
Chapter 1

Introduction

The central problem considered in this thesis is, loosely speaking, that of understand-

ing the behavior of long pattern occurrences in realizations of random processes in

discrete time. A typical question we will be asking is the following: Suppose we

observe the outcome of a binary random process; how long does it take until a cer-

tain pattern of zeros and ones �rst appears? Questions of this type arise naturally

in several areas, sometimes because of their theoretical interest and sometimes in

applications. Here are four representative examples.

i. Poincar�e recurrence. Here one asks questions about the reappearance of an

initial pattern generated by the process. Does it always reappear? When it

does, how long does it take? This problem and its rami�cations are important

in the study of dynamical systems in ergodic theory. In Chapter 3 we will ask

what happens when we look for longer and longer such initial patterns { how

much longer do we have to wait each time?

ii. String matching. Given two �nite strings that are generated independently by

the same process, what is the length of their longest common (contiguous) sub-

string? This question arises in DNA sequence matching and in string searching

algorithms in computer science. As we will see in Chapters 3 and 4, there is a

natural \duality" relationship between questions about longest-match lengths,

and questions about the �rst occurrence of random patterns.

iii. Typicality. In a long realization of a stationary ergodic process there are \typ-

ical" patterns that tend to appear often and \atypical" ones that only appear

1

2 CHAPTER 1. INTRODUCTION

rarely. This observation was made by Shannon in his landmark 1948 paper [62].

What is the length and the relative frequency of typical patterns? In Chapter 2

we generalize Shannon's original answers for these questions to real-valued (or

more general) processes, and also to the case when distortion is allowed in the

patterns.

iv. Data compression. Shannon's observation of typical patterns provides a pre-

cise way to quantify how much structure there is in a \message" produced by

a random \source." How can we take advantage of this structure to do \com-

pression," i.e., to describe long messages e�ciently? The celebrated Lempel-Ziv

family of data compression algorithms is based on exploiting this structure. In

Chapter 5 we extend this idea further to the case of lossy data compression.

This list is by no means exhaustive. Several related questions are mentioned in

Section 1.3 below.

As we shall see later, there is a common theme at the heart of all these prob-

lems { a strong connection between the geometry along a single realization and the

probabilistic structure of the underlying process that produced it, in particular, with

the entropy of that process. We can interpret this connection in the \big picture" by

saying that it provides yet another snapshot of the sample-path picture of stochastic

processes, added to the many other such properties that have come to form a major

part of the foundation of modern probability theory over the past 50 years.

1.1 The Question of Recurrence

In order to get a better idea of the
avor of our problems and the ideas involved

in solving them, we present here a concrete example of a question that is tackled in

detail in Chapter 3. We will try to illustrate three points: (1) the motivation for the

problem and the intuition underlying the analysis; (2) the natural way in which the

entropy enters when we calculate probabilities of patterns along a realization; (3) the

connection between pattern matching and data compression.

1.1. THE QUESTION OF RECURRENCE 3

1.1.1 Recurrence and Entropy

Suppose we observe a doubly-in�nite realization x = (: : : ; x�1; x0; x1; x2; : : :) pro-

duced by a stationary ergodic process X = fXn ; n 2 Zg, which takes values in a

�nite alphabet A. Write xji for the substring of x between positions i and j

xji
4
=(xi; xi+1; : : : ; xj); �1 � i � j � 1;

and similarly Xj
i for the vector of random variables (Xi; Xi+1; : : : ; Xj). For a �xed

integer n we consider the pattern xn1 = (x1; x2; : : : ; xn) formed by the �rst n symbols

produced by X, and we ask how far back into the past one has to look before seeing

the same pattern appear again. More precisely, we de�ne Rn, the recurrence time for

xn1 , as the �rst position k � 1 for which x�k+n
�k+1 = xn1 :

Rn = inffk � 1 : x�k+n
�k+1 = xn1g:

If we increase the length of the pattern we are looking for, then, clearly, the time

we have to wait will increase, which implies that for every �xed realization x the

recurrence time Rn increases with n. Our main question here is: How fast does Rn

increase?

