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Suppose the expectation E(F (X)) is to be estimated by the em-
pirical averages of the values of F on independent and identically
distributed samples {Xi}. A sampling rule called the “screened”
estimator is introduced, and its performance is studied. When the
mean E(U(X)) of a different function U is known, the estimates are
“screened,” in that we only consider those which correspond to times
when the empirical average of the {U(Xi)} is sufficiently close to its
known mean. As long as U dominates F appropriately, the screened
estimates admit exponential error bounds, even when F (X) is heavy-
tailed. The main results are several nonasymptotic, explicit exponen-
tial bounds for the screened estimates. A geometric interpretation, in
the spirit of Sanov’s theorem, is given for the fact that the screened
estimates always admit exponential error bounds, even if the stan-
dard estimates do not. And when they do, the screened estimates’
error probability has a significantly better exponent. This implies
that screening can be interpreted as a variance reduction technique.
Our main mathematical tools come from large deviations techniques.
The results are illustrated by a detailed simulation example.

1. Introduction. Suppose we wish to estimate the expectation,

µ := E[X3/4] =
∫ ∞

1
x3/4 f(x) dx,

based on n independent samples X1,X2, . . . ,Xn drawn from some unknown
density f on [1,∞). Suppose, also, we have reasons to suspect that f has a
fairly heavy right tail, and assume that the only specific piece of information
we have available is the value of the mean of f , ν := E(X) =

∫∞
1 xf(x) dx,

perhaps also its variance. Because of the heavy right tail, it is natural to
expect significant variability in the data {Xi} as well as in the subsequent
estimates of µ. For definiteness, assume that the unknown density is f(x) =

5
2x7/2 , for x ≥ 1 (and f(x) = 0, otherwise), so that µ = 10/7 and ν = 5/3.
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Consider the simplest (and most commonly used) estimator for µ; for
each k ≤ n, let Ŝk denote the empirical average of the transformed samples
{X3/4

i },
Ŝk :=

1
k

k∑
i=1

X
3/4
i , 1 ≤ k ≤ n.

Although the law of large numbers guarantees that the sequence of estimates
{Ŝk} is consistent and the central limit theorem implies that the rate of
convergence is of order n−1/2, a quick glance at the behavior of Ŝk for finite
k reinforces the concern that the estimates are highly variable: The plots in
Figure 1 clearly indicate that, up to k = n = 5000, the {Ŝk} are still quite
far from having converged.
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Fig 1. Two typical realizations of the estimates {Ŝk} for k = 100, 101, . . . , n = 5000.

Since f is heavy tailed, this irregular behavior is hardly surprising: Indeed,
as n grows, the error probability Pr{Ŝn > µ + ε} decays like,

Pr{Ŝn > µ + ε} ∼ 1
ε10/3n7/3

, n → ∞,(1.1)

for any ε > 0; see, e.g., [12]. Therefore, unlike with most classical exponential
error bounds, here the error probability decays polynomially in the sample
size n, and with a rather small power at that.

This state of affairs is discouraging, but suppose we decide to use the
additional information we have about f , namely that its mean ν equals
5/3, in order to “screen” the estimates {Ŝk}. This can be done as follows:
Together with the {Ŝk}, also compute the empirical averages {T̂k} of the
samples {Xi} themselves,

T̂k =
1
k

k∑
i=1

Xi, 1 ≤ k ≤ n,
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and only consider estimates Ŝk at times k when the corresponding average
T̂k is within a fixed threshold u > 0 from its known mean. That is, only
examine Ŝk if at that same time k, |T̂k − ν| < u.

This results in what we call in this paper the “screened estimator” of µ.
Figure 2 illustrates its performance on four different realizations of the above
experiment.
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Fig 2. Four typical realizations of the estimates {Ŝk} for k = 100, 101, . . . , n = 5000. The
“screened estimates” are plotted in bold, and they are simply the original Ŝk at times k
when the corresponding empirical average T̂k is within u = 0.005 of its mean ν = 5/3.

More generally, assume X,X1,X2, . . . are independent and identically dis-
tributed (i.i.d.) random variables with unknown distribution, and we wish
to estimate the expectation µ := E[F (X)] for a given function F : R → R,
while we happen to know the value of the expectation ν := E[U(X)] of a
different function U : R → R. In this general setting, we introduce:

The Screened Estimator. For each k ≥ 1, together with the empirical
averages {Ŝk} of the {F (Xi)} also compute the averages {T̂k} of the {U(Xi)},
and only consider estimates Ŝk at times k when T̂k is within a fixed threshold
u > 0 from its mean, i.e., |T̂k − ν| < u.

The intuition is simple. In cases when we suspect that the empirical dis-
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tribution P̂k of the samples {Xi ; i ≤ k} is likely to be far from the true
underlying distribution P , we can check that the projection

∫
U dP̂k = T̂k

of P̂k along a function U is close to the projection
∫

U dP = ν of the true
distribution P along U . Of course this does not guarantee that P̂k ≈ P or
that Ŝk ≈ µ, but it does rule out instances k when it is certain that P̂k differs
significantly from P .

More importantly, as we shall see next, it is often possible to obtain
explicitly computable exponential error bounds for the screened estimator,
even when the error probability of the standard estimates {Ŝk} decays at a
polynomial rate.

The purpose of this paper is twofold. First, we provide a theoretical ex-
planation for the practical advantage of the screened estimator: We develop
general conditions under which the error probability of the screened esti-
mator decays exponentially, regardless of the tail of the distribution of the
{F (Xi)}. The main assumption is that U dominates F from above, in that
supx[F (x) − βU(x)] is finite for all β > 0, where the supremum is over all
x in the support of X. Then we state and prove a number of explicit ex-
ponential bounds for the error probability of the screened estimator, which
are easily computable and readily applicable to specific problems where the
only information we have about the unknown underlying distribution is the
mean and perhaps also the variance of U(X) for a particular function U .

To illustrate, we return to the example of estimating the expectation
µ = E(X3/4) with respect to an unknown density f on [1,∞), based on n
i.i.d. samples X1, . . . ,Xn drawn from f , and assuming that we only know
the mean (and perhaps some higher moments) of X. In the above notation,
this corresponds to F (x) ≡ x3/4 and U(x) ≡ x. The proof of the following
proposition is given at the end of Section 3.

Proposition 1.1. (i) The error probability of the standard

estimator {Ŝn} decays to zero at a polynomial rate: If the
density f is given by f(x) = 5

2x7/2 for x ≥ 1, then for any ε > 0,

Pr{Ŝn − µ > ε} ∼ 1
ε10/3n7/3

, n → ∞.

(ii) The error probability of the screened estimator decays to

zero exponentially fast: If the only information we have about f
is that its mean ν equals 5/3, then we can conclude that for all ε, u > 0
there exists I(ε, u) > 0 such that,

Pr{Ŝn − µ > ε and |T̂n − 5
3 | < u} ≤ e−nI(ε,u), for all n ≥ 1.
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(iii) If, in addition, we know that the variance of f equals 20/9, then an
explicit exponential bound can be computed: For any ε > 0 and any
0 < u ≤ ε

20 ,

Pr{Ŝn − µ > ε and |T̂n − 5
3 | < u} ≤ e−(0.005)×nε2 , for all n ≥ 1.

(iv) If we also know that the value of the covariance between X3/4 and
X under f is 20/21, then the following more accurate bound can be
obtained: For any ε > 0 and any 0 < u ≤ ε

20 ,

Pr{Ŝn − µ > ε and |T̂n − 5
3 | < u} ≤ e−(0.0367)×nε2 ,(1.2)

for all n ≥ 1.

As long as the mean of X in known, we can employ the screened estimator
and be certain that it will have an exponentially small error probability,
whereas the standard estimator’s probability of error may decay at least as
slowly as n−7/3. If the variance of X is also known, then for the specific
values in the simulation examples in Figure 2, with ε = 0.2, u = 0.005 and
n = 5000, part (iii) of the proposition gives,

Pr{Ŝn − µ > 0.2 and |T̂n − 5
3 | < 0.005} ≤ 0.368.

