�



The crucial observation here is that Eq� 
	��� can be thought of as a strong approximation result between

logRn and � logP 
Xn
� ��

log�RnP 
Xn
� �� � o
n� a�s� 
	���

Our �rst result is a sharper form of 
	���� and a corresponding result for Wn�

��� Main Results

For �� � i � j � � let Bji denote the ���eld generated by Xj
i and de�ne� for d � 	�

�
d� � max
s�S

E
��� logP 
X� � s jX��

���� logP 
X� � s jX��
�d �

���
�
d� � sup

� jP 
B 	A�� P 
B�P 
A�j
P 
B�P 
A�

� A � B�
��� B � B�d

�

�
d� � sup
�jP 
B 	A�� P 
B�P 
A�j � A � B�

��� B � B�d
�
�

where ��� is interpreted as �� X is called ��mixing if �
d�� � as d��� and strongly mixing if �
d� � �

as d���

Theorem �� Let X be a �nite�valued stationary ergodic process� and fc
n�g an arbitrary sequence of

non�negative constants such that
P

n��c�n� 	�� For the recurrence times Rn we have


i� log�RnP 
Xn
� �� � c
n�� eventually a�s�


ii� log�RnP 
Xn
� jX�

���� � �c
n�� eventually a�s�

For the waiting times Wn we have


iii� log�WnP 
Xn
� �� � �c
n�� eventually a�s�

and if� in addition� X is ��mixing� then


iv� log�WnP 
Xn
� �� � c
n�� eventually a�s�

with respect to the product measure P � P� P�

From Theorem 	 we can easily deduce�

Corollary �� Strong approximation� Let X be a �nite�valued stationary ergodic process�


a� If
P

�
d� 	� then for any 
 � �

log�RnP 
Xn
� �� � o
n�� a�s�

�




b� If X is ��mixing then for any 
 � �

log�WnP 
Xn
� �� � o
n�� a�s�

with respect to the product measure P � P�P �

c� In the general ergodic case we have

log�RnP 
Xn
� �� � o
n� a�s�

The coe�cients �
d� were introduced by Ibragimov in Ref� �� If X is a Markov chain of order m � 	

then �
d� � � for all d � m� so the rate at which �
d� decays may be interpreted as a measure of how

well X can be approximated by �nite�order Markov chains� Theorem 	 and Corollary 	 are proved in

section ��

We can now use Corollary 	 to read o� the exact asymptotic behavior of logRn and logWn from that

of � logP 
Xn
� �� This quantity can be interpreted in information theoretic terms as the ideal Shannon

codeword length for the string Xn
� � and its asymptotics are well�understood� IfX is ergodic� the Shannon�

McMillan�Breiman theorem says that 
�	�n� logP 
Xn
� � converges almost surely to H� and combining this

with Corollary 	 we get 
	�	�� and also 
	��� in the case when X is ��mixing�

If X is a Markov chain or� more generally� if it satis�es certain conditions on the rate of decay of �
d�

and �
d�� then � logP 
Xn
� � behaves like the partial sum sequence of a strongly mixing stationary process


Ref� 	�� chapter ��� and so it satis�es satis�es a central limit theorem� a law of the iterated logarithm� their

in�nite dimensional 
functional� counterparts� as well as an almost sure invariance principle� Combining

this with Corollary 	 gives us almost sure invariance principles for logRn and logWn� Let fR
t� 
 t � �g
denote the continuous�time path obtained by letting R
t� � � for t 	 	� and R
t� � �logRbtc � btcH� for

t � 	� where btc denotes the largest integer not exceeding t�

Theorem �� Almost sure invariance principle� Let X be a �nite�valued stationary process such

that �
d� � O
d���
� and �
d� � O
d����� The following series converges�

�� � E�� logP 
X� jX��
����H�� � �

�X
k
�

E�
� log P 
X� jX��
����H�
� logP 
Xk jXk��

�� ��H���

If �� � �� then without loss of generality in the sense of Strassen� there exists a Brownian motion

fB
t� 
 t � �g such that for any � 	 	�����

R
t�� �B
t� � O
t������ a�s�

Corresponding results hold for the waiting times Wn in place of Rn� under the additional assumption

that X is ��mixing�

�



The phrase �without loss of generality in the sense of Strassen� means� as usual� that without changing

its distribution� R
t� can be rede�ned on a richer probability space� that contains a Brownian motion

such that Theorem � holds� Theorem � is an immediate consequence of combining our Corollary 	 with