To gain some intuition we �rst try to understand what happens in the simplest

case. Suppose X is a sequence of independent and identically distributed (i.i.d.)

binary random variables, with each Xn = 1 with probability p; or Xn = 0 with

probability (1 � p): Below we show an example of a realization from X, with two

recurring strings x41 and x51 and corresponding recurrence times R4 = 14 and R5 = 26.

� � � 0 0 1 0 1
| {z }

R5=26

1 0 1 1 1 0 1

R4=14
z }| {

0 0 1 0 0 0 1 1 0 1 0 1 1 0

x
4

1

z }| {

0 0 1 01
| {z }

x5
1

� � �

Conditional on the value of x1, say x1 = 1, the distribution of the recurrence time R1

is exponential, with mean 1=p. Thus, R1 is concentrated around the reciprocal of the

probability of the recurring symbol and has exponential tails away from its mean.

What about Rn for general n? Although its distribution is more complicated in

this case, it is not hard to show that conditional on the recurring pattern xn1 , the

4 CHAPTER 1. INTRODUCTION

mean of Rn is still equal to the reciprocal of the probability of that pattern

E(Rn jXn
1 = xn1) =

1

P (xn1)
; (1.1)

where P denotes the distribution of X. Now what is this probability? If n is large,

there will be roughly np ones and n(1�p) zeros in xn1 , so that P (xn1) � pnp(1�p)n(1�p).

Since this decays exponentially with n it suggests that, at least on the average, Rn

increases exponentially with n. Moreover, looking at the exponent of decay of P (xn1),

we see that

� 1

n
logP (xn1) � � 1

n
log
�
pnp(1� p)n(1�p)

�
= H; (1.2)

where1 H = �p log p� (1� p) log(1� p) is the entropy rate of the process X. This,

then, suggests that Rn increases exponentially with a rate in the exponent given by

the entropy rate of X and, indeed, it is probably not very surprising that the above

informal argument can easily be made rigorous to show that

lim
n!1

1

n
logRn = H a.s. (1.3)

What is somewhat remarkable, though, is that each one of the above steps is

essentially valid in full generality { for every �nite-valued stationary ergodic process:

A theorem of Kac from 1947 [34] says that (1.1) remains verbatim true for every

stationary ergodic X . This can be used to conclude (not trivially { see Theorem 3.1

in Chapter 3) that the asymptotic behavior of Rn is the same as that of 1=P (Xn
1), in

that

lim
n!1

�
1

n
logRn � 1

n
log

1

P (Xn
1)

�
= lim

n!1

1

n
log [RnP (Xn

1)] = 0 a.s., (1.4)

and the Shannon-McMillan-Breiman theorem [13] states that (1.2) also remains true

in this case

lim
n!1

� 1

n
logP (Xn

1) = H a.s. (1.5)

1Here and throughout this thesis log denotes the logarithm taken to base 2, and log
e
denotes the

natural logarithm.

1.1. THE QUESTION OF RECURRENCE 5

where the entropy rate H of X is now de�ned by H
4
= limnE[� logP (X1 jX0

�n]:

Combining (1.4) and (1.5) we recover (1.3) in complete generality!

1.1.2 Second-Order Results

After seeing that the rate in the exponent of the recurrence times Rn converges, with

probability one, to a constant (the entropy rate H), there is a natural sequence of

further questions we would like to ask, including:

i. What is the rate of convergence to the H in (1.3)?

ii. What is the asymptotic distribution of the deviations away from H?

iii. What is the variance of these deviations?