This is fairly weak, despite the fact that ε = 0.2 is a rather moderate margin
of error. But the error probability does decay exponentially, and with n =
10000 samples the corresponding upper bound is only ≈ 0.136, while for
n = 15000 it is ≈ 0.0498. And if, in addition, the value of the covariance
between X3/4 and X is available, then part (iv) gives a much more accurate
result even for smaller ε: Taking ε = 0.1, u = 0.005 and n = 5000,

Pr{Ŝn − µ > 0.1 and |T̂n − 5
3 | < 0.005} ≤ 0.1596,

and for n = 10000 samples the corresponding bound is ≈ 0.025.
Two points of caution are in order here. The first is perhaps somewhat

subtle and has to do with the interpretation of the above error bounds. What
exactly does (1.2) say? Is it the case that, at any time k when T̂k is within u
of its mean, we can apply (1.2) to obtain a bound on the probability of error
for the corresponding estimate Ŝk? Strictly speaking, the answer is “no”;
since the times at which the screening averages {T̂k} are close to their mean
are random, (1.2) cannot be automatically invoked. A strict operational
interpretation of the mathematical statement in (1.2) is as follows: First
choose and fix an n such that (1.2) offers a satisfactory guarantee on the
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error probability; here n may be the total number of samples available, or
it may be the number of samples we decide to generate from f . Then look
at T̂n, and if |T̂n − ν| < u, it is legitimate to use the error bound (1.2) for
the value of the estimate Ŝn at the last sample time n. Otherwise, do not
use the bound (1.2) at all.

The same interpretation applies to any application of the screened esti-
mator. On the one hand, screening gives a powerful heuristic for selecting
times k when the Ŝk are more likely to be accurate, and it can be used as
a diagnostic tool to actually rule out times k when it is certain that the
empirical distribution of the samples is not close to the true underlying dis-
tribution. On the other hand, in cases when it is required that the error
probability be precisely quantified, the sampling times cannot be random
and they have to be decided upon in advance.

The second point is based on some results we observed in simulation
experiments, indicating that the sampling times k picked out by the screened
estimator are not all equally reliable: Naturally, since the probability of error
decays exponentially, earlier times correspond to much looser error bounds,
while the error probability of estimates obtained during later times can be
more tightly controlled. This is illustrated by the (rather atypical but not
impossibly rare) results shown in Figure 3.
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Fig 3. Another realization of the empirical estimates {Ŝk} for k = 100, 101, . . . , n = 5000,
plotted together with the screened estimates shown in bold (where u = 0.005 as before).
The screened estimates at earlier times are less accurate than some of the later estimates
that are ignored by the screened estimator.

From the probabilistic point of view, the following calculation gives a quick
explanation for the fact that the screened estimator leads to exponential
error bounds in great generality (although this is not how the actual error
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bounds in Section 3 are obtained). Suppose the {Ŝk} are used to estimate the
mean µ = E(F (X)) for some F , while we know ν = E(U(X)) for a different
function U that dominates F in that ess supX [F (X) − βU(X)] < ∞, for
all β > 0. Although F (X) may be heavy tailed, in which case the {Ŝk}
themselves will not admit exponential error bounds, the error probability of
the screened estimator is bounded by,

Pr{Ŝn − µ > ε and |T̂n − ν| < u}

≤ Pr
{ 1

n

n∑
i=1

[F (Xi) − βU(Xi)] − (µ − βν) > ε − βu
}
.(1.3)

Since E[F (X) − βU(X)] = µ − βν, for 0 < β < ε
u this is a large deviations

probability for the right tail of the partial sums of the random variables
{F (Xi)−βU(Xi)}, which are (a.s.) bounded above. It is, therefore, no surprise
that this probability is exponentially small.

1.1. Screening and control variates. A well-known and commonly used
technique for reducing the variance of an estimator in classical Monte Carlo
simulation is the method of control variates; see, e.g., the standard texts [7,
11, 13] or the paper [9] for extensive discussions. This method is based on the
observation that in many applications – exactly as in our setting – there is a
function U whose expectation ν = E[U(X)] is known. Therefore, replacing
the estimates {Ŝk} for µ = E[F (X)] with the control variate estimates,

S̃k :=
1
k

k∑
i=1

(
F (Xi) − β[U(Xi) − ν]

)
, 1 ≤ k ≤ n,

yields an estimator which is still consistent (since the additional term has
zero mean) but whose variance is different from that of {Ŝk}. In fact, choos-
ing (or estimating) the value of the constant β appropriately, always leads
to an estimator with strictly reduced variance, as long as F (X) and U(X)
are correlated random variables.

This technique is widely employed in practice; see the references above as
well as [1, 6]; also the text [8] contains many examples of current interest in
computational finance and pointers to the relevant literature. In particular,
functions U that appear in applications as control variates, provide a natural
class of screening functions that can be incorporated in the design on the
screened estimator.

An interesting connection between these two methods (control variates
and screening) is seen in that the second probability in equation (1.3) above
is exactly the error probability for the control variate estimates {S̃k}. More
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generally, in cases where control variates (or some other method) are used to
reduce the variance of the {Ŝk}, we view screening as a sampling rule which
complements (and does not replace) variance reduction or variance estima-
tion techniques. The connection between screening and variance reduction
is an intriguing one, and will be explored in subsequent work [10].

1.2. Outline and summary of results. The general results in Sections 2
and 3 parallel those presented for the example in Proposition 1.1. Theo-
rems 2.1, 2.2 and 2.3 offer a theoretical description of the large deviations
behavior of the screened estimator’s error probability, both asymptotically
and for finite n. The only assumptions necessary are that E(F (X)) is finite,
and that the mean E(U(X)) is known for some function U which dominates
F in that ess sup[F (X) − βU(X)] < ∞ for all β > 0. Then the error proba-
bility admits a nontrivial exponential bound, regardless of the distribution
of X. The exponent can be expressed either as a Fenchel-Legendre transform
or in terms of relative entropy, and the relative entropy formulation leads to
an elegant geometric explanation for the fact that the screened estimator’s
error probability always decays exponentially.

When F (X) and U(X) also have finite second moments, and assuming
that the variance Var(U(X)) is known, in Theorem 3.1 we give an explicit,
easily computable, exponential bound for the error probability. The bound
holds for all n ≥ 1, and the exponent is of order ε2 for small ε, u. Also, a
more refined bound is given when the value of the covariance between F (X)
and U(X) is available. These are the main results of this paper.

In Section 4 we consider the case when F (X) and U(X) have finite expo-
nential moments, so that the standard estimator {Ŝk} already has an expo-
nentially vanishing error probability. Theorem 4.1 shows that the screened
estimator’s error probability decays at a strictly faster exponential rate, and
the difference between the exponents is more precisely quantified in Theo-
rem 4.2: It is shown to be of order ε2 for small ε, u, and this is used to draw
a different heuristic connection between screening and variance reduction
techniques.

Section 5 contains the proofs of Theorems 2.1, 2.2 and 2.3.
Finally, we mention that the screening idea can also be applied in the

context of more complex problems arising in Markov Chain Monte Carlo
(MCMC) simulation. Such generalizations are by no means immediate, and
they will be explored in subsequent work.

2. Large Deviations. In this section we give a theoretical explana-
tion for the (sometimes dramatic) performance improvement offered by the
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screened estimator. For explicit bounds like those presented in the Introduc-
tion, see Section 3.

Let X,X1,X2, . . . be i.i.d. random variables with common law given by
the probability measure P on R. Given a function F : R → R whose mean is
to be estimated by the empirical averages of the {F (Xi)}, for the purposes
of this section only we consider a slightly simplified version of the screened
estimator: Assuming the mean ν = E(U(X)) of a different function U :
R → R is known, we examine the screened estimator based on the one-
sided screening event, {∑n

i=1 U(Xi) − nν < nu}, for some u > 0. To avoid
cumbersome notation, write, Sn :=

∑n
i=1 F (Xi) and Tn :=

∑n
i=1 U(Xi),

n ≥ 1.
In the first result, Theorem 2.1 below, we obtain representations for the

asymptotic exponents of the error probability, both for the standard estima-
tor and for the screened estimator. The exponents are expressed in terms of
relative entropy, in the spirit of Sanov’s theorem; cf. [3, 4, 14]. Recall that
the relative entropy between two probability measures P and Q on the same
space is defined by,

H(P‖Q) :=

⎧⎨
⎩
∫

dP log dP
dQ , when dP

dQ exists

∞, otherwise.