Theorem ��	 of Philipp and Stout���	�

��� Consequences

The numerous corollaries that can be derived from the almost sure invariance principles of Theorem �

are well�known����� logRn and logWn satisfy a central limit theorem and a law of the iterated logarithm


and also their functional counterparts � see Corollary �� below�� as well as stronger results such as

lim sup
n��

Pn
k
� j logRk � kHj
�
p

�n� LLg
n�
� ����� a�s��

where LLg

� denotes the function LLg

� � ln ln

 � e��

Corollary �� Under the assumptions of Theorem �� if �� � ��


i� CLT�
logRn � nH

�
p
n

D�� N
�� 	�

Moreover� the sequence of processes �
R
nt�

�
p
n


 t � ��� 	�

�
� n � 	�

converges in distribution to standard Brownian motion�


ii� LIL�

lim sup
n��

logRn � nH

�
p

�nLLg
n�
� 	 a�s�

Moreover� with probability one� the sequence of sample paths�
R
nt�

�
p

�nLLg
n�

 t � ��� 	�

�
� n � 	�

is relatively compact in the topology of uniform convergence� and the set of its limit points is the collection

of all absolutely continuous functions r � ��� 	� � R� such that r
�� � � and
R �
� 
dr�dt�

�dt � 	�


iii� Corresponding results hold for the waiting times Wn in place of Rn� under the additional assump�

tion that X is ��mixing�

In the special case when X is an irreducible� aperiodic Markov chain� the one�dimensional version of

the central limit theorem for Wn was �rst proved by Wyner����� who remarked that his methods can be

modi�ed to handle the case of Rn as well�

�



��� Match Lengths

The story of the asymptotics of Rn and Wn can equivalently be told in terms of match lengths along

a realization� Given a realization x we de�ne Lm as the length n of the shortest pre�x xn� that does not

appear starting anywhere else in the previous m positions x��m���

Lm � Lm
x� � inffn � 	 � xn� �� x�j�m�j�� � for all j � 	� �� � � � �mg�

Following Wyner and Ziv���� we observe that Rn � m if and only if Lm � n� and consequently all

asymptotic results about Rn can be translated into results about Lm� The almost sure convergence of


	�n� logRn to H is equivalent to
Lm
logm

� 	

H
a�s�� 
	���

and the central limit theorem and law of the iterated logarithm for logRn 
Corollary �� translate to�

Corollary �� Under the assumptions of Corollary ��


i� CLT�

Lm � logm
H

�H����
p
logm

D�� N
�� 	�


ii� LIL�

lim sup
n��

Lm � logm
H

�H����
p

� logmLLg
logm�
� 	 a�s�

In the case of the waiting time� given two independent realizations x� y from X� the dual quantity is

the length n of the shortest pre�x xn� of x that does not appear in y starting anywhere in ym� �

Mm � Mm
x� y� � inffn � 	 � xn� �� yj�n��
j � for all j � 	� �� � � � �mg�

Here Wn � m if and only if Mm � n and results about Wn can be equivalently stated in terms of Mm�

In particular� 
	��� and the results of Corollary � hold with Mm in place of Lm when X is ��mixing�

��� History

Some brief remarks about the history of these results are in order here� The �rst explicit connection

between match lengths and entropy seems to have been made by Pittel���
� whose results are phrased in

terms of path lengths in random trees� Aldous and Shields��� �rst pointed out the relationship between

the random tree interpretations of these results and coding algorithms� Recurrence times in relation to

coding theory �rst appeared in Willems���� and Wyner and Ziv����� Wyner and Ziv discovered the results


	�	� and 
	���� which were formally established by Ornstein and Weiss���� and Shields����� using methods

�



from ergodic theory� The waiting time results were further extended to mixing processes by Nobel and

Wyner���� and Marton and Shields����� In the Markov case� Wyner���� used the Chen�Stein method for

Poisson approximation and Markov coupling to prove the one�dimensional central limit theorem for Wn�

Szpankowski���� made explicit the equivalence between match lengths along random sequences and feasible

paths in random trees�

The approach introduced in this paper provides a probabilistic framework for studying the asymptotic

behavior of Rn and Wn � From Theorem � we can deduce strong results that were not previously known�

as well as several known results that were previously established using involved arguments and methods

from other areas� Moreover� and� perhaps� more importantly� Theorem 	 tells us why these results are

true� Because� in a strong pointwise sense� the recurrence time is asymptotically equal to reciprocal of the

probability of the recurring string� We should also mention that this approach can be extended to random

