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ABSTRACT

We introduce a new framework for classifying large images
that is more accurate and less computationally expensive
than the classical pixel-by-pixel approach. This approach,
called progressive classification, is well suited for analyzing
large images, such as multispectral satellite scenes, com-
pressed with wavelet-based or block-transform-based trans-
formations. These transformations produce a multiresolu-
tion pyramid representation of the data. A progressive clas-
sifier analyzes the image at the coarsest resolution level, and
it decides whether each coefficient corresponds to a homo-
geneous block of pixels in the original image or to a hetero-
geneous block. In the first case it labels the block, in the
second case it recursively analyzes the region of the image
at the immediately finer resolution level. Computational
efficiency, compared to the classical approach, results from
examinining a much smaller number of coefficients than the
number of pixels in the original image. Thus, progressive
classification is a prime candidate as a content-based search
operator for remotely-sensed data.

1. INTRODUCTION

The effective management and retrieval of large scientific
spatial data sets has become increasingly important in many
fields. In particular, existing space platforms that collect re-
motely sensed data for earth science studies have already
created new challenges for encoding, transmitting, com-
pressing, archiving, retrieving and distributing the mass
amount of datasets. New platforms will be soon opera-
tive, such as the first two Earth Observing System (EOS)
satellites, scheduled to be launched in 1998 and 2000, re-
spectively. These new platforms will generate data at the
impressive average rate of 26 Mb/s [1]. Content-based video
and image retrieval is a rapidly evolving area of technology
that allows users to specify queries using color, texture and
shape descriptors [2, 3, 4, 5]. This technology offers an ap-
pealing answer to the problem of searching earth-science
databases effectively (see, for example, Samadani, Han and
Katragadda [6]).

Among content-based retrieval operators, accurate land-
cover classification is essential for subsequent processing of
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remotely sensed data [7] and it is a powerful tool for fea-
ture extraction. Here, classification of a multispectral image
means the process of labeling individual pixels or larger ar-
eas of the image, according to classes defined by a specified
taxonomy. The “United States Geological Survey (USGS)
level I and level II land-use/land-cover data” are examples
of such classification taxonomies. The former encompasses
13 classes, the latter 44.

As a typical example, studies of deforestation or global
warming trends require that regions of forest and old-ice
coverage be recognized from the satellite data [8]. Thus,
many studies have been devoted to classifying satellite data
into a number of land-cover classes [9, 10, 11], usually on
a pixel-by-pixel basis. However, most of these studies con-
centrate on the accuracy of the classification with respect
to individual images.

In this paper we focus on performing the classification
in a time-efficent manner, by operating directly on remote
sensing data in the compressed domain.

2. PRELIMINARIES

We investigate both block-based transforms, such as the
block Discrete Cosine Transform used in JPEG [12], and
subband coding transforms, such as the pyramidal wavelet
transform [13, 14]. Such transforms are the base of several
effective data compression schemes, in which the image is
first transformed then coded using either lossless or lossy
compression techniques (run-length, Huffman and Lempel-
Ziv coding being examples of the first class, scalar and vec-
tor quantization being examples of the second).

The coding schemes just mentioned are designed to allow
fast decompression and at the same time, both block-based
transformation and subband coding schemes restructure the
image in a way that makes hierarchical land cover classifi-
cation possible. It is therefore natural to consider classifiers
that operate on transformed data.

We shall now describe a progressive approach to land-
cover classification as it applies to images transformed with
a pyramidal decomposition based on biorthogonal symmet-
ric wavelets. It is worth noting that the same methodol-
ogy can be applied with obvious modifications to the other
transformation schemes described above.

The pyramidal wavelet decomposition of a function is
very closely related to its multiresolution approximation
[15]. On digital images, the wavelet transform is often im-
plemented by means of separable filters: the image is fil-



tered row-by-row using a pair of matched filters (low-pass
and band-pass), and the resulting ‘transformed images’ are
filtered again column-by-column, usually with the same pair
of filters, and they are then subsampled in both directions
to produce the four image subbands The image subband
corresponding to low-pass filtering in both direction is a
half-resolution double-scale version of the original image.
The other three subbands capture abrupt variations in hor-
izontal, vertical and diagonal directions. In the classical
wavelet transform, the decomposition algorithm is applied
recursively to the half resolution version of the image. We
shall use the term k-th level of the pyramid to denote the
approximation of the image after k iterations; level 0 refers
to the original image.

The value of a pixel at level & depends on the value of
ni(f) pixels at level 0, f being the length of the analysis
filter, where n;(f) = 2[ni—1(f)]+ f — 2 and no = 1. Yet,
for biorthogonal wavelets, most of the contribution comes
from only (2*)? pixels of the original image. Thus, pixels at
level k correspond roughly to nonoverlapping square blocks
of side 2% at level 0 of the pyramid.