The way we will answer these questions in Chapter 3 is by re�ning the steps we took

in the strategy that gave us (1.3). The main intuition we gained there was that, in

a strong asymptotic sense, Rn, the recurrence time for the pattern Xn
1 is close to

the reciprocal of the probability P (Xn
1) of that pattern. First we will show that the

formal connection between Rn and 1=P (Xn
1) given in (1.4) can be strengthened to

lim
n!1

1p
n

log[RnP (Xn
1)] = 0 a.s. (1.6)

Then, looking at � logP (Xn
1) a little more carefully and assuming for a moment that

X is i.i.d., we see that � logP (Xn
1) can be rewritten as an ordinary random walk

� logP (Xn
1) =

nX
i=1

[� logP (Xi)]; (1.7)

so that its asymptotic behavior can be described in detail by the classical limit the-

orems for partial sums of i.i.d. random variables. For example, combining equations

(1.6) and (1.7) with the classical central limit theorem immediately yields

logRn � nHp
n

D�! N(0; �2) (1.8)

6 CHAPTER 1. INTRODUCTION

with �2 = Var(� logP (X1)), answering our questions (ii) and (iii) above [\
D�! "

denotes convergence in distribution]. This can be viewed as a central-limit-theorem-

type re�nement to the strong-law-of-large-numbers statement of (1.3). Similarly, a

simple application of the law of the iterated logarithm gives

lim sup
n!1

logRn � nHp
2n loge loge n

= � a.s., (1.9)

providing the pointwise rate of convergence in (1.3) and answering question (i).

In Chapters 2 and 3 we show that the independence assumption can be signi�-

cantly relaxed, and the same strategy works for a large class of processes with memory.

1.1.3 Recurrence and Data Compression

How did the question of the asymptotic behavior of Rn �rst arise?

In 1989, in an attempt to understand the exact compression performance of some

variants of the Lempel-Ziv data compression algorithm, Wyner and Ziv [69] discovered

the connection between recurrence times and entropy described in (1.3). One of the

central ideas in their paper was, instead of considering the actual algorithms directly,

to introduce and analyze an idealized coding scenario, a simple version of which we

describe below.

Suppose an encoder and a decoder, me and you, say, have been communicating

for a long time so that presently we share a very long, in fact in�nitely long, common

database X0
�1 = (: : : ; X�1; X0) produced by some stationary ergodic \source" X.

My task as the encoder is to describe to you the \message" Xn
1 consisting of the next

n symbols produced by X, and I want to �nd a way to utilize somehow the \common

information" X0
�1 we share in order to describe Xn

1 more e�ciently.

My idea is, rather than describing Xn
1 to you directly, I will look in the database

X0
�1, �nd the �rst position Rn where a copy of the message Xn

1 appears, and tell

you that position. From this information you can easily recover Xn
1 by looking in the

database and reading o� the string (X�Rn+1; X�Rn+2; : : : ; X�Rn+n).

Is this a good idea? Since all I have to tell you is Rn, my description consists of

approximately logRn bits (in general it takes about log k bits to describe an integer

k), and from this you can recover a message of length n symbols, giving a compression

1.2. THREE MORE QUESTIONS 7

ratio of approximately
logRn

n
bits per symbol.

As we saw in (1.3) this ratio converges to the entropy rate of X, implying that the

compression performance of this simple-minded scheme is asymptotically optimal!

Although of no practical use in itself, this result provides the main technical ingre-

dient in proving the optimality of the so-called Sliding-Window Lempel-Ziv algorithm

[84][71], probably the most popular compression algorithm in use today. Moreover,

Wyner and Ziv's idea of reducing the study of a practical algorithm to that of an

idealized coding scenario was a very signi�cant contribution to our intuitive under-

standing of the workings of several Lempel-Ziv schemes. Since then, this reduction

has been exploited by a number of authors and has ultimately lead not only to a

better understanding of the existing methods, but also to several new, practical data

compression algorithms.

In Section 1.2.2 below we will push this connection a little further; we will dis-

cuss extensions of the Lempel-Ziv idea to lossy data compression, and motivate our

subsequent results in Chapter 5.