Theorem 2.1 follows from the more general results in Theorem 2.2 and The-
orem 2.3 below; its proof is given in Section 5.

Theorem 2.1. [Sanov Asymptotics] Suppose the functions F : R →
[0,∞) and U : R → R have finite first moments µ := E[F (X)], ν :=
E[U(X)], and also finite second moments, E[F (X)2], E[U(X)2]. Assume
that F (X) is heavy tailed in that E[eθF (X)] = ∞ for all θ > 0, and that U
dominates F in that, m(β) := ess sup[F (X) − βU(X)] < ∞ for all β > 0.
Then:

(i) The error probability of the standard estimator decays

subexponentially: For all ε > 0,

lim
n→∞

1
n

log Pr{Sn − nµ > nε} = − inf
Q∈Σ

H(Q‖P ) = 0,

where Σ is the set of all probability measures Q on R such that
∫

FdQ−
µ > ε.

(ii) The error probability of the screened estimator decays

exponentially: For all ε, u > 0,

lim
n→∞

1
n

log Pr{Sn−nµ > nε and Tn−nν < nu} = − inf
Q∈E

H(Q‖P ) < 0,



10 KONTOYIANNIS & MEYN

where E ⊂ Σ is the set of all probability measures Q on R such that∫
FdQ − µ > ε and

∫
UdQ − ν < u.

Therefore, while the (asymptotic) exponent of the error probability of the
standard estimator is equal to zero, the exponent of the error probability
of the screened estimator is strictly positive. Although this situation is only
possible when the relative entropy is minimized over an infinite-dimensional
space of measures (in that the exponent infQ∈Σ H(Q‖P ) cannot be zero
when X takes only finitely many values), it is perhaps illuminating to offer
a geometric description.

The large oval in the first diagram in Figure 4 depicts the space of all
probability measures Q on R, and the the small “cap” on the left is the
set Σ of those Q with

∫
FdQ − µ > ε. The gray shaded area corresponds

to the “smallest” subset of Σ such that the infimum of H(Q‖P ) over this
subset is zero. [Of course this set is not exactly well defined, but it does
convey the correct intuition.] In the second diagram, the black shaded area
corresponds to set E, formed by the intersection of Σ with the half space
H = {Q :

∫
UdQ− ν < u}. Note that H is a “typical” set under P , in that

P ∈ H and the empirical measure of the {Xi} will eventually concentrate
there by the law of large numbers. Nevertheless, when Σ is intersected with
H to give E, Theorem 2.1 tells us that it excludes the part of Σ which is
close to P in relative entropy (the gray area), and this forces the result of
the minimization over Q ∈ E to be strictly positive; the limiting minimizer
Q∗, assuming it exists, is shown as laying on the common boundary of Σ
and H.

E

PΣ PΣ Q∗

Fig 4. Geometric illustration of the fact that infQ∈Σ H(Q‖P ) = 0 whereas infQ∈E H(Q‖P )
is strictly positive.

The following two theorems give a more precise and complete description
of the large deviations properties of the probabilities of interest. Formally,
they simply establish a version of Cramér’s theorem in the present setting.
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What is perhaps somewhat surprising is that this is done without any as-
sumption of finite exponential moments. In the presence of the domination
condition m(β) < ∞, it turns out that is only necessary to assume finite
first (and in some cases second) moments for F (X) and U(X).

The results in Theorems 2.2 and 2.3 will form the basis for the develop-
ment of the bounds in Section 3. Their proofs are given in Section 5.

Theorem 2.2. [Exponential Upper Bounds] Suppose the functions
F : R → R and U : R → R are such that µ := E[F (X)] and ν := E[U(X)]
are both finite, and that m(β) := ess sup[F (X)−βU(X)] < ∞ for all β > 0.
Then for all ε, u > 0:

(i) Pr{Sn − nµ > nε, Tn − nν < nu} ≤ exp{−nH(E‖P )}, for all n ≥ 1,
where,

H(E‖P ) := inf{H(Q‖P ) : Q ∈ E},(2.1)

and E is the set of all probability measures Q on R such that
∫

FdQ−
µ > ε and

∫
UdQ − ν < u.

(ii) Pr{Sn − nµ > nε, Tn − nν < nu} ≤ exp{−nΛ∗
+(ε, u)}, for all n ≥ 1,

where,

Λ∗
+(ε, u) := sup

θ1,θ2≥0

{
θ1(µ + ε) − θ2(ν + u) − Λ+(θ1, θ2)

}
,

with Λ+(θ1, θ2) := log E
[
exp{θ1F (X) − θ2U(X)}

]
, θ1, θ2 ≥ 0.

(iii) The rate function Λ∗
+(ε, u) is strictly positive.

Theorem 2.3. [Large Deviations Asymptotics] Under the assump-
tions of Theorem 2.2, if, in addition, F (X) and U(X) have finite second
moments, then for all ε, u > 0,

lim
n→∞

1
n

log Pr{Sn − nµ > nε, Tn − nν < nu} = −Λ∗
+(ε, u),(2.2)

and Λ∗
+(ε, u) coincides with the rate function H(E‖P ) given in (2.1).

3. Bounds for Arbitrary Tails. Let X,X1,X2, . . . be i.i.d. random
variables. Given functions F,U : R → R, write Sn =

∑n
i=1 F (Xi) and Tn =∑n

i=1 U(Xi). We begin by restating part of Theorem 2.2. Since the two-sided
error event {Sn − nµ > nε, |Tn − nν| < nu} is contained in {Sn − nµ >
nε, Tn − nν < nu}, we have:
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Corollary 3.1. Suppose the functions F : R → R and U : R → R

are such that µ := E[F (X)] and ν := E[U(X)] are both finite, and that
m(β) := ess sup[F (X) − βU(X)] < ∞ for all β > 0. Then for all n ≥ 1 and
all ε, u > 0,

Pr{Sn − nµ > nε, |Tn − nν| < nu} ≤ e−nΛ∗
+(ε,u),

where the exponent, Λ∗
+(ε, u), is given by,

sup
θ1≥0,θ2≥0

{
θ1(µ + ε) − θ2(ν + u) − log E

[
exp{θ1F (X) − θ2U(X)}

]}
,

and is strictly positive.

Remarks.

1. An exactly analogous result holds if instead of m(β) we assume that
ess sup[F (X) + βU(X)] < ∞ for all β > 0. Then, repeating the Cher-
noff argument in the proof of Theorem 2.2 for the one-sided error event
{Sn − nµ > ε, Tn − nν > −nu} leads to the same bound, but with
the exponent, Γ∗

+(ε, u), given by,

sup
θ1≥0,θ2≥0

{
θ1(µ + ε) + θ2(ν − u) − log E

[
exp{θ1F (X) + θ2U(X)}

]}
,

and Γ∗
+(ε, u) can be similarly seen to be strictly positive.

2. Replacing F by −F yields a corresponding result for the left tail. If
ess inf[F (X) + βU(X)] > −∞ for all β > 0,

Pr{Sn − nµ < −nε, |Tn − nν| < nu} ≤ e−nΛ∗
−(ε,u),

where Λ∗−(ε, u) is given by,

sup
θ1≥0,θ2≥0

{
θ1(−µ + ε) + θ2(−ν − u)

− log E
[
exp{−θ1F (X) − θ2U(X)}

]}
,

and is strictly positive. Moreover, in view of the previous remark,
an analogous bound holds under the assumption that ess inf[F (X) −
βU(X)] > −∞ for all β > 0; in this case the exponent is replaced by,

Γ∗
−(ε, u) = sup

θ1≥0,θ2≥0

{
θ1(−µ + ε) + θ2(ν − u)

− log E
[
exp{−θ1F (X) + θ2U(X)}

]}
,

which is also strictly positive.
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3. Combining the observations in Remarks 1. and 2. immediately yields a
bound on the two-sided deviations of {Sn}. If both µ = E[F (X)] and
ν = E[U(X)] are finite, and also both ess sup[F (X) − βU(X)] < ∞
and ess inf[F (X) + βU(X)] > −∞, for all β > 0, then for all n ≥ 1
and all ε, u > 0,

Pr{|Sn − nµ| > nε, |Tn − nν| < nu}
≤ e−nΛ∗

+ + e−nΛ∗
− ≤ 2e−n min{Λ∗

+,Λ∗
−},(3.1)

where Λ∗
+ and Λ∗− are strictly positive. Although this double domina-

tion assumption may appear severe, it is generally quite easy to find
functions U that will dominate a given F appropriately. For exam-
ple, if F (x) ≡ x we can simply take U(x) ≡ x2, or, more generally,
U(x) ≡ x2k for any positive integer k, assuming appropriately high
moments exist.

