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Abstract. We give a development of the ODE method for the analysis of recursive
algorithms described by a stochastic recursion. With variability modeled via an
underlying Markov process, and under general assumptions, the following results
are obtained:

(i) Stability of an associated ODE implies that the stochastic recursion is stable
in a strong sense when a gain parameter is small.

(ii) The range of gain-values is quanti�ed through a spectral analysis of an associ-
ated linear operator, providing a non-local theory, even for nonlinear systems.

(iii) A second-order analysis shows precisely how variability leads to sensitivity of
the algorithm with respect to the gain parameter.

All results are obtained within the natural operator-theoretic framework of geomet-
rically ergodic Markov processes.

1 Introduction

Stochastic approximation algorithms and their variants are commonly found
in control, communication and related �elds. Popularity has grown due to
increased computing power, and the interest in various `machine learning'
algorithms [6,7,12]. When the algorithm is linear, then the error equations
take the following linear recursive form,

Xt+1 = [I � �Mt]Xt+Wt+1; (1)

where X = fXtg is an error sequence, M = fMtg is a sequence of k � k
random matrices,W = fWtg is a random \disturbance" or \noise", � � 0 is
a �xed constant, and I is the k � k identity matrix.

An important example is the LMS (least mean square) algorithm. Con-
sider the discrete linear time-varying model,

y(t) = �(t)T�(t)+n(t); t � 0; (2)

where fy(t)g and fn(t)g are the sequences of (scalar) observations and noise,
respectively. The vector-valued processes �(t) = [�1(t); : : : ; �k(t)]

T and �(t) =
[�1(t); : : : ; �k(t)]

T , t � 0, denote the k-dimensional regression vector and time
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varying parameters, respectively. These will be taken to be functions of an
underlying Markov chain in the analysis that follows.

The LMS algorithm is given by the recursion

�̂(t+1) = �̂(t)+��(t)e(t); (3)

where e(t) := y(t) � �̂(t)T�(t), and the parameter � 2 (0; 1] is the step size.
Hence,

~�(t+1) = (I���(t)�(t)T )~�(t)+[�(t+ 1)� �(t)� ��(t)n(t)] ; (4)

where ~�(t) , �(t)� �̂(t). This is of the form (1) withMt = �(t)�(t)T ,Wt+1 =
�(t+ 1)� �(t) � ��(t)n(t), and Xt = ~�(t).

On iterating (1) we obtain the representation,

Xt+1 = (I � �Mt)Xt +Wt+1

= (I � �Mt) [(I � �Mt�1)Xt�1 +Wt] +Wt+1 (5)

=

0Y
i=t

(I � �Mi)X0 +

1Y
i=t

(I � �Mi)W1 + � � �+ (I � �Mt)Wt +Wt+1:

From the last expression it is clear that the matrix products
Qs

i=t(I � �Mi)
play an important role in the behavior of (1).

Properties of products of randommatrices are of interest in a wide range of
�elds. Application areas include numerical analysis [15,34], statistical physics
[9,10], recursive algorithms [11,5,27,17], perturbation theory for dynamical
systems [1], queueing theory [23], and even botany [30]. Seminal results are
contained in [3,13,29,28].

A complementary and popular research area concerns the eigenstructure
of large random matrices (see e.g. [33,16] for a recent application to capacity
of communication channels). Although the results of the present paper do
not address these issues, they provide justi�cation for simpli�ed models in
communication theory, leading to bounds on the capacity for time-varying
communication channels [24].

The relationship with dynamical systems theory is particularly relevant to
the issues addressed here. Consider a nonlinear dynamical system described
by the equations,

Xt+1 = Xt�f(Xt; �t+1)+Wt+1 ; (6)

where � = f�tg is an ergodic Markov process, evolving on a state space X,
and f : Rk � X! Rk is smooth and Lipschitz continuous. For this nonlinear
model we can construct a random linear model of the form (1) to address
many interesting issues. Viewing the initial condition 
 = X0 2 Rk as a
continuous variable, we write Xt(
) as the resulting state trajectory, and
consider the sensitivity matrix,

St =
@

@

Xt(
); t � 0 :
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From (6) we have the linear recursion,

St+1 = [I�Mt+1]St; (7)

where Mt+1 = rxf (Xt; �t+1), t � 0. If S = fStg is suitably stable then the
same is true for the nonlinear model, and we �nd that trajectories couple to
a steady state process X� = fX�

t g:

lim
t!1

kXt(
)�X
�
t k = 0 :