1.2 Three More Questions

Next we outline three more questions that are addressed later in this thesis, and we

highlight some of our relevant results from Chapters 2{5.

1.2.1 Waiting Times

Consider the following variation of the recurrence times problem: Instead of asking

how long it takes before the �rst reappearance of the initial pattern generated by some

random process, we ask how long it takes before the �rst approximate appearance of

a random pattern generated independently by a di�erent process.

For the sake of simplicity, consider two i.i.d. binary processes X = fXn ; n 2 Zg
and Y = fYn ; n 2 Zg, with distributions P and Q, respectively. We will measure

the closeness between �nite realizations from X and Y by the proportion of positions

8 CHAPTER 1. INTRODUCTION

where they agree, so we de�ne the Hamming distortion between xn1 and yn1 by

�n(xn1 ; y
n
1) =

1

n

nX
i=1

Ifxi = yig; xn1 ; y
n
1 2 f0; 1gn; n � 1; (1.10)

where Ifxi = yig is the indicator function of the event fxi = yig. For any binary

string xn1 and any distortion level D 2 [0; 1] we let B(xn1 ; D) denote the distortion-ball

of radius D around xn1 :

B(xn1 ; D) = fyn1 2 f0; 1gn : �n(xn1 ; y
n
1) � Dg:

Given two realizations of X and Y and a D 2 [0; 1], our quantity of interest here is

the waiting time Wn(D) until a D-close version of xn1 �rst appears somewhere in y11 :

Wn(D) = inf fk � 1 : yk+n�1k 2 B(xn1 ; D)g:

Intuitively, it seems natural to expect that the asymptotic behavior of Wn(D) as

n!1 would not be very di�erent from that of Rn, so we ask: To what extent does

Wn(D) behave like Rn?

In Chapter 4 this question is addressed (and answered), and the analysis follows

essentially the same strategy as the one employed to analyze the behavior of Rn:

i. First, we prove that the waiting time Wn(D) until we �nd a D-close match for

Xn
1 can be approximated by the reciprocal of the probability Q(B(Xn

1 ; D)) of

�nding such a match (see Theorem 4.1, Chapter 4):

logWn(D) � � logQ(B(Xn
1 ; D)):

ii. Then we show that, asymptotically, � logQ(B(Xn
1 ; D)) behaves as a random

walk (Theorems 2.4 and 2.5, Chapter 2), just like � logP (Xn
1) did in the case

of Rn.

Although these two steps closely parallel the corresponding recurrence times results

in (1.6) and (1.7), the techniques used to prove them had to be di�erent in this case.

One of the di�culties can be spotted easily from the fact that we cannot expand

� logQ(B(Xn
1 ; D)) as random walk like we did with � logP (Xn

1) in (1.7). In fact,

1.2. THREE MORE QUESTIONS 9

it is not even clear a priori that � logQ(B(Xn
1 ; D)) will have the same asymptotic

behavior as � logP (Xn
1).

Chapter 2 is devoted to showing that the same behavior does indeed persist, in

that the probabilities Q(B(Xn
1 ; D)) decay exponentially and their deviations from

the limiting exponent are asymptotically those of a random walk. These results

provide natural generalizations of the Shannon-McMillan-Breiman theorem and its

re�nements to general processes (taking more than a discrete set of values) and to

the case when distortion is allowed.

Combining, as before, (i) and (ii) with the classical limit theorems for partial sums

of i.i.d. random variables we obtain analogs of (1.3), (1.8) and (1.9): From the strong

law of large numbers it follows that the waiting times Wn(D) increase exponentially

with probability one,

lim
n!1

1

n
logWn(D) = R(P;Q;D) a.s., (1.11)

where the rate in the exponent R(P;Q;D) can be explicitly identi�ed as the solution

to a variational problem in terms of the entropies of X and Y . Similarly, using the

central limit theorem and the law of the iterated logarithm we get analogs for (1.8)

and (1.9), respectively.