3. PROGRESSIVE CLASSIFICATION

The first step in our proposed progressive classification
scheme consists of training and applying classifiers at dif-
ferent levels of the pyramidal decomposition. The resulting
label of a pixel at level k is then used to label the entire
corresponding block at level 0. The computational advan-
tage of this approach is immediately clear: the number of
samples to be classified decreases exponentially with the
multiresolution level. The downside is that the classifica-
tion results are by nature blocky.
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Figure 1. Error rate vs. Multiresolution Level for
CART

We have studied the behavior of different types of classi-
fiers under the described framework, in particular Gaussian
classifiers (also, regrettably, known as Maximum Likelihood
classifiers), k-Nearest Neighbor, Learning Vector Quantiza-
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tion, clustering-based schemes [16], and CART (Classifica-
tion and Regression Trees) [17].

In all cases the results were surprisingly accurate: when
operating on levels 1 to 3 of the pyramidal decomposition,
in spite of the blocking effects, the increase in error rate was
moderate: on the average the error rate at level 3 is about
4% larger than the error rate at level 0.

The dataset used in the experiments is a multispectral
scanner (MSS) image of the Black Hills, taken by the Land-
sat 2 satellite in 1972. The image size is 512 x 512 pixels,
and each pixel corresponds to a square on the ground of
side 79 meters. The ground truth is in the form of USGS
level I land-use/land-cover data. Samples from five different
classes are represented in the image, namely Class 0 (Ur-
ban), Class 1 (Agricoltural Terrain), Class 2 (Range Land),
Class 3 (Forest Land) and Class 6 (Barren Terrain).

Figures 1 and 2 show typical results of our experiments,
obtained using CART. Analogous results have been ob-
tained with the other classifiers described above.

Figure 1 shows the dependence of the error rate on the
multiresolution level, for training sample sizes of 200, 800
and 1600. Each experiment was repeated independently 20
times, by generating at random a new training set, the error
rates were recorded, the average and standard deviation
were calculated and plotted.

Further investigation has revealed that pixel-based clas-
sification on the original image (level 0) is affected by the
noisy nature of the data. Lowering the resolution actually
filters out the noise, making the classification more robust.
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Figure 2. Classification time vs. multiresolution
level for CART. The classification time decreases
exponentially with the level of the multiresolution
pyramid.

From the described experiments, we conclude that we
are able to classify images very quickly and with reasonable
accuracy by operating on low resolution approximations.

Based on these findings, we propose the following pro-
gressive approach to classification of transformed images.



For the approximation of images at level £ > 0 we intro-
duce a new class of samples, which we call MIX. Wavelet co-
efficients that correspond to blocks of pixels at level 0 having
heterogeneous classification labels are labeled as MIX coef-
ficients. MIX coefficient should not be classified at level k;
instead, the corresponding 2 x 2 block at level k — 1 should
be analyzed. A classifier is trained for each level of the
pyramid. Classifiers for levels other than 0 are trained to
recognize both the original land-cover classes and the new
MIX class. The image is first analyzed at the lowest resolu-
tion, say k. The non-MIX coefficients are classified at level
k, and the MIX coefficients are expanded and classified by
the level k — 1 classifier; the process is iteratively repeated.

One should expect two types of benefits from the above
classifier: an increase in classification accuracy and a de-
crease in classification time. There is clearly a tradeoff be-
tween the two benefits: one could decide to limit the number
of progressive steps and increase correspondingly the clas-
sification speed at the expense of the accuracy, or do the
opposite.

From the description of the algorithm, it is apparent that
a crucial step is obtaining appropriate training sets. We ex-
plored two approaches to the construction of training sets
for progressive classification. The first approach is the in-
dependent contruction of a training set for each level of the
pyramid, the second is the joint construction of a hierarchy
of training sets.

The former case, while strictly suboptimal for the prob-
lem, is simpler and more flexible. In fact, once classifiers
for levels 0,1,..., L are trained with this scheme, one can
start the progressive classification at any desired level [.
The approach is suboptimal in that the training algorithm
partitions the observation space into regions correspond-
ing to the unconditional distributions of the populations at
the desired level, and not on the conditional distributions
given that the progressive step was taken at the immedi-
ately coarser level.

