Chapter 1

Introduction

The central problem considered in this thesis is, loosely speaking, that of understand-

ing the behavior of long pattern occurrences in realizations of random processes in

discrete time. A typical question we will be asking is the following: Suppose we

observe the outcome of a binary random process; how long does it take until a cer-

tain pattern of zeros and ones first appears? Questions of this type arise naturally

in several areas, sometimes because of their theoretical interest and sometimes in

applications. Here are four representative examples.

i.

ii.

iii.

Poincaré recurrence. Here one asks questions about the reappearance of an
initial pattern generated by the process. Does it always reappear? When it
does, how long does it take? This problem and its ramifications are important
in the study of dynamical systems in ergodic theory. In Chapter 3 we will ask
what happens when we look for longer and longer such initial patterns — how

much longer do we have to wait each time?

String matching. Given two finite strings that are generated independently by
the same process, what is the length of their longest common (contiguous) sub-
string? This question arises in DNA sequence matching and in string searching
algorithms in computer science. As we will see in Chapters 3 and 4, there is a
natural “duality” relationship between questions about longest-match lengths,

and questions about the first occurrence of random patterns.

Typicality. In a long realization of a stationary ergodic process there are “typ-

ical” patterns that tend to appear often and “atypical” ones that only appear
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rarely. This observation was made by Shannon in his landmark 1948 paper [62].
What is the length and the relative frequency of typical patterns? In Chapter 2
we generalize Shannon’s original answers for these questions to real-valued (or
more general) processes, and also to the case when distortion is allowed in the

patterns.

iv. Data compression. Shannon’s observation of typical patterns provides a pre-
cise way to quantify how much structure there is in a “message” produced by

2

a random “source.” How can we take advantage of this structure to do “com-

9

pression,” i.e., to describe long messages efficiently? The celebrated Lempel-Ziv
family of data compression algorithms is based on exploiting this structure. In

Chapter 5 we extend this idea further to the case of lossy data compression.

This list is by no means exhaustive. Several related questions are mentioned in

Section 1.3 below.

As we shall see later, there is a common theme at the heart of all these prob-
lems — a strong connection between the geometry along a single realization and the
probabilistic structure of the underlying process that produced it, in particular, with
the entropy of that process. We can interpret this connection in the “big picture” by
saying that it provides yet another snapshot of the sample-path picture of stochastic
processes, added to the many other such properties that have come to form a major
part of the foundation of modern probability theory over the past 50 years.

1.1 The Question of Recurrence

In order to get a better idea of the flavor of our problems and the ideas involved
in solving them, we present here a concrete example of a question that is tackled in
detail in Chapter 3. We will try to illustrate three points: (1) the motivation for the
problem and the intuition underlying the analysis; (2) the natural way in which the
entropy enters when we calculate probabilities of patterns along a realization; (3) the

connection between pattern matching and data compression.
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1.1.1 Recurrence and Entropy

Suppose we observe a doubly-infinite realization @ = (...,z 1, zo, 21, Z2,...) pro-
duced by a stationary ergodic process X = {X,, ; n € Z}, which takes values in a
finite alphabet A. Write x{ for the substring of  between positions ¢ and j

A

xg:(xiaxi—l-la"'axj)a _OOSZS.] SOO,
and similarly Xij for the vector of random variables (X;, X;i1,...,X;). For a fixed
integer n we consider the pattern z7 = (xq, @9, ..., x,) formed by the first n symbols

produced by X, and we ask how far back into the past one has to look before seeing
the same pattern appear again. More precisely, we define R,,, the recurrence time for

a7, as the first position k& > 1 for which z =} 1 = a7

R, = inf{k>1 : a7} =al}.

If we increase the length of the pattern we are looking for, then, clearly, the time
we have to wait will increase, which implies that for every fixed realization x the
recurrence time R,, increases with n. Our main question here is: How fast does R,

mcrease?

To gain some intuition we first try to understand what happens in the simplest
case. Suppose X is a sequence of independent and identically distributed (i.i.d.)
binary random variables, with each X, = 1 with probability p, or X,, = 0 with
probability (1 — p). Below we show an example of a realization from X, with two

recurring strings z{ and 2% and corresponding recurrence times Ry = 14 and Rs = 26.