1.2.2 Lossy Data Compression

In many engineering applications where large amounts of data are to be stored or

transmitted, compression is an important component. Often, in order to reduce the

storage or transmission requirements, we are willing to tolerate a certain amount of

error in the reconstructed data { for example, think of a large image database where

each image is compressed by a factor of, say, 50:1, and can be recovered not perfectly,

but with a small amount of visual distortion. The following question will be addressed

in Chapter 5: Is there an easy way to extend the Lempel-Ziv idea to the case when

distortion is allowed, to obtain a practical lossy compression scheme based on pattern

matching?

The great success of the Lempel-Ziv family of algorithms has been mainly due

to two reasons. First, they are low complexity algorithms that can be simply imple-

mented (they are, for example, implemented on almost every personal computer in

10 CHAPTER 1. INTRODUCTION

use today). Since e�cient string matching has been very well studied by computer

scientists over the past several decades, there are, by now, a number of very e�cient

algorithms that can be readily used in the context of compression.

The second reason for their practical success is that Lempel-Ziv schemes are uni-

versal { they assume essentially zero prior knowledge about the distribution of the

source to be compressed. The trick they employ to overcome this lack of knowledge

comes down to the idea of using the message itself as a codebook. For example, in

the idealized coding scenario described in relation to recurrence times (Section 1.1.3

above), we assumed that the encoder and decoder shared an in�nitely long database

that had the same distribution as the source, and that the next part of the message

was described by a pointer into that database.

There is, therefore, an implicit assumption that plays a key role in the success of

these compression algorithms, namely, that the optimal (lossless) description of some

random message is in terms of a codebook with the same distribution as the message

itself. Unfortunately, this assumption is not true in the lossy case, and one is forced

to consider codebooks generated according to di�erent distributions.

To understand the situation better we follow Wyner and Ziv's example [69] and

turn to an idealized coding scenario: Consider an encoder and a decoder sharing a

common in�nite database Y 11 = (Y1; Y2; : : :), generated by some i.i.d. binary process

Y with distribution Q. Suppose that the encoder's task is to communicate a message

Xn
1 , generated by a di�erent i.i.d. binary process X of distribution P , to the decoder,

within some prescribed distortionD (with respect, say, to Hamming distortion f�ng as

de�ned in (1.10)). The encoder's strategy is, as before, to look through the database

until the �rst time when a D-close match of Xn
1 is found, and then tell the decoder the

position Wn(D) of this �rst match. To describe Wn(D) it takes roughly logWn(D)

bits, so the compression achieved by this simple code equals

logWn(D)

n
bits per symbol.

As we saw in (1.11), this converges to R(P;Q;D), so di�erent choices of the database

distribution yield di�erent limiting compression ratios. The bad news here is that,

unlike in the case of lossless compression, R(P;Q;D) is not in general minimized by

choosing the database to be of the same distribution as the source, i.e., taking Q = P .

On the other hand, the optimal compression ratio for X with respect to Hamming

1.2. THREE MORE QUESTIONS 11

distortion at level D (given by the rate-distortion function R(D) of X) satis�es

R(D) = inf
Q
R(P;Q;D)

so that the problem is that we do not know a priori how to choose the best database

distribution in order to minimize R(P;Q;D).

In Chapter 5 we describe a new lossy version of Lempel-Ziv coding that gets

around this problem by maintaining not just one, but multiple databases at the

encoder and the decoder, and chooses which one to use at each stage in a \greedy"

manner. The new algorithm is demonstrated to have asymptotically optimal compres-

sion performance (Theorem 5.2), and we argue that its complexity and redundancy

characteristics are comparable to those of its lossless counterpart.