These ideas are related to issues developed in Section 3.
The traditional analytic technique for addressing the stability of (6) or

of (1) is the ODE method of [22]. For linear models, the basic idea is that, for
small values of �, the behavior of (1) should mimic that of the linear ODE,

d

dt

t = ��M
t+W ; (8)

where M and W are steady-state means of Mt and Wt, respectively. To
obtain a �ner performance analysis one can instead compare (1) to the linear
di�usion model,

d�t = ��M�t+dBt; (9)

where B = fBtg is a Brownian Motion.
Under certain assumptions one may show that, if the ODE (8) is stable,

then the stochastic model (1) is stable in a statistical sense for a range of small
�, and comparisons with (9) are possible under still stronger assumptions (see
e.g. [4,8,21,20,14] for results concerning both linear and nonlinear recursions).

In [27] an alternative point of view was proposed where the stability veri-
�cation problem for (1) is cast in terms of the spectral radius of an associated
discrete-time semigroup of linear operators. This approach is based on the
functional analytic setting of [26], and analogous techniques are used in the
treatment of multiplicative ergodic theory and spectral theory in [2,18,19].
The main results of [27] may be interpreted as a signi�cant extension of the
ODE method for linear recursions.

Our present results give a uni�ed treatment of both the linear and non-
linear models treated in [27] and [8], respectively.1 Utilizing the operator-
theoretic framework developed in [18] also makes it possible to o�er a trans-
parent treatment, and also signi�cantly weaken the assumptions used in ear-
lier results.

We provide answers to the following questions:

(i) For what range of � > 0 is the random linear system (1) L2-stable, in the
sense that Ex[kXtk

2] is bounded in t for any initial condition �0 = x 2 X?
1 Our results are given here with only brief proof outlines; a more detailed and
complete account is in preparation.
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(ii) What does the averaged model (8) tell us about the behavior of the
original stochastic model?

(iii) What is the impact of variability on performance of recursive algo-
rithms?

2 Linear Theory

In this section we develop stability theory and structural results for the linear
model (1) where � � 0 is a �xed constant.

It is assumed that an underlying Markov chain�, with general state-space
X, governs the statistics of (1) in the sense that M and W are functions of
the Markov chain:

Mt = m(�t); Wt = w(�t); t � 0 : (10)

We assume that the entries of the k�k-matrix valued functionm are bounded
functions of x 2 X. Conditions on the vector-valued function w are given
below.

We begin with some basic assumptions on �, required to construct a
linear operator with useful properties.

2.1 Some spectral theory

We assume throughout that the Markov chain � is geometrically ergodic
[25,18]. This is equivalent to assuming the validity of the following conditions:

Irreducibility & aperiodicity: There exists a �-�nite measure  on the state
space X such that, for any x 2 X and any measurable A � X with
 (A) > 0,

P t(x;A):=Pf�t 2 A j �(0) = xg > 0; for all suÆciently large t > 0.

Minorization: There exists a non-empty set C 2 B(X), a non-zero, positive
measure � on B(X), and t0 � 1 satisfying

P t0(x;A) � �(A) x 2 C; A 2 B(X):

In this case, the set C and the measure � are called small.

Geometric drift: There exists a Lyapunov function V : X ! [1;1), 
 < 1,
b <1, a small set C, and small measure �, satisfying

PV (x):=

Z
P (x; dy)V (y) � 
V (x)+bIC(x); x 2 X (11)
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Under these assumptions it is known that there is a unique invariant prob-
ability measure �, and the underlying distributions of � converge to � ge-
ometrically fast, in total-variation norm. Moreover, in (11) we may assume
without loss of generality that �(V 2) :=

R
V 2(x)�(dx) < 1: For a detailed

development of geometrically ergodic Markov processes see [25,26,18].
Let LV1 denote the set of measurable vector-valued functions g : X ! C k

satisfying

kgkV :=sup
x2X

kg(x)k

V (x)
<1 ;

where k � k is the Euclidean norm on C k , and V : X! [1;1) is the Lyapunov
function as above. For a linear operator L : LV1 ! LV1 we de�ne the induced
operator norm via

jjjLjjjV :=sup kLfkV =kfkV

where the supremum is over all non-zero f 2 LV1. We say that L is a bounded
linear operator if jjjLjjjV <1, and its spectral radius is then given by

� := lim
t!1

�
jjjLtjjj

�1=t
(12)

The spectrum S(L) of the linear operator L is

S(L) := fz 2 C : (Iz �L)�1 does not exist as a bdd linear operator on LV1g:

If L is a �nite matrix, its spectrum is just the collection of all its eigenvalues.
Generally, for the linear operators considered in this paper, the dimension of
L and its spectrum will be in�nite.