4. In Remarks 1 and 2, two different domination assumptions were shown
to give a bound on the right tail of the partial sums of F , and two
more assumptions do the same for the left tail. Any of their four differ-
ent combinations gives a bound similar to (3.1), with the appropriate
combination of exponents.

If F and U also have finite second moments, an easily applicable, quan-
titative version of Corollary 3.1 can be obtained. The gist of the argument
is the use of the boundedness of [F (X) − βU(X)] in order to compute an
explicit lower bound for the exponent Λ∗

+(ε, u).

Theorem 3.1. Suppose E[F (X)] = E[U(X)] = 0, Var(F (X)) ≤ 1,
Var(U(X)) = 1, and that m(β) := ess sup[F (X) − βU(X)] < ∞ for all
β > 0. Then the following hold for all n ≥ 1:

(i) For any ε, u > 0, if there exists β > 0 such that, m(β) ≤ ε− βu, then,

Pr{Sn > nε, |Tn| < nu} = 0.

(ii) For any ε, u > 0,

log Pr{Sn > nε, |Tn| < nu}

≤ −2n sup
α∈(0,1)

[
m · (1 − α)

m2 + 1 + (αε
u )2 − 2αγε

u

]2

ε2,(3.2)

where m := m(αε
u ) and γ := E[F (X)U(X)] is the covariance between

F (X) and U(X).
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(iii) Let K > 0 arbitrary. Then for any ε > 0 and any 0 < u ≤ Kε,

log Pr{Sn > nε, |Tn| < nu}

≤ −n

2

[
M

M2 + (1 + 1
2K )2

]2

ε2,(3.3)

where M = m( 1
2K ).

Remarks.

1. The assumption that Var(F (X)) ≤ 1 in Theorem 3.1 seems to require
that we know an upper bound on the variance of F in advance, but in
practice this is easily circumvented. In specific applications, we typi-
cally have a function U that dominates F in that, not only m(β) < ∞
for all β > 0, but also there are finite constants C1, C2 such that,

|F (x)| ≤ C1U(x) + C2, for all x in the support of X.(3.4)

This is certainly the case for the example presented in the Introduction,
as well as in the examples in Remark 3 above. A bound on the variance
of F (X) is obtained from (3.4), Var(F (X)) ≤ C2

1Var(U(X))+C2
2 . This

and several other issues arising in the application on Theorem 3.1 are
illustrated in detail in the proof of Proposition 1.1.

2. As will become clear from its proof, to use the bounds in Theorem 3.1
it is not necessary to know m(β) exactly; any upper bound on the
ess sup[F (X) − βU(X)] can be used in place of m(β).

3. When F (x) ≡ F̃ (x)−µ, where µ is the unknown mean to be estimated,
it is hard to imagine that the exact value of the covariance γ may be
known without knowing µ. But, similarly to m(β), in order to apply
(3.2) it suffices to have an upper bound on γ, and such estimates are
often easy to obtain. See the proof of Proposition 1.1 for an illustration.

4. The main difference between the bounds in (3.2) and (3.3) is that
(3.3) only requires knowledge of the first and second moment of U(X),
whereas (3.2) also depends on γ. The bound in (3.3) is attractive be-
cause it is simple and it clearly shows that the exponent is of order ε2

for small ε. Its main disadvantage is that it often leads to rather con-
servative estimates, since it ignores the potential correlation between
F (X) and U(X) and it follows from (3.2) by an arbitrary choice for
the parameter α. The exponent in (3.2), on the other hand, despite
its perhaps somewhat daunting appearance, is often easy to estimate
and it typically gives significantly better results. This too is clearly
illustrated by the the results (and the proof) of Proposition 1.1.
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5. Considering −F in place of F gives corresponding bounds for the lower
tail of the partial sums Sn, under the assumption that ess inf[F (X) +
βU(X)] be finite for all β > 0. As in (3.1), these can be combined with
the corresponding results in Theorem 3.1 to give explicit exponential
bounds for the two-sided deviation event, {|Sn| > ε, |Tn| < u}.

Proof. As already noted in (1.3) in the Introduction, for any β > 0,

Pr{Sn > nε, |Tn| < u} ≤ Pr
{ 1

n

n∑
i=1

[F (Xi) − βU(Xi)] > ε − βu
}
.

If the essential supremum m(β) of the random variables [F (Xi) − βU(Xi)]
which are being averaged is smaller than the threshold ε − βu, then the
above event is empty and its probability is zero, establishing (i).

Recall the definitions of Λ+ and Λ∗
+ in Theorem 2.2. With any α ∈ (0, 1),

taking θ2 = αεθ1/u in the definition of Λ∗
+(ε, u), Corollary 3.1 yields,

Pr{Sn > nε, |Tn| < nu} ≤ exp
{
− n sup

θ≥0

[
θ(1 − α)ε − Λ0(θ)

]}
,(3.5)

where Λ0(θ) := Λ+(θ, αεθ
u ). Write s2 := Var(F (X)) ≤ 1, define the random

variable Y := F (X)− αε
u U(X), and note that Y ≤ m := m(αε

u ) a.s., E(Y ) =
0, and

Var(Y ) = s2 + (
αε

u
)2 − 2αεγ

u
≤ σ2 := 1 + (

αε

u
)2 − 2αεγ

u
.

Throughout the rest of the proof we assume, without loss of generality, that
m > 0. [We know m ≥ 0 by our assumptions, so if m=0 then Λ0(θ) ≡ 0 and
the supremum in (3.5) equals +∞, implying that the probability of interest
equals zero and that all the bounds stated in the theorem are trivially valid.]

Now we apply Bennett’s Lemma [4, Lemma 2.4.1] to get an upper bound
on Λ0(θ) as,

Λ0(θ) = log E(eθY ) ≤ log
{ m2

m2 + σ2
e−

θσ2

m +
σ2

m2 + σ2
eθm

}
.

Using this and replacing θ by λ/m, the supremum in (3.5) is bounded below
by,

I(ε, α, u) := sup
λ≥0

[
λx − log

{e−λτ2
+ τ2eλ

1 + τ2

}]
,

where,

x :=
(1 − α)ε

m
and τ2 :=

σ2

m2
=

1 + (αε
u )2 − 2αεγ

u

m2
.
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We consider the following cases:
(i) If there exists α ∈ (0, 1) for which, (1 − α)ε ≥ m(αε

u ), then with
β = αε/u we have m(β) ≤ ε−βu, which we already showed implies that the
probability of interest is zero.

(ii) In view of (i), we assume without loss of generality that (1 − α)ε <
m(αε

u ), for all α ∈ (0, 1). For any α ∈ (0, 1), in the definition of I(ε, α, u) we
may pick,

λ =
1

1 + τ2
log

( τ2 + x

τ2(1 − x)

)
,

which, after some algebra, yields,

I(ε, α, u) ≥ H

(
x + τ2

1 + τ2

∥∥∥∥∥ τ2

1 + τ2

)
,

where H(y‖z) := y log y
z +(1−y) log 1−y

1−z denotes the relative entropy between
the Bernoulli(y) and the Bernoulli(z) distributions. This relative entropy is,
in turn, by a standard argument (for example using Pinsker’s inequality, cf.
[2, Theorem 4.1]), bounded below by, 2x2

(1+τ2)2 . Therefore,

1
n

log Pr{Sn > nε, |Tn| < nu} ≤ − sup
α∈(0,1)

[
2x2

(1 + τ2)2

]

= − sup
α∈(0,1)

⎡
⎢⎣ 2(1 − α)2ε2

m2
[
1 + 1+(αε

u
)2− 2αγε

u
m2

]2
⎤
⎥⎦ ,

proving part (ii).
(iii) Start by taking u = Kε. Noting that |γ| ≤ s ≤ 1,

1 +
(αε

u

)2 − 2γαε

u
≤ 1 +

(αε

u

)2
+

2αε

u
=
(
1 +

α

K

)2
.