1.2.3 Match Lengths and DNA Template Matching

In the analysis of DNA or protein sequences the following problem is of interest:

Suppose we have a template (X1; X2; : : :) and a long but �nite database sequence

Y m
1 = (Y1; Y2; : : : ; Ym). What is the length of the longest initial portion X`

1 of the

template that matches within distortion D somewhere in the database? By a \match"

here we mean that there exists a contiguous substring Y j+`
j+1 of the database such that

the distortion between X`
1 and Y j+`

j+1 is at most D, with respect to, say, Hamming

distortion. Given two realizations of the processes X and Y producing the above

template and database, respectively, we write Lm(D) for this maximal match-length:

Lm(D) = supf` � 1 : yj+`j+1 2 B(x`1; D); for some j = 0; 1; : : : ; m� 1g:

Intuitively it seems that there is some connection between the match lengths Lm(D)

and the waiting times Wn(D). We would expect that the database length m is

essentially the same as the waiting time for (X1; : : : ; XLm(D)), that is, if n = Lm(D)

then Wn(D) should be approximately equal to m, and vice versa. Taking this analogy

a step further, we might be tempted to replace m by Wn(D) and n by Lm(D) in our

asymptotic results about waiting times, and hope that they remain valid.

We will see in detail in Chapters 3 and 4, that this intuition is essentially correct

but it is not trivial to justify. For example, replacing m by Wn(D) and n by Lm(D)

12 CHAPTER 1. INTRODUCTION

in (1.11) we obtain (see Theorem 4.2 in Chapter 4)

lim
m!1

logm

Lm(D)
= R(P;Q;D) a.s. (1.12)

Similarly, all second-order results about Wn(D) give us corresponding results for

Lm(D), providing a complete picture of the asymptotic behavior of Lm(D).

1.3 History

Some general remarks about the history of the results we have been discussing are

in order here. More detailed references to speci�c or more recent results are given at

appropriate points in the subsequent chapters.

In ergodic theory, the question of what we called Poincar�e recurrence was �rst

raised by Poincar�e in 1899 [59]. A very nice exposition of the long history of the

results that followed, and also of the connection with the infamous H-theorem of

Boltzmann, are presented in Petersen's text [55]. Kac's theorem was proved in 1947

[34]; alternative proofs can be found in [55][69].

Within probability theory, recurrence properties have been very important since

at least as far back as the late 1930's. Doeblin and Harris both identi�ed recurrence

as the key concept in analyzing the asymptotic behavior of Markov processes; see

Meyn and Tweedie's book [48] for a modern exposition. In particular, the idea of ap-

proximating the waiting time for an event by the reciprocal of its probability appears

already in Doeblin's work on continued fractions in 1940 [24], in Bellman and Harris'

(1951) work on the Ehrenfest model [10], and also in Harris' (1952) paper [31] on

recurrence in Markov chains. At the cost of more restrictive assumptions, these au-

thors go a step further and essentially show that the distribution of the waiting time

for a rare event A is approximately exponential, with mean equal to the probability

of A. Recent work in this direction is reported by Galves and Schmitt [27] who also

provide an extensive list of references.

Closer to our approach, the use of � logP (Xn
1) or a similar random walk as an

approximating sequence was employed by Ibragimov [32] and by Philipp and Stout

[57, Chapter 9] in proving re�nements to the Shannon-McMillan-Breiman theorem; by

Barron [7] in proving the Shannon source coding theorem in the almost sure sense; and

1.3. HISTORY 13

by Algoet and Cover [2] in an elementary proof of the Shannon-McMillan-Breiman

theorem.

The notion of typicality was introduced by Shannon in his famous 1948 paper [62]

that founded the �eld of information theory. Our calculation of the probability of

a typical sequence that lead to equation (1.2) was taken, essentially verbatim, from

the discussion preceding Theorem 3 in [62]. There, Shannon showed that for every

stationary ergodic Markov chain X with a �nite number of states,

� 1

n
logP (Xn

1) ! H in probability. (1.13)

McMillan [47] showed that (1.13) holds for every stationary ergodic process, and

Breiman [13] strengthened McMillan's result to the almost sure convergence result

we saw in (1.5). Meanwhile, �rst Yushkevich [77] in 1953 and then Ibragimov [32] in

his well-known 1962 paper proved a central limit theorem re�nement of (1.13). More

on the history of further work in this direction is given in Chapter 2.