R4:14 HZ%
—~N= —~N=
021206110111010010001101011000101
5= @}

Conditional on the value of x;, say ;1 = 1, the distribution of the recurrence time R;
is exponential, with mean 1/p. Thus, R; is concentrated around the reciprocal of the

probability of the recurring symbol and has exponential tails away from its mean.

What about R, for general n? Although its distribution is more complicated in

this case, it is not hard to show that conditional on the recurring pattern z7, the
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mean of R, is still equal to the reciprocal of the probability of that pattern

1

Bl Xf = a1) = 5 (1.1)

where P denotes the distribution of X. Now what is this probability? If n is large,
there will be roughly np ones and n(1—p) zeros in 27, so that P(x7) ~ p™(1—p)"1=7),
Since this decays exponentially with n it suggests that, at least on the average, R,
increases exponentially with n. Moreover, looking at the exponent of decay of P(z7),
we see that

| 1 .
——log P(a}) & ——log (p" (1 - p)"" ") = H, (1.2)

where! H = —plogp — (1 — p) log(1 — p) is the entropy rate of the process X. This,
then, suggests that R,, increases exponentially with a rate in the exponent given by
the entropy rate of X and, indeed, it is probably not very surprising that the above

informal argument can easily be made rigorous to show that

nlggo % logR, = H as. (1.3)

What is somewhat remarkable, though, is that each one of the above steps is

essentially valid in full generality — for every finite-valued stationary ergodic process:

A theorem of Kac from 1947 [34] says that (1.1) remains verbatim true for every

stationary ergodic X. This can be used to conclude (not trivially — see Theorem 3.1

in Chapter 3) that the asymptotic behavior of R, is the same as that of 1/P(X7), in
that

1 1 1
lim |—logR, — —log ——=| = lim —log[R,P(X])] =0 as., (1.4)
n n

n—o0

and the Shannon-McMillan-Breiman theorem [13] states that (1.2) also remains true

in this case

1
lim ——log P(X]') = H aus. (1.5)

n—oo N

'Here and throughout this thesis log denotes the logarithm taken to base 2, and log, denotes the
natural logarithm.
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where the entropy rate H of X is now defined by H = lim,, E[—log P(X, | X?,].
Combining (1.4) and (1.5) we recover (1.3) in complete generality!

1.1.2 Second-Order Results

After seeing that the rate in the exponent of the recurrence times R,, converges, with
probability one, to a constant (the entropy rate H), there is a natural sequence of

further questions we would like to ask, including:

i. What is the rate of convergence to the H in (1.3)7
ii. What is the asymptotic distribution of the deviations away from H?

iii. What is the variance of these deviations?

The way we will answer these questions in Chapter 3 is by refining the steps we took
in the strategy that gave us (1.3). The main intuition we gained there was that, in
a strong asymptotic sense, R,, the recurrence time for the pattern X7 is close to
the reciprocal of the probability P(X7) of that pattern. First we will show that the

formal connection between R,, and 1/P(X7) given in (1.4) can be strengthened to

1
lim —log[R,P(X])] = 0 aus. (1.6)
n—o0o n
Then, looking at —log P(XT) a little more carefully and assuming for a moment that

X is i.i.d., we see that —log P(X]') can be rewritten as an ordinary random walk

n

—log P(XT) = ) [~ log P(X})], (1.7)
i=1
so that its asymptotic behavior can be described in detail by the classical limit the-
orems for partial sums of i.i.d. random variables. For example, combining equations
(1.6) and (1.7) with the classical central limit theorem immediately yields

1 n — nH
log ft —nH 25 N(0,0%) (1.8)
Vn
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with 02 = Var(—log P(X;)), answering our questions (ii) and (iii) above [* Py
denotes convergence in distribution]. This can be viewed as a central-limit-theorem-
type refinement to the strong-law-of-large-numbers statement of (1.3). Similarly, a
simple application of the law of the iterated logarithm gives

log R, —nH
lim sup o8 ML a.s., (1.9)

n—oo 4/2nlog,log, n

providing the pointwise rate of convergence in (1.3) and answering question (i).