�elds on Zd� though� of course� new subtleties arise in this case regarding the conditional structure of the

measures and their mixing rates�

Some of the ideas in the proof of Theorem 	 can be traced in the work of Wyner and Ziv����� Ornstein

and Weiss����� and Shields����� We also mention that ideas related to the use of � logP 
Xn
� � 
or a similar

random walk� as an approximating sequence were used by Ibragimov��� in proving a re�nement to the

Shannon�McMillan�Breiman theorem� by Barron��� in proving the Shannon source coding theorem in the

almost sure sense� and by Algoet and Cover��� in an elementary proof of the Shannon�McMillan�Breiman

theorem�

Apart from their theoretical interest� the results in this paper may be relevant to several areas of

applications such as coding theory�������� DNA sequence analysis����� and string searching algorithms������

In section � we prove our main result� Theorem 	� and we deduce Corollary 	 from it� In section �

we brie�y discuss the special case when X is a Markov chain� and we give an explicit characterization


Theorem �� of the degenerate case when the asymptotic variance in Theorem � is zero� Section � contains

an extension of our waiting time results to the case when the independent realizations x and y are produced

by di�erent processes� and section � contains the proof of Theorem ��

�� STRONG APPROXIMATION

We �rst deduce Corollary 	 from Theorem 	 and then we give the proof of Theorem 	�

Proof of Corollary �� For part 
a� let 
 � � arbitrary
 since
P

n���n
�
	 � for any 
 � �� from 
i�

�



and 
ii� of Theorem 	 we get

lim sup
n��

	

n�
log �RnP 
Xn

� �� � � a�s� 
��	�

lim inf
n��

	

n�
log �RnP 
Xn

� jX�
���� � � a�s� 
����

Therefore to prove 
a� it su�ces to show

logP 
Xn
� �� logP 
Xn

� jX�
��� � O
	� a�s� 
����

Observe that j logP 
Xn
� � � logP 
Xn

� jX�
��� j � Pn

i
� j logP 
Xi jXi��
� � � logP 
Xi jXi��

��� j� Taking

expectations of both sides we get Ej logP 
Xn
� �� logP 
Xn

� jX�
n��� j �

Pn
i
� �
i�� and since

P�
i
� �
i� 	

�� this implies Eq� 
�����

Part 
b� follows immediately from 
iii� and 
iv� of Theorem 	� upon noticing that
P

n���n
�
	� for

any 
� 
 � �� For part 
c�� taking 
 � 	 in Eqs� 
��	� and 
���� we see that to prove 
c� it su�ces to show

that
	

n

�
logP 
Xn

� �� logP 
Xn
� jX�

���
	� � a�s� 
����

By the Shannon�McMillan�Breiman theore� the �rst term converges almost surely to �H� and the second

term is equal to 
	�n�
Pn

i
��� logP 
Xi jXi��
���� which converges to H � E�� logP 
X� jX�

� ��� almost

surely� by the ergodic theorem� This proves 
���� and completes the proof of Corollary 	� �

Proof of Theorem �� Part 
i�� Given an arbitrary positive constant K� by Markov�s inequality and

Kac�s theorem�

P 
Rn � K jXn
� � xn� � � E
Rn jXn

� � xn� �

K
�

	

K P 
xn� �
�

for any opening sequence xn� with non�zero probability� Since P 
xn� � is constant with respect to the

conditional measure P 

 jXn
� � xn� � we can let K � �c�n��P 
xn� � to get

P 
 log�RnP 
Xn
� �� � c
n� jXn

� � xn� � � P


Rn � �c�n��P 
xn� � jXn

� � xn�

�
� ��c�n��

Averaging over all opening patterns xn� � Sn� P 
 log�RnP 
Xn
� �� � c
n� � � ��c�n�� and the Borel�Cantelli

lemma gives 
i��

Part 
ii�� We now condition on the in�nite past X�
�� instead of the opening string Xn