Turning to applications, the �rst explicit connection between match lengths and

entropy seems to have been made in 1985 by Pittel [58], whose results are phrased

in terms of path lengths in random trees. Aldous and Shields [1] pointed out the

relationship between randomly growing trees and data compression, and Szpankowski

[66] made explicit the equivalence between match lengths along random sequences and

feasible paths in random trees.

Recurrence times in relation to data compression �rst appeared in Willems' work

[67] and also in Wyner and Ziv's 1989 paper [69], where they (implicitly) introduced

the idealized coding scenario we saw in Section 1.1.3. Wyner and Ziv [69] discovered

(1.3) and the corresponding result for waiting times (without distortion), and these

were formally established by Ornstein and Weiss [53] and by Shields [63], respec-

tively, using methods from ergodic theory. Extensive references to subsequent work

of re�ning and generalizing these results are given in Chapters 3 and 4.

In connection with DNA sequence analysis, results about asymptotics of match

lengths arising from string matching problems can found in the work of Karlin and

Ost [35], Pevzner, Borodovsky and Mironov [56], Arratia and Waterman [5], and

Dembo, Karlin and Zeitouni [20]. Some of these results can be viewed as natural

generalizations of the classical Erd�os-R�enyi laws of large numbers, as discussed by

Arratia, Gordon and Waterman in [4]. Finally we mention that related questions

14 CHAPTER 1. INTRODUCTION

about string searching algorithms in computer science have been studied by Guibas

and Odlyzko [29] and Jacquet and Szpankowski [33], among many others.

1.4 About This Thesis

1.4.1 Theory and Applications

Our initial motivation for this work was to gain a better understanding of the work-

ings of the Lempel-Ziv family of data compression algorithms. Our introduction to

the problem was through Wyner and Ziv's 1989 paper [69]; there, they isolated two

very interesting theoretical questions (the questions about the asymptotic behavior of

recurrence and waiting times), and demonstrated that the performance of the practi-

cal algorithms can be determined from the answers to these questions. Subsequently,

researchers in several communities outside information theory found these problems

also to be of theoretical interest and expanded on Wyner and Ziv's work. In the pro-

cess of generalizing the original results to the case when distortion is allowed, further

theoretical questions arose which led to the generalizations of the Shannon-McMillan-

Breiman theorem and its re�nements that we present in Chapter 2. These results, in

turn, provided the intuition that was missing in order to solve an important practical

problem, that of �nding a practical extension of the Lempel-Ziv idea to the case of

lossy compression { see Chapter 5.

In summary, a real practical application gave rise to some interesting theoretical

questions, whose solutions may have signi�cant impact in practice.

1.4.2 Organization

The rest of the thesis is organized as follows.

In Chapter 2 we describe the Shannon-McMillan-Breiman theorem, its re�nements

(by Yushkevich [77], Ibragimov [32], and Philipp and Stout [57]), and their general-

izations to the case when distortion is allowed (by Luczak and Szpankowski [45], Yang

and Kie�er [75], and Dembo and Kontoyiannis [21]).

In Chapter 3 we address the problem of recurrence times in stationary processes,

and we show the asymptotic behavior of the recurrence times Rn can be deduced from

that of the random walk � logP (Xn
1). This, combined with the results presented in

1.5. NOTATION 15

Chapter 2, gives us a complete asymptotic description of Rn. Corresponding results

are proved for certain longest match-lengths Mm along a realization, by exploiting a

nice duality relationship between Rn and Mm.