In the latter case, we fix the starting level of the progres-
sive classification, say L, and we create a training set for
that level. For each finer level, we select training points that
correspond to MIX coefficients in the immediately coarser
multiresolution level. Then, the classifier learns the condi-
tional decision regions at level [ given that the progressive
step is taken at level [ + 1. While this approach is closer
to the spirit of progressive classification, it has some draw-
backs. First, it is computationally more expensive than the
first approach; this, in general, is not a serious problem,
since training is a one-time only operation. Also, the re-
sulting structure is not flexible, in the sense that the start-
ing (and ending) levels for the progressive classification are
fixed. Finally, the approach requires very accurate train-
ing data, especially on the border of regions of different
classification. Regrettably, in the case of satellite images
very often the ground truth is known only approximately,
as is the case for the data in our possession. What we have
observed in practice is that the two approaches result in
classifiers of comparable accuracy.

Accuracy 3% | 74% 5% | 76%
Progressive Classifier 800 1280 | 1280 | 1280
Standard Classifier 1280 | 1600 | 2500 | 4000

Table 1. Training set size as function of average
accuracy for Nearest Neighbor classifier. The pro-
gressive implementation of the classifier requires a
smaller training set size to achieve the same accu-
racy of the standard implementation.
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Figure 3. Speedup for Nearest Neighbor progres-
sive classifier. The progressive classifier started at
level 2 of the multiresolution pyramid. At lower ac-
curacy a larger percentage of points are classified at
coarser resolution. Thus, the progressive classifier
displays higher speedup at lower accuracy.

4. EXPERIMENTAL RESULTS

We performed the experiments using an IBM workstation
model 570, with 256 Kb of secondary cache and 128 Mb
of main memory. The computer is based on a 50 MHz.
POWER RISC processor, delivering 57.5 SPEC int92 and
99.2 SPEC p92. The dataset used is the formerly described
multispectral scanner (MSS) image of the Black Hills, taken
by the Landsat 2 satellite in 1972.

Here we describe the results obtained with progressive
versions of CART and of the Nearest Neighbor Classifier;
the latter is based on a tree structure as described by Kim
and Park in [18]. Progressiveness has been applied to lev-
els 0 to 2 of the multiresolution pyramid, and the training
sets for the different levels were constructed independently
(corresponding to the first of the two approaches described
in the previous section). In both cases, the progressive
scheme shows better classification accuracy (by a few per-
cent points) than the corresponding pixel-based approach
on the original image (keeping the sizes of the overall train-
ing sets equal). Very significant speedup (on the order of 3
to 4 times) has been achieveded using the Nearest Neigh-
bor (NN) classifier; recall that NN is computationally more
expensive than CART.

Using CART, the current implementation of the progres-
sive scheme does not offer significant reduction of overall



execution time. This is caused mostly by the overheads
deriving from the interface with our image database, that
heavily penalizes decompression steps. The speedup in ac-
tual classification time is essentially the same as observed
using NN.

Figure 3 summarizes the speedup achieved by our pro-
gressive algorithm applied to a NN classifier. Both av-
erage classification speedup and average overall execution
speedup are depicted. The average execution time depends
on the input-output costs, the pyramid inversion cost and
the actual classification cost.

The overall training set size for the progressive classifi-
cation algorithm is 800 points for 73% accuracy and 1280
points for the other accuracy values. Different degrees of the
accuracy are obtained by controlling the amount of “pro-
gressiveness” of the algorithm, namely, by using an adaptive
procedure to label samples as MIX, and by appropriately
selecting the trainign set sizes for the various levels of the
multiresolution.

The progressive algorithm is compared to the NN clas-
sifier that operates on uncompressed data. For the range
of classification accuracy analyzed, the progressive classi-
fication scheme achieves a speedup of 3.5 to 5.3, and the
overall execution time is reduced by a factor of 3 to 4. We
expect better implementation of our synthesis procedure to
yield overall speedups close to the speedup achieved by the
classification alone.

Note that the classification accuracy of the NN operating
on uncompressed data can be increased only by increasing
the training set size. Table 1 summarizes the training set
sizes required to achieve on average the error rates between
73% and 76%. It is apparent that, for equal training set
sizes, the error rate of the progressive classifier is smaller
than that of straight NN.

The progressive classification scheme can be applied to
block-coded images, by using at first a very limited number
of coeflicients to label each block, and then a progressively
increasing number of coefficients to classify those blocks la-
beled as MIX.

5. CONCLUSIONS

In summary, we have described a progressive approach to
classification of images stored in transformed format, with
particular emphasis on remotely sensed data. The pro-
gressive classifier relies on properties of the multiresolution
pyramid: it starts at the coarsest level, decides whether a
coefficient corresponds to a homogeneous region to a hetero-
geneous region in the full-resolution image. In the former
case, it labels an entire block, in the latter it analyzes the
image at a finer resolution level.

We have demonstrated that progressive classification is
significantly faster and more accurate than the traditional
pixel-based approach, thus proving a viable a tool for
searching very large image databases.
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