� � Fix any x���

and consider

P
�
log�Rn
X�P 
Xn

� jX�
���� 	 �c
n� jX�

�� � x���


�

P

�
zn� � Sn � P 
Xn

� � zn� jX�
��� 	

��c�n�

Rn
x��� 
 zn� �

����� X�
�� � x���

�
�

�



where 
 denotes concatenation of strings� If we let Gn � Gn
x
�
��� denote the setn

zn� � Sn � P 
zn� jx���� 	 ��c�n��Rn
x
�
�� 
 zn� �

o
�

then the above probability can be written as

X
zn� �Gn

P 
zn� jx���� �
X

zn� �Gn

��c�n��Rn
x
�
�� 
 zn� � � ��c�n�

X
zn� �S

n

	�Rn
x
�
�� 
 zn� �� 
����

Since x��� is �xed� for each j � 	 there is exactly one string zn� from Sn with Rn
x
�
�� 
 zn� � � j� so the

sum in Eq� 
���� is bounded above by

X
zn� �S

n

	�Rn
x
�
�� 
 zn� � �

snX
j
�

	�j � Dn�

for some positive constant D� where s � jSj is the cardinality of S� Therefore

P 
 log�RnP 
Xn
� jX�

���� 	 �c
n� jX�
�� � x���� � Dn��c�n��

and since this bound is independent of x��� and summable over n� from the Borel�Cantelli lemma we

deduce 
ii��

Part 
iii�� Consider the joint process 
X�Y � distributed according to the product measure P � P�P �

Given an arbitrary constant K � 	� for any opening string xn� with non�zero probability we have

P
Wn 	 K jXn
� � xn� � �

bKcX
j
�

P
Wn � j jXn
� � xn� � �

bKcX
j
�

P 
Y j�n��
j � xn� � � K P 
xn� ��

Setting K � ��c�n��P 
xn� � gives

P
log�WnP 
Xn
� �� 	 �c
n� jXn

� � xn� � � ��c�n��


If K � ��c�n��P 
xn� � � 	 then P
Wn 	 K jXn
� � xn� � � � since Wn � 	 by de�nition so the above bound

will trivially hold�� This is independent of xn� � so by the Borel�Cantelli lemma we get 
iii��

Part 
vi�� Let � � 
�� 	� arbitrary and choose d such that �
d� 	 �� Fix an integer N large enough so

that �c�n� � �
n� d� for all n � N � �x an n � N � and let K � �
n� d� arbitrary� Then for any sequence

xn� with non�zero probability� we can expand

P
Wn � K jXn
� � xn� � � P 
Y n

� �� xn� � Y
n��
� �� xn� � � � � Y

K�n��
K �� xn� �

� �	� P 
xn� ��

bK��n�d�c��Y
j
�

P


Y
j�n�d��n
j�n�d��� �� xn�

���Y i�n�d��n
i�n�d��� �� xn� � � � i 	 j

�

� �	� P 
xn� ��

bK��n�d�c��Y
j
�

�	� P 
Bj jAj�� � 
����

�



where Aj and Bj are the events�

Aj � fY i�n�d��n
i�n�d��� �� xn� � i � �� 	� � � � � j � 	g � Bj�n�d��d�

Bj � fY j�n�d��n
j�n�d��� � xn�g � B�j�n�d����

By the choice of d and stationarity we have P 
Bj jAj� � 
	 � ��P 
Bj� � 
	 � ��P 
xn� �� for all j� and

substituting in Eq� 
���� we get

P
Wn � K jXn
� � xn� � � �	� 
	� ��P 
xn� ��

�K��n�d��

� 	

�
�	� 
	� ��P 
xn� ��

K
n�d �

For any n � N let K � �c�n��P 
xn� � � �
n� d� to obtain�

P
log�WnP 
Xn
� �� � c
n� jXn

� � xn� � � 	

�
�	� 
	� ��P 
xn� ��

�
P �xn� �

�c�n�

n�d

� 	

�
�

������c�n�

n�d �

where � � supf
	� z���z 
 � 	 z � 	� �g 	 	� Since
P

n��c�n� 	�� 
	�n��c�n� �� as n�� and we

can choose N � large enough such that 
��������
c�n���n�d� � �n��c�n� for all n � N �� Consequently�

P
log�WnP 
Xn
� �� � c
n� jXn

� � xn� � �
�

�
n��c�n��

for all n �M � maxfN�N �g� Since this bound is independent of xn� �

X
n��

P
log�WnP 
Xn
� �� � c
n�� � M �

�

�

X
n�M

n��c�n� 	 ��

and the Borel�Cantelli lemma gives 
iv� and completes the proof of the Theorem� �

Remark� In the proofs of 
ii� and 
iii� only the stationarity 
and not the ergodicity� of X was used�

�� MARKOV CHAINS

If X is a stationary irreducible aperiodic Markov chain� then �
d� and �
d� both decay exponentially

fast� and �
d� � � for all d � 	� soX satis�es all the conditions of Theorem 	 and Corollary 	� Consider the

chain �X � f  Xn � 
Xn�Xn��� 
 n � Zg with state�space T � f
s� t� � S�S � P 
Xi�� � t jXi � s� � �g

�X is also stationary irreducible and aperiodic�

Let f
s� t� � �� logP 
Xi�� � t jXi � s��� f � T � R� and observe that here the entropy rate H of X

is equal to Ef
  Xi�� so that� with probability one� �� logP 
Xn
� ��nH� behaves like the sequence of partial

	�



sums of a centered bounded function of a Markov chain� up to a bounded term�

� logP 
Xn
� �� nH �

n��X
i
�

�f
  Xi��Ef
  Xi�� � �� logP 
X���H�� 
��	�

In this case the asymptotic variance of Theorem � reduces to

�� � lim
n��

	

n
Var
� logP 
Xn

� ��� 
����

The following characterization of the degenerate case �� � � was stated by Yushkevich����� We supply a

proof of a slightly stronger result in section ��

Theorem �� Let X be a �nite�valued stationary irreducible aperiodic Markov chain with entropy rate

H� and let �� be de�ned by Eq� 	
���� Then �� � � if and only if every string Xn��
� that starts and

ends in some �xed state j � S� has probability 	given that X� � j� either zero or qn� for some constant q

depending on X�

�� WAITING TIMES BETWEEN DIFFERENT PROCESSES

Let X� Y be two independent stationary processes distributed according to the measures P and Q�

respectively� with values in the �nite set S� We consider the waiting time Wn
x
n
� � y� until the opening

string xn� in the realization x of the X�process �rst appears in an independent realization y produced

by the Y �process� We generalize our earlier results about Wn to this case� under the additional natural

assumption that all �nite�dimensional marginals Pn of P are dominated by the corresponding marginals

Qn of Q� If this is not satis�ed then there will exist �nite strings xn� such that P 
xn� � � � but Q
xn� � � ��

and Wn will be in�nite with positive probability�

The analog of Theorem 	 
parts 
iii� and 
iv��� reads�

Theorem �� Let X � Y be independent stationary processes� distributed according to P� Q� respec�

tively� Assume that Pn � Qn for all n� and write P for the product measure P�Q� For any sequence

fc
n�g of non�negative constants such that
P

n��c�n� 	��

log�WnQ
Xn
� �� � �c
n�� eventually P� a�s��

and if� in addition� Y is ��mixing� then

log�WnQ
Xn
� �� � c
n�� eventually P� a�s�

The proof of Theorem � is a simple modi�cation of the proof of the corresponding waiting time results

in Theorem 	� Simply replace P by Q throughout the arguments that lead to 
iii� and 
iv�� and note

		



that under the additional assumption that Pn � Qn for all n it su�ces to condition on opening strings

xn� of non�zero Pn�probability�

Now assume X is ergodic and Y is a Markov chain and de�ne the relative entropy rate between P

and Q as

D
PkQ� � lim
n��

EP

�
log

P 
X� jX��
�n�

Q
X� jX��
�n�

�
�

If for any 
 � � we let c
n� � 
n in Theorem �� apply the generalized Shannon�McMillan�Breiman

theorem��� and let 
 decrease to zero� we get�

Corollary �� If X is ergodic and Y is a Markov chain

lim
n��

	

n
log Wn � H
P � �D
PkQ� P� a�s�

Next� suppose that X and Y are both stationary Markov chains and that X is irreducible and

aperiodic� De�ne a continuous�time process fq
t� 
 t � �g by letting q
t� � �� for t 	 	� and q
t� �

�� logQ
X
btc
� � � btc
H
P � � D
PkQ���� for t � 	� Consider the chain �X of section �� let g � T � R

be de�ned by g
s� t� � �� logQ
Xi�� � t jXi � s��� and notice that Eg
  Xi� � H
P � � D
PkQ�� As

in Eq� 
��	�� we can think of �� logQ
Xn
� � � n
H
P � �D
PkQ��� as the sequence of partial sums of a

centered bounded function of a Markov chain 
up to a bounded term��

n��X
i
�

�g
  Xi��Eg
  Xi�� � �� logQ
X��� 
H
P � �D
PkQ����

From well�known Markov chain results 
Ref� 	�� Theorem 	��	� it follows that fq
t�g satis�es an almost

sure invariance principle with asymptotic variance �� � limn Var
� logQ
Xn
� ��� We can therefore combine

this with Theorem � to obtain an analog of Theorem � in the case P �� Q� Let W 
t� � � for t 	 	 and