Chapter 4 contains analogous results about waiting times, both with and without

distortion. We �rst show that the behavior of the waiting times Wn(D) can be

deduced from that of the Q-probabilities of distortion balls B(Xn
1 ; D), and then we

apply our results from Chapter 2 to read-o� the asymptotics of Wn(D). Again,

corresponding results are proved for the match lengths Lm(D) via duality.

In Chapter 5 we address the problem of �nding an extension of the Lempel-

Ziv data compression algorithm that has asymptotically optimal compression perfor-

mance, and is also implementable in practice. We introduce a new lossy variant of

Lempel-Ziv, we prove its asymptotic optimality, and we argue that its complexity

and redundancy characteristics are comparable to those of its lossless counterpart.

The contributions of this thesis are brie
y summarized in Chapter 6, where we

also mention some promising future research directions.

Finally in Appendix A we give the proofs of some of the more technical results

from Chapters 2{5.

1.5 Notation

Here we state some notation and de�nitions that will remain in e�ect throughout this

thesis. Although most of these are repeated (at least once) somewhere else, we also

collect them here for easy reference.

� X = fXn ; n 2 Zg denotes a stationary process with values in some space

(A;A), and distribution determined by the measure P on the product space

(A1;A1).

� Similarly, Y = fYn ; n 2 Zg denotes a stationary process with values in some

space (Â; Â), and distribution determined by the measure Q on (Â1; Â1).

16 CHAPTER 1. INTRODUCTION

� For integers �1 � i � j � 1; we denote by Xj
i the vector of random variables

(Xi; Xi+1; : : : ; Xj). Similarly, for a sequence (xn)n2Z of elements from a set A,

xji denotes the part of the sequence between positions i and j.

� x denotes an in�nite realization x = x1�1 2 A1 of the process X ; similarly, y

denotes a realization y = y1�1 2 Â1 of Y .

� \log" denotes the logarithm taken to base 2, and \loge" denotes the natural

logarithm.

� H(X)
4
=�Px P (x) logP (x) denotes the entropy (in bits) of the discrete random

variable X, distributed according to the probability mass function P .

� H(P) denotes the entropy rate (in bits) of the process X with distribution P ,

and is de�ned by

H(P) = lim
n!1

1

n
H(Xn

1):

If X is stationary then, equivalently, H(P) = limn E[� logP (X0 jX�1�n)].

� H(PkQ) denotes the relative entropy (in bits) between the two probability

measures P and Q, and is de�ned by

H(PkQ) =

(R
dP log dP

dQ
; when dP

dQ
exists

1; otherwise.

� I(X;Y)
4
=H(P(X;Y)kPX�PY) denotes the mutual information (in bits) between

the random variables X and Y , where PX and PY denote the marginals of X

and Y , respectively, and P(X;Y) is their joint distribution.

� � is some �xed measurable function � : A� Â! [0;1), and f�ng is a sequence

of single-letter distortion measures �n : An � Ân ! [0;1) de�ned by

�n(xn1 ; y
n
1) =

1

n

nX
i=1

�(xi; yi); xn1 2 An; yn1 2 Ân; n � 1:

� R(D) is the rate-distortion function (in bits) of the process X, with respect to

the sequence of distortion measures f�ng and at distortion level D; it is de�ned

1.5. NOTATION 17

by

R(D) = lim
n!1

1

n
inf

�n2Qn
I(Xn

1 ;Y n
1)

where Qn is the space of all joint distributions �n for (Xn
1 ; Y

n
1), such thatR

�n(xn1 ; y
n
1)d�n(xn1 ; y

n
1) � D and the Xn

1 -marginal of �n is the same as the

original distribution of Xn
1 .

� He(X), He(P), He(PkQ), Ie(X;Y) and Re(D) denote the entropy, entropy rate,

relative entropy, mutual information and rate-distortion function in nats rather

than in bits, i.e., they have the same de�nitions as the corresponding functionals

without the subscript e, but with the logarithms to base 2 replaced with natural

logarithms.