In Chapters 2 and 3 we show that the independence assumption can be signifi-

cantly relaxed, and the same strategy works for a large class of processes with memory.

1.1.3 Recurrence and Data Compression

How did the question of the asymptotic behavior of R,, first arise?

In 1989, in an attempt to understand the exact compression performance of some
variants of the Lempel-Ziv data compression algorithm, Wyner and Ziv [69] discovered
the connection between recurrence times and entropy described in (1.3). One of the
central ideas in their paper was, instead of considering the actual algorithms directly,
to introduce and analyze an idealized coding scenario, a simple version of which we
describe below.

Suppose an encoder and a decoder, me and you, say, have been communicating
for a long time so that presently we share a very long, in fact infinitely long, common
database X°_ = (..., X 1, X;) produced by some stationary ergodic “source” X.
My task as the encoder is to describe to you the “message” X' consisting of the next
n symbols produced by X, and I want to find a way to utilize somehow the “common
information” X° _ we share in order to describe X' more efficiently.

My idea is, rather than describing X7 to you directly, [ will look in the database
X, find the first position R, where a copy of the message X" appears, and tell
you that position. From this information you can easily recover X" by looking in the
database and reading off the string (X_p, 11, X g, 19,.--, X_Rr,4n)-

Is this a good idea? Since all I have to tell you is R,,, my description consists of
approximately log R, bits (in general it takes about logk bits to describe an integer

k), and from this you can recover a message of length n symbols, giving a compression
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ratio of approximately
log R,

n

bits per symbol.

As we saw in (1.3) this ratio converges to the entropy rate of X, implying that the
compression performance of this simple-minded scheme is asymptotically optimal!

Although of no practical use in itself, this result provides the main technical ingre-
dient in proving the optimality of the so-called Sliding-Window Lempel-Ziv algorithm
[84][71], probably the most popular compression algorithm in use today. Moreover,
Wyner and Ziv’s idea of reducing the study of a practical algorithm to that of an
idealized coding scenario was a very significant contribution to our intuitive under-
standing of the workings of several Lempel-Ziv schemes. Since then, this reduction
has been exploited by a number of authors and has ultimately lead not only to a
better understanding of the existing methods, but also to several new, practical data
compression algorithms.

In Section 1.2.2 below we will push this connection a little further; we will dis-
cuss extensions of the Lempel-Ziv idea to lossy data compression, and motivate our

subsequent results in Chapter 5.

1.2 Three More Questions

Next we outline three more questions that are addressed later in this thesis, and we

highlight some of our relevant results from Chapters 2-5.

1.2.1 Waiting Times

Consider the following variation of the recurrence times problem: Instead of asking
how long it takes before the first reappearance of the initial pattern generated by some
random process, we ask how long it takes before the first approximate appearance of
a random pattern generated independently by a different process.

For the sake of simplicity, consider two i.i.d. binary processes X = {X,, ; n € Z}
and Y = {Y,, ; n € Z}, with distributions P and @, respectively. We will measure

the closeness between finite realizations from X and Y by the proportion of positions
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where they agree, so we define the Hamming distortion between =} and y} by

p xlayl - Zj{xz — Y 7 xrlla y? € {Oal}na n 2 ]-7 (110)

where I{x; = y;} is the indicator function of the event {x; = y;}. For any binary
string 7 and any distortion level D € [0, 1] we let B(z}, D) denote the distortion-ball

of radius D around z7:
B(at, D) = {y? € {0,1}" : pn(af,yr) < D}.

Given two realizations of X and Y and a D € [0, 1], our quantity of interest here is

the waiting time W, (D) until a D-close version of z first appears somewhere in 3{°:
W.(D) = inf{k >1:yt ' € B(z},D)}.

Intuitively, it seems natural to expect that the asymptotic behavior of W, (D) as
n — oo would not be very different from that of R,, so we ask: To what extent does
W, (D) behave like R,?