The family of linear operators L� : L
V
1 ! LV1, � 2 R, that will be used

to analyze the recursion (1) are de�ned by

L�f(x) := E [(I � �m(�1))
Tf(�1) j �0 = x]

= Ex [(I � �M1)
Tf(�1)] ;

(13)

and we let �� denote the spectral radius of L�. The motivation for (13) comes
from the representation (5), and the following expression for the iterates of
this semigroup:

Lt�f (x) = Ex [(I � �M1)
T � � � (I � �Mt)

Tf(�t)] ; t � 1 : (14)

The transpose ensures that the matrices are multiplied in order consistent
with (5).

We assume throughout the paper that m : X ! Rk�k is a bounded func-
tion. Under these conditions we obtain the following result as in [27].
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Theorem 1. There exists �0 > 0 such that for � 2 (0; �0), �� < 1, and
�� 2 S(L�). ut

To ensure that the recursion (1) is stable in the mean, it is suÆcient that
the spectral radius satisfy �� < 1. Under this condition it is obvious that
the mean E[Xt] is uniformly bounded in t (see (14)). The following result
summarizes additional conclusions obtained below.

Theorem 2. Suppose that the eigenvalues of M :=
R
m(x)�(dx) are all pos-

itive, and that w2 2 LV1, where the square is interpreted component-wise.
Then, there exists a bounded open set O 2 R containing (0; �0), where �0 is
given in Theorem 1, such that:

(i) For all � 2 O we have �� < 1 , and for any initial condition �0 = x 2 X,
X0 = 
 2 Rk ,

Ex[kXtk
2]! �2�; geometrically fast, as t!1,

for a �nite constant �2�.
(ii) If � is stationary, then for � 2 O there exists a stationary process X�

such that for any initial condition �0 = x 2 X, X0 = 
 2 Rk ,

Ex[kXt(
)�X
�
t k

2]! 0; geometrically fast, as t!1.

(iii) If � 62 O and the noise W is i.i.d. with a positive de�nite covariance
matrix, then Ex[kXtk

2] is unbounded.

λ 0
/

λ 0 =1

λαODE method

Stability  region

α

Fig. 1. The graph shows how �� := �� varies with �. When � is close to 0, Theo-
rem 4 below implies that the ODE (8) determines stability of the algorithm since
it determines whether or not �� < 1. A second-derivative formula is also given in
Theorem 4: If �000 is large, then the range of � for stability will be correspondingly
small.

Proof Outline for Theorem 2 Starting with (5), we may express the
expectation Ex

�
XT
t+1Xt+1

�
as a sum of terms of the form,

Ex

�
W T

j

�Qj
i=t(I � �Mi)

�T�Qk
i=t(I � �Mi)

�
Wk

�
; j; k = 0; : : : ; t :

(15)
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For simplicity consider the case j = k. Taking conditional expectations at
time j, one can then express the expectation (15) as

trace
�
Ex

h
(Qt�j

� h (�j))w(�j)w(�j )
T
i�

where Q� is de�ned in (20), and h � Ik�k. We de�ne O as the set of �
such that the spectral radius of this linear operator is strictly less than unity.
Thus, for � 2 O we have, for some �� < 1,

trace
�
(Qt�j

� h (y))w(y)w(y)T
�
= O(V (y)2e���(t�j)); �j = y 2 X:

Similar reasoning may be applied for arbitrary k; j, and this shows that
Ex[kXtk

2] is bounded in t � 0 for any deterministic initial conditions �0 =
x 2 X, X0 = 
 2 Rk .