This and part (ii) show that the exponent of interest is bounded below by,

2 sup
α∈(0,1)

[
m · (1 − α)

m2 + (1 + α/K)2

]2
ε2,

where m = m(αε
u ) = m( α

K ). Picking α = 1/2 this is further bounded below
by,

1
2

[
M

M2 + (1 + 1
2K )2

]2

ε2,

where M = m( 1
2K ), giving the required result in the case u = Kε. Since the

probability in (3.3) can be no bigger for smaller values of u, the same bound
holds for all 0 < u ≤ Kε. �
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We are now in a position to illustrate how the results of Proposition 1.1
stated in the introduction can be derived from Theorem 3.1.

Proof of Proposition 1.1. Part (i) is already stated in (1.1), and
part (ii) is immediate from Corollary 3.1. For parts (iii) and (iv) we will
use the bound in Theorem 3.1 (ii). To that end, we begin by defining two
functions F,U appropriately.

Recall that, for (iii), we only have the following information: X is sup-
ported on [1,∞), E(X) = 5/3, and Var(X) = 20/9. Then we can define,

U(x) :=
3x

2
√

5
−

√
5

2
, x ≥ 1,

so that E(U(X)) = 0 and Var(U(X)) = 1. Noting that µ ≥ 1 and that
E[(X3/4)2] ≤ E(X2) = Var(X) + E(X)2 = 5, implies that Var(X3/4) ≤
5 − 1 = 4. Therefore, letting,

F (x) := (x3/4 − µ)/2, x ≥ 1,

we have E(F (X)) = 0 and Var(F (X)) ≤ 1. Using again the fact that µ ≥ 1,
we obtain an upper bound on m(β) as,

m(β) ≤ sup
x≥1

[x3/4

2
− 1

2
− 3βx

2
√

5
+

√
5β − 1

2

]
.

This is a particularly easy maximization for β ≥
√

5
4 , in which case the

maximum is achieved at x = 1, giving,

m(β) ≤ m̃(β) :=
β√
5
, for β ≥

√
5

4
.(3.6)

We can now apply (3.2). Let Sn and Tn as in Theorem 3.1, and let Ŝn

and T̂n be as in the proposition. For arbitrary ε > 0 and u = ε
20 , (3.2) gives,

− 1
n

log Pr{Ŝn − µ > ε, |T̂n − 5
3 | < u}

= − 1
n

log Pr{Sn > nε/2, |Tn| < 3nu/2
√

5}

≥ 1
2

sup
α∈(0,1)

⎡
⎣ (1 − α)m̃(20

√
5α

3 )

m̃(20
√

5α
3 )2 + 1 + (20

√
5α

3 )2 − 40
√

5αγ
3

⎤
⎦

2

ε2,(3.7)
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where γ is the (yet unknown) covariance between F (X) and U(X). Restrict-
ing to α ≥ 3/80, using (3.6) and noting that |γ| ≤ 1, the above exponent is
further bounded below by,

1
2

sup
3/80≤α<1

⎡
⎣ 20α(1 − α)/3

(20α
3 )2 + (1 + 20

√
5α

3 )2

⎤
⎦

2

ε2 ≥ 0.005ε2,

where the last inequality follows by taking α = 0.0552083 in the above
minimization (this α was selected by plotting the graph of the expression
to be maximized and picking α to give a value near the maximum). This
proves (iii) for u = ε/20, but, since the probability of interest is nondecreas-
ing in u, the same bound holds for any 0 < u ≤ ε/20.

For part (iv), assuming that we also know that Cov(X3/4,X) = 20/21,
we can calculate,

γ := Cov(F (X), U(X)) =
3

4
√

5
Cov(X3/4,X) =

√
5

7
.

From the bound in (3.7), restricting as before to α ≥ 3/80, using (3.6) and
substituting the value of γ, gives,

− log Pr{Ŝn − µ > ε, |T̂n − 5
3 | < u} ≥ n

2
sup

3/80≤α<1

[
20α(1 − α)/3

2400α2

9 − 200α
21 + 1

]2

ε2

≥ 0.0367nε2,

where the last inequality follows from choosing α = 0.0568. This proves (iv)
for u = ε/20, and, as before, the same bound remains valid for any 0 < u ≤
ε/20. �

4. Bounds for Light Tails. As before, let Sn, Tn denote the partial
sums of {F (Xi)}, {U(Xi)}, respectively, with respect to the i.i.d. random
variables X,X1,X2, . . . , with common law P . We assume that E(F (X)) =
E(U(X)) = 0, and throughout this section we also assume that F and U
have finite exponential moments, i.e.,

Λ(θ) := log E[eθF (X)] < ∞,

and E[eθU(X)] < ∞, for all θ ∈ R.
From Corollary 3.1 and the subsequent discussion, we know that the

screened estimator always admits exponential error bounds,

log Pr{Sn > nε, |Tn| < nu}
≤ −n max{Λ∗

+(ε, u),Γ∗
+(ε, u)}, n ≥ 1,(4.1)



SCREENED ESTIMATION AND SIMULATION 19

for all ε, u > 0, where the exponents Λ∗
+ and Γ∗

+, given in Corollary 3.1 and
Remark 1 after Corollary 3.1, respectively, are strictly positive. But in this
setting, the standard estimates { 1

nSn} also admit exponential error bounds;
Cramér’s theorem states that,

log Pr{Sn > nε} ≤ −nΛ∗(ε), n ≥ 1,(4.2)

where
Λ∗(ε) := sup

θ≥0
{θε − Λ(θ)} > 0,

for any ε > 0; cf., [4]. Recall that the exponents in both (4.1) and (4.2) are
asymptotically tight.

In this section we develop conditions under which the screened estimator
offers a nontrivial improvement. That is, even when the error of the standard
estimator decays exponentially, the error of the screened estimator has a
better rate in the exponent. To that end, we look at difference,

∆(ε, u) := max{Λ∗
+(ε, u),Γ∗

+(ε, u)} − Λ∗(ε).

Clearly ∆(ε, u) is always nonnegative. Theorem 4.1 says that, as long as the
covariance between F (X) and U(X) is nonzero, ∆(ε, u) is strictly positive
for all ε, u small enough. This is strengthened in Theorem 4.2, where it is
shown that this improvement is a “first order effect,” in that, for small ε, u,
∆(ε, u) and max{Λ∗

+(ε, u),Γ∗
+(ε, u)} are each of order ε2.

This leads to a different interpretation of the advantage offered by the
screened estimator. Suppose that, for small ε, u, Λ∗(ε) ≈ cε2, and that,
max{Λ∗

+(ε, u),Γ∗
+(ε, u)} ≈ (c+c′)ε2, for some c, c′ > 0. Then for large n, the

error of the standard estimator is,

Pr{Sn > nε} ≈ e−ncε2,

whereas for the screened estimator,

Pr{Sn > nε, |Tn| < u} ≈ e−n(c+c′)ε2.

In both cases, we have approximately Gaussian tails. Therefore, roughly
speaking, we may interpret the result of Theorem 4.2 as saying that, as
long as the covariance between F (X) and U(X) is nonzero, the screened
estimates are asymptotically Gaussian with a strictly smaller variance than
the standard estimates.

Theorem 4.1. Suppose that E[F (X)] = E[U(X)] = 0 and that γ :=
Cov(F (X), U(X)) is nonzero. There exists ε0 > 0 such that, for each 0 <
ε < ε0, there exists u0 = u0(ε) > 0 such that ∆(ε, u) > 0 for all u ∈ (0, u0).



20 KONTOYIANNIS & MEYN

Note that the assumption on the covariance being nonzero cannot be
relaxed. For example, let Xi = YiZi, i ≥ 1, where {Yi} are i.i.d. nonnegative
random variables, and {Zi} are i.i.d., independent of the {Yi}, with each
Zi = ±1 with probability 1/2. With F (x) ≡ |x|−E|X1| and U(X) ≡ sign(x),
we have F (Xi) = Yi − E(Yi) and U(Xi) = Zi, so that Sn and Tn are
independent for all n ≥ 1. Therefore,

Pr{Sn > nε, |Tn| < nu} = Pr{Sn > nε}Pr{|Tn| < nu},

and since limn Pr{|Tn| < nu} = 1, the exponents of the other two probabil-
ities must be identical.