In Chapter 4 this question is addressed (and answered), and the analysis follows

essentially the same strategy as the one employed to analyze the behavior of R,,:

i. First, we prove that the waiting time W, (D) until we find a D-close match for
X7 can be approximated by the reciprocal of the probability Q(B(X7, D)) of
finding such a match (see Theorem 4.1, Chapter 4):

logW,, (D) ~ —log Q(B(XY, D)).

ii. Then we show that, asymptotically, —log Q(B(X7, D)) behaves as a random
walk (Theorems 2.4 and 2.5, Chapter 2), just like —log P(X7) did in the case
of R,.

Although these two steps closely parallel the corresponding recurrence times results
n (1.6) and (1.7), the techniques used to prove them had to be different in this case.
One of the difficulties can be spotted easily from the fact that we cannot expand
—log Q(B(XT{, D)) as random walk like we did with —log P(X7) in (1.7). In fact,
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it is not even clear a priori that —log Q(B(X7, D)) will have the same asymptotic
behavior as —log P(X7).

Chapter 2 is devoted to showing that the same behavior does indeed persist, in
that the probabilities Q(B(X}, D)) decay exponentially and their deviations from
the limiting exponent are asymptotically those of a random walk. These results
provide natural generalizations of the Shannon-McMillan-Breiman theorem and its
refinements to general processes (taking more than a discrete set of values) and to
the case when distortion is allowed.

Combining, as before, (i) and (ii) with the classical limit theorems for partial sums
of i.i.d. random variables we obtain analogs of (1.3), (1.8) and (1.9): From the strong
law of large numbers it follows that the waiting times W, (D) increase exponentially

with probability one,

1
lim —logW, (D) = R(P,Q,D) as., (1.11)

n—oo N,
where the rate in the exponent R(P,Q, D) can be explicitly identified as the solution
to a variational problem in terms of the entropies of X and Y. Similarly, using the
central limit theorem and the law of the iterated logarithm we get analogs for (1.8)

and (1.9), respectively.

1.2.2 Lossy Data Compression

In many engineering applications where large amounts of data are to be stored or
transmitted, compression is an important component. Often, in order to reduce the
storage or transmission requirements, we are willing to tolerate a certain amount of
error in the reconstructed data — for example, think of a large image database where
each image is compressed by a factor of, say, 50:1, and can be recovered not perfectly,
but with a small amount of visual distortion. The following question will be addressed
in Chapter 5: Is there an easy way to extend the Lempel-Ziv idea to the case when
distortion is allowed, to obtain a practical lossy compression scheme based on pattern
matching?

The great success of the Lempel-Ziv family of algorithms has been mainly due
to two reasons. First, they are low complexity algorithms that can be simply imple-

mented (they are, for example, implemented on almost every personal computer in
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use today). Since efficient string matching has been very well studied by computer
scientists over the past several decades, there are, by now, a number of very efficient
algorithms that can be readily used in the context of compression.

The second reason for their practical success is that Lempel-Ziv schemes are uni-
versal — they assume essentially zero prior knowledge about the distribution of the
source to be compressed. The trick they employ to overcome this lack of knowledge
comes down to the idea of using the message itself as a codebook. For example, in
the idealized coding scenario described in relation to recurrence times (Section 1.1.3
above), we assumed that the encoder and decoder shared an infinitely long database
that had the same distribution as the source, and that the next part of the message
was described by a pointer into that database.

There is, therefore, an implicit assumption that plays a key role in the success of
these compression algorithms, namely, that the optimal (lossless) description of some
random message is in terms of a codebook with the same distribution as the message
itself. Unfortunately, this assumption is not true in the lossy case, and one is forced
to consider codebooks generated according to different distributions.

To understand the situation better we follow Wyner and Ziv’s example [69] and
turn to an idealized coding scenario: Consider an encoder and a decoder sharing a
common infinite database Y™ = (Y7, Y5,...), generated by some i.i.d. binary process
Y with distribution (). Suppose that the encoder’s task is to communicate a message
X7, generated by a different i.i.d. binary process X of distribution P, to the decoder,
within some prescribed distortion D (with respect, say, to Hamming distortion {p,} as
defined in (1.10)). The encoder’s strategy is, as before, to look through the database
until the first time when a D-close match of X7 is found, and then tell the decoder the
position W, (D) of this first match. To describe W, (D) it takes roughly log W, (D)

bits, so the compression achieved by this simple code equals

log W,,(D)
n

bits per symbol.