W 
t� � �logWbtc � btc
H
P � �D
PkQ���� for t � 	�

Corollary �� Let X and Y be stationary Markov chains and suppose that X is irreducible and

aperiodic�

If �� � limn Var
� logQ
Xn
� �� � �� then� without loss of generality in the sense of Strassen� there

exists a Brownian motion fB
t� 
 t � �g such that for any 
 � 	��

W 
t�� �B
t� � O
t��� a�s�

In the special case where both X and Y are independent and identically distributed� Wyner����

proved Corollary � and the one�dimensional version of the central limit theorem in Corollary ��

	�



�� PROOF OF THEOREM �

In this section we prove the following strengthened version of Theorem �� �� � � if and only if all

the nonzero transition probabilities from state i to state j are of the form ��Hvi�vj � for some positive

constants vi� i � S� Theorem � now follows with q � ��H �

We begin by deriving a generalization of a formula due to Fr!echet��
� for the asymptotic variance of

Markov chains� Let Z � fZn 
 n � Zg be a stationary irreducible aperiodic Markov chain with �nite

state�space T� stationary distribution 
qi�i�T � and kth order transition probabilities 
q
�k�
ij �i�j�T � Let f be

a real�valued function on T and write "f

� for f

��Ef
X��� De�ne

#� � lim
n��

	

n
Var

�
nX
i
�

"f
Zi�

�
� E
 "f
Z���

� � �
�X
k
�

E
 "f
Z�� "f
Zk����

�
X
j�T

"f
j��qj � �

�X
k
�

X
i�j�T

qiq
�k�
ij

"f
i� "f
j�� 
��	�

Letting sij �
P�

k
�

h
q
�k�
ij � qj

i
	� 
for i� j � T � the second term above becomes

�
X
i�j

qisij "f
i� "f
j� � �
X
i

qi "f
i��i�

where �i �
P

j sij
"f
j� 
for j � T �� and substituting this in Eq� 
��	� gives

#� �
X
i

qi
�
"f
i� � �i

	� �X
i

qi�
�
i �

X
j

qj

�X
i

qji
 "f
i� � �i�
� � ��j

�
� 
����

Expanding

X
i

qji�i �
X
i

qji
X
m

sim "f
m�

�
X
m

"f
m�
X
i

qji
X
k��


q
�k�
im � qm�

�
X
m

"f
m�
X
k��


q
�k���
jm � qm�

�
X
m

"f
m�

�
�X
k��


q
�k�
jm � qm�� 
qjm � qm�

�
�

�
X
m

sjm "f
m��
X
m

qjm "f
m�

� �j �
X
m

qjm "f
m�� 
����

and so

X
i

qji
 "f
i� � �i�
� �

X
i

qji�
 "f
i� � �i � �j� � �j�
� �

X
i

qji�
 "f
i� � �i � �j�
� � ��j �� 
����

	�



since by Eq� 
���� the cross terms vanish

X
i

qji��j
 "f
i� � �i � �j� � ��j

�X
i

qji "f
i�� �j �
X
i

qji�i

�

� ��j

�X
i

qji "f
i�� �j � �j �
X
m

qjm "f
m�

�
� ��

Substituting Eq� 
���� into 
���� and interchanging i and j yields

#� �
X
j

qj
X
i

qji
 "f
i� � �i � �j�
�� 
����

which is the generalization of Fr!echet�s formula for the variance�

Now consider the chain �X de�ned in section �� For i� j � S we write pi � P 
X� � i� and pij �

P 
X� � j jX� � i�� so that �X has stationary distribution 
qij� � 
pipij� and transition probabilities


qij�kl� � 
�jkpkl�� Let f be de�ned as in section �� Since here �ij � �j is independent of i� using Eq� 
����

we get

�� �
X

�i�j��T

pipij
X

�k�l��T

�jkpkl
 "f
k� l� � �kl � �ij�
�

�
X

�i�j��T

pipij
X

l�S�pjl��

pjl
 "f
j� l� � �l � �j�
��

For any 
j� l� � T we have pjl � � and the result stated in the beginning of this section follows� with

vi � ��	i � i � S�

The converse is obvious� �
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