Whenever γ is nonzero, the variances σ2(F ), σ2(U) of F (X) and U(X),
respectively, are both nonzero. If ∆̃(ε, u) denotes the corresponding differ-
ence of exponents for the normalized functions F/σ(F ) and U/σ(U), then
from the definitions,

∆(ε, u) = ∆̃
( ε

σ(F )
,

ε

σ(U)

)
.

Therefore, in order to determine the nature of this difference for small ε we
can assume, without loss of generality, that Var(F (X)) = Var(U(X)) = 1.

Theorem 4.2. Suppose that E[F (X)] = E[U(X)] = 0, Var(F (X)) =
Var(U(X)) = 1, and that γ := Cov(F (X), U(X)) is nonzero. Then there
exists α > 0 such that,

lim inf
ε→0

1
ε2

∆(ε, αε) > 0.

In fact, there exists ε0 > 0 such that,

∆
(
ε,
|γ|
4

ε
)
≥ γ2

8
ε2,

for all ε ∈ (0, ε0).

Before giving the proofs of the theorems, we collect some technical facts
in the following Lemma.

Lemma 4.1. Suppose that E[F (X)] = E[U(X)] = 0 and that γ :=
Cov(F (X), U(X)) is nonzero. Then:

(i) Λ is smooth on R, Λ(0) = 0, Λ′(0) = 0, limθ→∞ Λ′(θ) = F̄ :=
ess supF (X), Λ′′(0) = Var(F (X)) > 0 and Λ′′(θ) > 0 for all θ ∈ R.



SCREENED ESTIMATION AND SIMULATION 21

(ii) For each 0 < ε < F̄ there exists a unique θ∗ = θ∗(ε) > 0 such that
Λ′(θ∗) = ε and Λ∗(ε) = θ∗ε − Λ(θ∗), where θ∗ = θ∗(ε) is strictly
increasing in ε ∈ (0, F̄ ).

(iii) Suppose Var(F (X)) = 1. Let δ ≥ 0 be arbitrary (but fixed). Then for
any η > 0 there exists ε̄ > 0 such that,

Λ(δε) ≥ 1
2
(1 − η)δ2ε2, for all ε < ε̄.

(iv) Suppose Var(F (X)) = Var(U(X)) = 1. For arbitrary (but fixed) β ≥ 0,
and for all t, ε ≥ 0, define, ft(ε) := Λ+(tε, βε). Then for any η > 0
there exist τ, ε̄ > 0 such that,

ft(ε) ≤ 1
2
(1 + β2 − 2βγ + η)ε2, for all ε < ε̄, |t − 1| < τ.

Proof. The statements in (i) and (ii) are well-known; see, e.g., [4]. In
particular, it is a standard exercise to apply the dominated convergence
theorem in order to justify all the required differentiations, as well as all
the continuity statements and differentiations in the rest of this proof and
in the proofs of Theorems 4.1 and 4.2. For (iii), given η > 0, since Λ′′(θ) is
continuous and Λ′′(0) = 1, we can choose ε′ > 0 such that Λ′′(ε) ≥ 1− η for
ε < ε′. The result follows upon expanding Λ in a Taylor series around zero
and recalling that Λ(0) = Λ′(0) = 0, with ε̄ = ε′/δ.

Part (iv) is similar. Let η > 0 be given. We have ft(0) = Λ+(0, 0) = 0,
f ′

t(0) = E[tF (X) − βU(X)] = 0 and f ′′
t (ε) is jointly continuous in t, ε ≥ 0

with,
f ′′

t (0) = Var(tF (X) − βU(X)) = t2 + β2 − 2tβγ,

where the prime (′) now denotes differentiation with respect to ε. Continuity
at the point (t, ε) = (1, 0) implies that we can find τ, ε̄ > 0 such that,

f ′′
t (ε) ≤ f ′′

1 (0) + η = 1 + β2 − 2βγ + η, for all ε < ε̄, |t − 1| < τ.

For any t in that range, expanding ft(ε) in a three-term Taylor series around
ε = 0 gives the required result. �

Proof of Theorem 4.1. From the definitions, it follows that,

∆(ε, u) ≥ Λ∗
+(ε, u) − Λ∗(ε) ≥ sup

θ≥0
[−θu − Λ+(θ∗, θ) + Λ(θ∗)].(4.3)

The expression inside the last supremum is zero for θ = 0, and our goal is to
show that it is strictly positive for small θ. To that end, define the function,

g(θ) := E
[
F (X)U(X)eθF (X)

]
, θ ≥ 0,
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and note that it is continuous in θ, and g(0) = γ. Choose θ0 > 0 so that
g(θ)/γ ≥ 1/2 for all 0 ≤ θ ≤ θ0. Let ε0 = Λ′(θ0) > 0, and choose and fix an
arbitrary 0 < ε < ε0, so that θ∗ = θ∗(ε) ∈ (0, θ0).

First consider the case γ > 0. Define,

h(θ) := θ∗ε − θu − Λ+(θ∗, θ).

Then h(0) = Λ∗(ε), and as in (4.3),

∆(ε, u) ≥ Λ∗
+(ε, u) − Λ∗(ε)

≥ [sup
θ≥0

h(θ)] − Λ∗(ε)

≥ h(0) − Λ∗(ε) = 0.(4.4)

In order to establish that ∆(ε, u) > 0 it suffices to show that h′(0) > 0.
Computing the derivative of h yields,

h′(0) = e−Λ(θ∗)E
[
U(X)eθ∗F (X)

]
− u,

and expanding the exponential inside the expectation in a two-term Taylor
expansion,

h′(0) = θ∗e−Λ(θ∗)E
[
F (X)U(X)eθ̃F (X)

]
− u,

where θ̃ = θ̃(X) ∈ (0, θ∗). Therefore,

h′(0) ≥ θ∗e−Λ(θ∗) inf
θ∈(0,θ∗)

g(θ) − u ≥ θ∗e−Λ(θ∗)γ/2 − u,

which is strictly positive, as long as,

u < u0 = u0(ε) := θ∗(ε)e−Λ(θ∗(ε))|γ|/2.
The case γ < 0 is similar, with Γ∗

+ in place of Λ∗
+: Replace h by h(θ) =

θ∗ε − θu − log E[exp{θ∗F (X) + θU(X)}], so that h(0) = Λ∗(ε) and,

∆(ε, u) ≥ Γ∗
+(ε, u) − Λ∗(ε) ≥ [sup

θ≥0
h(θ)] − Λ∗(ε) ≥ h(0) − Λ∗(ε) = 0.

Again it suffices to show h′(0) > 0, where,

h′(0) = −e−Λ(θ∗)E
[
U(X)eθ∗F (X)

]
− u

= −θ∗e−Λ(θ∗)E
[
F (X)U(X)eθ̃F (X)

]
− u,

with θ̃ = θ̃(X) ∈ (0, θ∗). Then,

h′(0) ≥ −θ∗e−Λ(θ∗) sup
θ∈(0,θ∗)

g(θ) − u ≥ −θ∗e−Λ(θ∗)γ/2 − u,

which is strictly positive, as long as, u < u0 = u0(ε), with the same u0 as
before. �
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Proof of Theorem 4.2. Assume first that γ > 0. Following the deriva-
tion of (4.4) in the proof of Theorem 4.1, we have that for any 0 < ε < F̄
and any u, φ > 0,

∆(ε, u) ≥ −φu − Λ+(θ∗, φ) + Λ(θ∗).(4.5)

At this point, most of the required work has been done. What remains is
to write the above expression as a second order Taylor expansion around
ε = 0, so that, with u = γε/4 and φ = γε, the right-hand side of (4.5) is
approximately bounded below by,

−γ2ε2

4
− 1

2
ε2
[ ∂2

∂ε2
Λ+(θ∗(ε), γε)

]
ε=0

+
1
2
ε2
[ ∂2

∂ε2
Λ(θ∗(ε))

]
ε=0

≥ γ2ε2

8
.