As we saw in (1.11), this converges to R(P, @, D), so different choices of the database
distribution yield different limiting compression ratios. The bad news here is that,
unlike in the case of lossless compression, R(P,Q, D) is not in general minimized by
choosing the database to be of the same distribution as the source, i.e., taking () = P.

On the other hand, the optimal compression ratio for X with respect to Hamming
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distortion at level D (given by the rate-distortion function R(D) of X) satisfies
R(D) = inf R(P.Q. D)

so that the problem is that we do not know a priori how to choose the best database
distribution in order to minimize R(P,Q, D).

In Chapter 5 we describe a new lossy version of Lempel-Ziv coding that gets
around this problem by maintaining not just one, but multiple databases at the
encoder and the decoder, and chooses which one to use at each stage in a “greedy”
manner. The new algorithm is demonstrated to have asymptotically optimal compres-
sion performance (Theorem 5.2), and we argue that its complexity and redundancy

characteristics are comparable to those of its lossless counterpart.

1.2.3 Match Lengths and DNA Template Matching

In the analysis of DNA or protein sequences the following problem is of interest:
Suppose we have a template (X1, X5,...) and a long but finite database sequence
Y = (Y, Ya,...,Y,). What is the length of the longest initial portion X{ of the
template that matches within distortion D somewhere in the database? By a “match”
here we mean that there exists a contiguous substring Yﬁ’f of the database such that

the distortion between X! and Yfff is at most D, with respect to, say, Hamming
distortion. Given two realizations of the processes X and Y producing the above

template and database, respectively, we write L,,(D) for this maximal match-length:
L, (D) =sup{¢>1 : yﬁf € B(z!, D), forsome j =0,1,...,m —1}.

Intuitively it seems that there is some connection between the match lengths L,, (D)
and the waiting times W, (D). We would expect that the database length m is
essentially the same as the waiting time for (Xy,..., Xy, (py), that is, if n = L,,(D)
then W, (D) should be approximately equal to m, and vice versa. Taking this analogy
a step further, we might be tempted to replace m by W, (D) and n by L,,(D) in our
asymptotic results about waiting times, and hope that they remain valid.

We will see in detail in Chapters 3 and 4, that this intuition is essentially correct

but it is not trivial to justify. For example, replacing m by W, (D) and n by L,,(D)
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in (1.11) we obtain (see Theorem 4.2 in Chapter 4)

) logm
%1_1;%0 I.D) R(P,Q,D) aus. (1.12)

Similarly, all second-order results about W, (D) give us corresponding results for

L, (D), providing a complete picture of the asymptotic behavior of L,, (D).

1.3 History

Some general remarks about the history of the results we have been discussing are
in order here. More detailed references to specific or more recent results are given at
appropriate points in the subsequent chapters.

In ergodic theory, the question of what we called Poincaré recurrence was first
raised by Poincaré in 1899 [59]. A very nice exposition of the long history of the
results that followed, and also of the connection with the infamous H-theorem of
Boltzmann, are presented in Petersen’s text [55]. Kac’s theorem was proved in 1947
[34]; alternative proofs can be found in [55][69].

Within probability theory, recurrence properties have been very important since
at least as far back as the late 1930’s. Doeblin and Harris both identified recurrence
as the key concept in analyzing the asymptotic behavior of Markov processes; see
Meyn and Tweedie’s book [48] for a modern exposition. In particular, the idea of ap-
proximating the waiting time for an event by the reciprocal of its probability appears
already in Doeblin’s work on continued fractions in 1940 [24], in Bellman and Harris’
(1951) work on the Ehrenfest model [10], and also in Harris’ (1952) paper [31] on
recurrence in Markov chains. At the cost of more restrictive assumptions, these au-
thors go a step further and essentially show that the distribution of the waiting time
for a rare event A is approximately exponential, with mean equal to the probability
of A. Recent work in this direction is reported by Galves and Schmitt [27] who also
provide an extensive list of references.

Closer to our approach, the use of —log P(X7) or a similar random walk as an
approximating sequence was employed by Ibragimov [32] and by Philipp and Stout
[57, Chapter 9] in proving refinements to the Shannon-McMillan-Breiman theorem; by

Barron [7] in proving the Shannon source coding theorem in the almost sure sense; and
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by Algoet and Cover [2] in an elementary proof of the Shannon-McMillan-Breiman
theorem.

The notion of typicality was introduced by Shannon in his famous 1948 paper [62]
that founded the field of information theory. Our calculation of the probability of
a typical sequence that lead to equation (1.2) was taken, essentially verbatim, from
the discussion preceding Theorem 3 in [62]. There, Shannon showed that for every

stationary ergodic Markov chain X with a finite number of states,

1
——log P(X]) — H in probability. (1.13)
n

McMillan [47] showed that (1.13) holds for every stationary ergodic process, and
Breiman [13] strengthened McMillan’s result to the almost sure convergence result
we saw in (1.5). Meanwhile, first Yushkevich [77] in 1953 and then Ibragimov [32] in
his well-known 1962 paper proved a central limit theorem refinement of (1.13). More
on the history of further work in this direction is given in Chapter 2.

Turning to applications, the first explicit connection between match lengths and
entropy seems to have been made in 1985 by Pittel [58], whose results are phrased
in terms of path lengths in random trees. Aldous and Shields [1] pointed out the
relationship between randomly growing trees and data compression, and Szpankowski
[66] made explicit the equivalence between match lengths along random sequences and
feasible paths in random trees.

Recurrence times in relation to data compression first appeared in Willems’ work
[67] and also in Wyner and Ziv’s 1989 paper [69], where they (implicitly) introduced
the idealized coding scenario we saw in Section 1.1.3. Wyner and Ziv [69] discovered
(1.3) and the corresponding result for waiting times (without distortion), and these
were formally established by Ornstein and Weiss [53] and by Shields [63], respec-
tively, using methods from ergodic theory. Extensive references to subsequent work
of refining and generalizing these results are given in Chapters 3 and 4.

In connection with DNA sequence analysis, results about asymptotics of match
lengths arising from string matching problems can found in the work of Karlin and
Ost [35], Pevzner, Borodovsky and Mironov [56], Arratia and Waterman [5], and
Dembo, Karlin and Zeitouni [20]. Some of these results can be viewed as natural
generalizations of the classical Erdos-Rényi laws of large numbers, as discussed by

Arratia, Gordon and Waterman in [4]. Finally we mention that related questions
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about string searching algorithms in computer science have been studied by Guibas

and Odlyzko [29] and Jacquet and Szpankowski [33], among many others.

1.4 About This Thesis

1.4.1 Theory and Applications

Our initial motivation for this work was to gain a better understanding of the work-
ings of the Lempel-Ziv family of data compression algorithms. Our introduction to
the problem was through Wyner and Ziv’s 1989 paper [69]; there, they isolated two
very interesting theoretical questions (the questions about the asymptotic behavior of
recurrence and waiting times), and demonstrated that the performance of the practi-
cal algorithms can be determined from the answers to these questions. Subsequently,
researchers in several communities outside information theory found these problems
also to be of theoretical interest and expanded on Wyner and Ziv’s work. In the pro-
cess of generalizing the original results to the case when distortion is allowed, further
theoretical questions arose which led to the generalizations of the Shannon-McMillan-
Breiman theorem and its refinements that we present in Chapter 2. These results, in
turn, provided the intuition that was missing in order to solve an important practical
problem, that of finding a practical extension of the Lempel-Ziv idea to the case of
lossy compression — see Chapter 5.

In summary, a real practical application gave rise to some interesting theoretical

questions, whose solutions may have significant impact in practice.

1.4.2 Organization

The rest of the thesis is organized as follows.

In Chapter 2 we describe the Shannon-McMillan-Breiman theorem, its refinements
(by Yushkevich [77], Ibragimov [32], and Philipp and Stout [57]), and their general-
izations to the case when distortion is allowed (by Luczak and Szpankowski [45], Yang
and Kieffer [75], and Dembo and Kontoyiannis [21]).