We proceed to make this approximation rigorous. Let η := γ2/10 > 0 in
parts (iii) and (iv) of Lemma 4.1, and choose and fix a δ ∈ (0, η) smaller
that the resulting τ in part (iv). Since Λ′′(θ) is continuous and Λ′′(0) = 1,
we can choose θ0 > 0 small enough so that |Λ′′(θ) − 1| ≤ δΛ′′(θ) for all
0 < θ < θ0. Let ε0 be the minimum of Λ′(θ0) and the two quantities ε̄ in
parts (iii) and (iv) of the Lemma. Then θ∗(ε) < θ0 for all 0 < ε < ε0, and
moreover, θ∗(ε) = ε

Λ′′(θ) for some θ < θ∗ < θ0, so that,

∣∣∣θ∗(ε)
ε

− 1
∣∣∣ ≤ δ < τ, for all 0 < ε < ε0.(4.6)

Now for any ε < ε0, let u = γε/4 and φ = γε in (4.5); using (4.6) and noting
that Λ(θ∗) is nondecreasing in θ∗,

∆(ε, γε/4) ≥ −γ2ε2

4
− Λ+(θ∗(ε), γε) + Λ((1 − δ)ε)

≥ −γ2ε2

4
− 1

2
(1 − γ2 + η)ε2 +

1
2
(1 − η)(1 − δ)2ε2

=
ε2

4
[γ2 + 2(1 − η)δ2 − 4(1 − η)δ − η]

≥ ε2

4
[γ2 − 5η] ≥ γ2ε2

8
,

where the second inequality follows from parts (iii) and (iv) of Lemma 4.1
with (1 − δ) in place of δ, β = γ, and t = θ∗(ε)/ε.

Finally, the same result holds in the case γ < 0, either by considering −U
in place of U , or by replacing Λ∗

+ by Γ∗
+ in the above argument, as in the

proof of Theorem 4.1. �
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5. Proofs of Theorems 2.1, 2.2 and 2.3. We begin with a simple,
general upper bound in the spirit of the results in [3].

Lemma 5.1. Let F1, F2, . . . , Fm be an arbitrary (finite) collection of mea-
surable functions from R to R. For any constants c1, c2, . . . , cm we have,

log Pr
{ n∑

i=1

Fj(Xi) > ncj for all j = 1, 2, . . . ,m
}
≤ −n inf

Q∈Em

H(Q‖P ),

where Em is the set of all probability measures Q on R such that
∫

FjdQ > cj

for all j = 1, 2, . . . ,m.

Proof. Let A denote the event of interest in the lemma, and assume
without loss of generality that it has nonzero probability. Write PA for the
probability measure on R

n obtained by conditioning the product measure
Pn on A, and note that, by definition,

− log Pr(A) = − log Pn(A) = H(PA‖Pn).

Expressing PA as the product of the conditional measures PA,i(·|x1, . . . , xi−1)
for i = 1, 2, . . . , n, we can expand the logarithm inside the relative entropy
to obtain,

− log Pr(A) =
n∑

i=1

E
[
H
(
PA,i(·|Y1, . . . , Yi−1)

∥∥∥P)],
where the random variables Y1, Y2, . . . , Yn have joint distribution given by
the measure PA. Using the fact that relative entropy is convex in its first
argument (see, e.g., [4, Chapter 6]), Jensen’s inequality gives,

− log Pr(A) ≥
n∑

i=1

H(Qi‖P ),

where Qi denotes the ith marginal of PA on R. Using convexity again,

− log Pr(A) ≥ n
n∑

i=1

1
n

H(Qi‖P ) ≥ nH(Q‖P ),

where Q = 1
n

∑n
i=1 Qi. To complete the proof it suffices to show that Q ∈ Em.

Indeed, for any j = 1, 2, . . . ,m,∫
FjdQ =

1
n

n∑
i=1

∫
FjdQi = E

[ 1
n

n∑
i=1

Fj(Yi)
]

> cj ,

where the last inequality holds since the joint distribution of the {Yi} is PA,
which is entirely supported on A by definition. �
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Next we give the proof of Theorem 2.2. The first upper bound follows
from Lemma 5.1, the second is derived using the classical Chernoff bound,
and the positivity of the exponent comes from the domination assumption
m(β) < ∞.

Proof of Theorem 2.2. Throughout, we assume, without loss of gen-
erality, that µ = ν = 0. For part (i), taking F1 = F , F2 = −U , c1 = ε
and c2 = −u, Lemma 5.1 immediately yields the required bound. Part (ii)
follows by the usual Chernoff argument: For any pair of θ1, θ2 ≥ 0,

Pr{Sn > nε, Tn < nu} ≤ Pr{Sn > nε, Tn < nu}
= E

[
I{Sn>nε} I{Tn<nu}

]
≤ E

[
exp{θ1(Sn − nε)} exp{−θ2(Tn − nu)}

]
= exp

{
− n

[
θ1ε − θ2u − Λ+(θ1, θ2)

]}
.

The stated result is obtained upon taking the supremum over all θ1, θ2 ≥ 0
in the exponent.

Finally, for part (iii) choose and fix an arbitrary α ∈ (0, 1). Taking θ2 =
αεθ1/u in the definition of Λ∗

+(ε, u) yields,

Λ∗
+(ε, u) ≥ sup

θ≥0
[θ(1 − α)ε − Λ0(θ)],(5.1)

where Λ0(θ) := Λ+(θ, αεθ
u ) < ∞ for all θ ≥ 0 because m(β) < ∞ for all

β > 0. Now for any θ ≥ 0, let Xθ be a random variable whose distribution has
Radon-Nikodym derivative with respect to that of X given by the density,

gθ(x) =
exp{θ[F (x) − αε

u U(x)]}
E[exp{θ[F (X) − αε

u U(X)]}] , x ∈ R,

so that g0 ≡ 1 and X0 = X. Obviously Λ0(0) = 0, and simple calculus
shows that Λ′

0(θ) = E[F (Xθ) − αε
u U(Xθ)] so that Λ′

0(0) = 0; the dominated
convergence theorem justifies the differentiation under the integral, and also
shows that Λ′

0(θ) is continuous in θ for all θ ≥ 0, since F (X) and U(X) have
finite first moments and m(β) < ∞ for all β > 0.

Pick θ0 > 0 small enough so that,

sup{Λ′
0(θ) : θ ∈ [0, θ0]} ≤ Λ′

0(0) +
(1 − α)ε

2
.

Restricting the range of the supremum in (5.1) to [0, θ0] yields,

Λ∗
+(ε, u) ≥ sup

0≤θ≤θ0

θ(1 − α)ε
2

=
θ0(1 − α)ε

2
,

which is strictly positive. �



26 KONTOYIANNIS & MEYN

The main technical step in the following proof is the (asymptotic) large
deviations lower bound; it is established by a change-of-measure argument
combined with regularization of the random variables of interest, as in
Cramér’s theorem. The main difference from the classical case is that, here,
the domination assumption m(β) < ∞ replaces the usual condition on the
existence of exponential moments in a neighborhood of the origin.

Proof of Theorem 2.3. As above, we assume without loss of generality
that µ = ν = 0. Write θ for an arbitrary pair of nonnegative (θ1, θ2), and
write G : R → R

2 for the function G(x) = (F (x),−U(x)), x ∈ R, so that
Λ+(θ) = log E[exp{〈θ,G(X)〉}] and,

Λ∗
+(ε, u) = sup

θ
[〈θ, (ε,−u)〉 − Λ+(θ)],

where 〈·, ·〉 denotes the usual Euclidean inner product. Note that, since
m(β) < ∞ for all β > 0, we have Λ+(θ) < ∞ as long as θ2 > 0, and
Λ+(0) = 0. Moreover, since E(G(X)) = 0, the dominated convergence the-
orem implies that Λ+(θ) is differentiable, with

∇Λ+(θ) = E
[
G(X) exp{〈θ,G(X)〉 − Λ+(θ)}

]
,(5.2)

for all θ with θ2 > 0.
In view of Theorem 2.2 (ii), in order to establish the limiting relation

(2.2), it suffices to prove the asymptotic lower bound,

lim inf
n→∞

1
n

log Pr{Sn > nε, Tn < nu} ≥ −Λ∗
+(ε, u).(5.3)

To that end, consider three cases. First, if Λ∗
+(ε, u) = ∞, (5.3) is trivially

true. Second, assume that Λ∗
+(ε, u) < ∞ and there exists θ such that,

E
[
G(X) exp{〈θ,G(X)〉 − Λ+(θ)}

]
= (ε,−u).(5.4)

Fixing this θ, define a new sequence of i.i.d. random variables X ′,X ′
1,X

′
2, . . .

with common distribution P ′, where,

dP ′

dP
(x) = exp

{
〈θ,G(x)〉 − Λ+(θ)

}
, x ∈ R.