In Chapter 3 we address the problem of recurrence times in stationary processes,
and we show the asymptotic behavior of the recurrence times R,, can be deduced from
that of the random walk — log P(XT"). This, combined with the results presented in
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Chapter 2, gives us a complete asymptotic description of R,. Corresponding results
are proved for certain longest match-lengths M, along a realization, by exploiting a
nice duality relationship between R, and M,,.

Chapter 4 contains analogous results about waiting times, both with and without
distortion. We first show that the behavior of the waiting times W, (D) can be
deduced from that of the ()-probabilities of distortion balls B(X7}, D), and then we
apply our results from Chapter 2 to read-off the asymptotics of W, (D). Again,
corresponding results are proved for the match lengths L,,(D) via duality.

In Chapter 5 we address the problem of finding an extension of the Lempel-
Ziv data compression algorithm that has asymptotically optimal compression perfor-
mance, and is also implementable in practice. We introduce a new lossy variant of
Lempel-Ziv, we prove its asymptotic optimality, and we argue that its complexity
and redundancy characteristics are comparable to those of its lossless counterpart.

The contributions of this thesis are briefly summarized in Chapter 6, where we
also mention some promising future research directions.

Finally in Appendix A we give the proofs of some of the more technical results
from Chapters 2-5.

1.5 Notation

Here we state some notation and definitions that will remain in effect throughout this
thesis. Although most of these are repeated (at least once) somewhere else, we also

collect them here for easy reference.

e X = {X, ; n € Z} denotes a stationary process with values in some space
(A, A), and distribution determined by the measure P on the product space
(A, A®).

e Similarly, Y = {Y,, ; n € Z} denotes a stationary process with values in some
space (A, A), and distribution determined by the measure Q on (A, A%).
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For integers —oo <1 < j < oo, we denote by Xg the vector of random variables
(Xi, Xit1,...,X;). Similarly, for a sequence (z,)nez of elements from a set A,

x{ denotes the part of the sequence between positions ¢ and j.

x denotes an infinite realization & = x°,_ € A* of the process X; similarly, y

denotes a realization y = y*>_ € A® of Y.

“log” denotes the logarithm taken to base 2, and “log,” denotes the natural

logarithm.

H(X)é — >, P(x)log P(z) denotes the entropy (in bits) of the discrete random
variable X, distributed according to the probability mass function P.

H(P) denotes the entropy rate (in bits) of the process X with distribution P,

and is defined by

H(P) = lim ~ H(X™).

n—oo N,

If X is stationary then, equivalently, H(P) = lim, E[—log P(X,|X_})].

H(PJ||Q) denotes the relative entropy (in bits) between the two probability
measures P and (), and is defined by

[ dPlog %, when 4 @ exists

00, otherwise.

H(P|Q) ={

I(X; Y)éH(P(X,y) | Px x Py) denotes the mutual information (in bits) between
the random variables X and Y, where Px and Py denote the marginals of X

and Y, respectively, and P(x y is their joint distribution.

p is some fixed measurable function p: A x A — [0,00), and {p,} is a sequence

of single-letter distortion measures p, : A" x A" — [0, 00) defined by
Pn xlayl prwyz a??EAn, y?EAnanzl

R(D) is the rate-distortion function (in bits) of the process X, with respect to

the sequence of distortion measures {p,} and at distortion level D; it is defined
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by
1
R(D) = lim — inf I(X];Y)")

n—00 1, T™TEQn

where Q,, is the space of all joint distributions 7, for (X7, Y}"), such that
[ pu(at, yP)dm, (27, y7) < D and the X{-marginal of 7, is the same as the
original distribution of X7

e H.(X), H(P), H.(P||Q), I.(X;Y) and R.(D) denote the entropy, entropy rate,
relative entropy, mutual information and rate-distortion function in nats rather
than in bits, i.e., they have the same definitions as the corresponding functionals
without the subscript e, but with the logarithms to base 2 replaced with natural

logarithms.