Write S′
n and T ′

n for the corresponding partial sums, and choose and fix
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δ > 0; then, 1
n log Pr{Sn > nε, Tn < nu} is bounded below by,

1
n

log Pr{nε < Sn < n(ε + δ), n(u − δ) < Tn < nu
}

=
1
n

log E
[ n∏

i=1

dP

dP ′ (X
′
i) I{nε<S′

n<n(ε+δ)}I{n(u−δ)<T ′
n<nu}

]

= Λ+(θ) − 〈θ, (ε,−u)〉 +
1
n

log E
[
e−θ1(S′

n−nε)+θ2(T ′
n−nu)

IBn

]
≥ Λ+(θ) − 〈θ, (ε,−u)〉 − (θ1 + θ2)δ +

1
n

log Pr(Bn),(5.5)

where Bn denotes the event Bn := {nε < S′
n < n(ε + δ)} ∩ {n(u − δ) <

T ′
n < nu}, and the last inequality follows from the observation that the

exponential inside the expectation is bounded below by exp{−θ1nδ − θ2nδ}
on Bn. Note that our assumption (5.4) implies that E[G(X ′)] = (ε,−u), and
since m(β) < ∞ for all β, F (X ′) and U(X ′) have finite second moments.
Therefore, from the central limit theorem we obtain,

lim inf
n→∞

1
n

log Pr(Bn) = 0,

as long as δ > 0 is fixed. Noting also that Λ+(θ)− 〈θ, (ε,−u)〉 ≥ −Λ∗
+(ε, u),

taking n → ∞ in (5.5) we obtain,

lim inf
n→∞

1
n

log Pr{Sn > nε, Tn < nu} ≥ −Λ∗
+(ε, u) − (θ1 + θ2)δ,(5.6)

for each δ > 0, and taking δ ↓ 0 in the above right-hand side yields (5.3).
The third and last case is when Λ∗

+(ε, u) < ∞ but there is no θ such
that (5.4) is satisfied. We will repeat the above argument, but instead of the
sequence {G(Xn)} we will consider the new i.i.d. sequence {H(Xn)} which
is obtained by adding to the {G(Xn)} i.i.d. Gaussians with small mean and
variance. Specifically, choose and fix arbitrary δ > 0 and t > 0, and let,

H(Xn) := G(Xn) + tZn +
( δ

2 , δ
2

)
, n ≥ 1,

where the {Zn} are i.i.d. with each Zn consisting of two independent stan-
dard Gaussian components, independent of the {Xn}. Let,

Λt(θ) := log E[exp{〈θ,H(X)〉}],

and note that,

Λt(θ) = Λ+(θ) + t2(θ2
1 + θ2

2)/2 + δ(θ1 + θ2)/2 ≥ Λ+(θ) ≥ 0,(5.7)
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where the last inequality follows by applying Jensen’s inequality to the log-
arithm in the definition of Λ+(θ) and recalling that G(X) has zero mean.
Consequently,

Λ∗
t (ε, u) := sup

θ
[〈θ, (ε,−u)〉 − Λt(θ)] ≤ Λ∗

+(ε, u) < ∞.(5.8)

From equations (5.7) and (5.8) it follows that, for any given θ, the function,

L(θ) := 〈θ, (ε,−u)〉 − Λt(θ) ≤ Λ∗
+(ε, u) − t2(θ2

1 + θ2
2)/2 − δ(θ1 + θ2)/2,

has supθ:θ1+θ2>R L(θ) → −∞ as R → ∞. Moreover, in view of (5.2), L(θ)
is differentiable, and therefore the supremum in the definition of Λ∗

t (ε, u) is
achieved for some finite θ which satisfies the analog of (5.4), that is, with H
and Λt(θ) in place of G and Λ+(θ), respectively. So we can conclude from
the previous argument that the lower bound (5.3) holds with H in place of
G. In fact, for the specific value of δ > 0 we chose in the definition of H, the
same argument used to establish (5.5) and then (5.6) yields the following
asymptotic lower bound,

lim inf
n→∞

1
n

log Pr
{
nε < Sn + t

√
nW +

nδ

2
< n(ε + δ),

n(u − δ) < Tn + t
√

nV − nδ

2
< nu

}

≥ −Λ∗
t (ε, u) − (θ1 + θ2)δ

≥ −Λ∗
+(ε, u) − (θ1 + θ2)δ

> −∞,(5.9)

where W,V are independent standard Gaussian random variables indepen-
dent of the {Xn}. On the other hand, a simple union bound gives,

Pr
{
nε < Sn + t

√
nW +

nδ

2
< n(ε + δ), n(u − δ) < Tn + t

√
nV − nδ

2
< nu

}
≤ Pr{nε < Sn < n(ε + 2δ), n(u − 2δ) < Tn < nu}

+Pr
{
|W | ≥

√
nδ

2t
, |V | ≥

√
nδ

2t

}
,(5.10)

where the last probability is easily bounded as,

1
n

log Pr
{
|W | ≥

√
nδ

2t
, |V | ≥

√
nδ

2t

}
≤ − δ2

4t2
.(5.11)
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Combining the bounds (5.9), (5.10) and (5.11) yields,

− Λ∗
+(ε, u) − (θ1 + θ2)δ

≤ max

{
− δ2

4t2
,

lim inf
n→∞

1
n

log Pr{nε < Sn < n(ε + 2δ), n(u − 2δ) < Tn < nu}
}

.

Letting t ↓ 0 implies that,

lim inf
n→∞

1
n

log Pr{Sn > nε, Tn < nu} ≥ −Λ∗
+(ε, u) − (θ1 + θ2)δ,

and letting δ ↓ 0 establishes (5.3) and thus completes the proof of (2.2).
Finally, in order to show that the two rate functions are identical, it

suffices to show that Λ∗
+(ε, u) is no greater than the entropy H(E‖Q), since

the reverse inequality follows from the upper bound in Theorem 2.2 (i)
combined with the asymptotic relation (2.2) we just established. Indeed, for
arbitrary θ1, θ2 ≥ 0 and any Q ∈ E,

θ1ε − θ2u − log E
[
exp{θ1F (X) − θ2U(X)}

]
= θ1ε − θ2u − log

∫
dQ(x)

dP

dQ
(x) exp{θ1F (x) − θ2U(x)}

≤ θ1ε − θ2u −
∫

dQ(x) log
[dP

dQ
(x) exp{θ1F (x) − θ2U(x)}

]
= θ1[ε −

∫
FdQ] − θ2[u − ∫

UdQ] + H(Q‖P )
≤ H(Q‖P ),

where the first inequality is simply Jensen’s inequality and the second follows
from the assumption that Q ∈ E. Taking the supremum of both sides over
all θ1, θ2 ≥ 0 and then the infimum over all Q ∈ E establishes the inequality
Λ∗

+(ε, u) ≤ H(E‖P ) and completes the proof. �

It is now a simple matter to deduce Theorem 2.1 from Theorems 2.2
and 2.3.

Proof of Theorem 2.1. Again we assume without loss of generality
that µ = ν = 0. For part (i), since E[eθF (X)] is infinite for all θ > 0, it is
well known that,

lim
n→∞

1
n

log Pr{Sn > nε} = 0,(5.12)
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see, e.g. [5, Ex. 9.8, p. 78]. To see that H(Σ‖P ) := infQ∈Σ H(Q‖P ) = 0
note that, from Lemma 5.1, we have, log Pr{Sn > nε} ≤ −nH(Σ‖P ). This
combined with (5.12) implies that H(Σ‖P ) = 0. The limit in part (ii) is an
immediate consequence of Theorem 2.3, and the fact that the exponent is
strictly nonzero follows from Theorem 2.2 (iii) and the identification of the
rate function as the entropy given in Theorem 2.3. �
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