To construct the stationary process X� we apply backward coupling as
presented in [32]. Consider the system starting at time �n, initialized at

 = 0, and let X�;n

t , t � �n, denote the resulting state trajectory. We then
have for all n;m � 1,

X�;m
t �X�;n

t =
� 0Y
i=t

(I��Mi)
�
[X�;m

0 �X�;n
0 ]; t � 0 ;

which implies convergence in L2 to a stationary process: X
�
t :=limn!1X�;n

t ,
t � 0. We can then compare to the process initialized at t = 0,

X�
t �Xt(
) =

� 0Y
i=t

(I��Mi)
�
[X�

0 �X0(
)]; t � 0 ;

and the same reasoning as before gives (ii). ut

2.2 Spectral decompositions

Next we show that �� := �� is in fact an eigenvalue of L� for a range
of � � 0, and we use this fact to obtain a multiplicative ergodic theorem.
The maximal eigenvalue �� in Theorem 3 is a generalization of the Perron-
Frobenius eigenvalue; c.f. [31,18].

Theorem 3. Suppose that the eigenvalues f�i(M)g of M are distinct, then

(i) There exists "0 > 0; Æ0 > 0 such that the linear operator Lz has exactly k
distinct eigenvalues f�1;z; : : : ; �k;zg � S(Lz) within the restricted range,

B1(Æ0) = f� 2 S(Lz) : j��1j < Æ0g;

whenever z lies in the open ball B0("0) := fz 2 C : jzj < "0g. The ith
eigenvalue �i;z is an analytic function of z on this domain for each i.
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(ii) For z 2 B("0) there are associated eigenfunctions fh1;z; : : : ; hk;zg � LV1
and eigenmeasures f�1;z; : : : ; �k;zg satisfying

Lzhi;z = �i;zhi;z; �i;zLz = �i;z�i;z :

Moreover, for each i, x 2 X, A 2 B(X), fhi;z(x); �i;z(A)g are analytic on
B("0).

(iii) Suppose moreover that the eigenvalues f�i(M)g are real. Then we may
take "0 > 0 suÆciently small so that f�i;�; hi;�; �i;�g are real for � 2
(0; "0). The maximal eigenvalue �� := maxi �i;� is equal to ��, and the
corresponding eigenfunction and eigenmeasure may be scaled so that the
following limit holds,

��t� Lt� ! h�
��; t!1;

where the convergence is in the V -norm.
In fact, there exists Æ0 > 0 and b0 < 1 such that for any f 2 LV1 the
following limit holds:�������t� Ex

h� tY
i=1

(I � �Mi)
�
T

f(�t)
i
� h�(x)��(f)

����� � b0e
�Æ0tV (x) :

Proof. The linear operator L0 possesses a k-dimensional eigenspace cor-
responding to the eigenvalue �0 = 1. This eigenspace is precisely the set of
constant functions, with a corresponding basis of eigenfunctions given by feig,
where ei is the ith basis element in Rk . The k-dimensional set of vector-valued
eigenmeasures f�ig given by �i = ei

T

� spans the set of all eigenmeasures with
eigenvalue �0;i = 1.

Consider the rank-k linear operator� : LV1 ! LV1 de�ned by �f :=�(f).
This is equivalently expressed as

�f (x) = (�(f1); : : : ; �(fk))
T =

�X
ei
�i

�
f; f 2 LV1:

It is obvious that � : LV1 ! LV1 is a rank-k linear operator, and for � = 0
we have from the V -uniform ergodic theorem of [25],

Lt0�� = [L0�� ]t ! 0; t!1;

where the convergence is in norm, and hence takes place exponentially fast.
It follows that the spectral radius of (L0 ��) is strictly less than unity. By
standard arguments it follows that, for some "0 > 0, the spectral radius of
Lz�� is also strictly less than unity. The results then follow as in Theorem 3
of [19]. ut

Conditions under which the bound �� < 1 is satis�ed are given in Theo-
rem 4, where we also provide formulae for the derivatives of ��:
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Theorem 4. Suppose that the eigenvalues f�i(M)g are real and distinct,
then the maximal eigenvalue �� = �� satis�es:

(i) d
d���

���
�=0

= ��min(M).

(ii) The second derivative is given by,

d2

d�2
��

���
�=0

= 2
1X
l=0

vT0E�[(M0�M)(Ml+1�M)]r0 ;

where r0 is a right eigenvector of M corresponding to �min(M), and v0 is
the left eigenvector, normalized so that vT0r0 = 1.

(iii) Suppose that m(x) = mT(x), x 2 X, then we may take v0 = r0 in (ii),
and the second derivative may be expressed,

d2

d�2
��

���
�=0

= trace (� ��);

where an � is the Central Limit Theorem covariance for the stationary
vector-valued stochastic process Fk = [Mk �M ]v0, and � = E�[FkF

T

k ] is
its variance [25].

Proof. To prove (i), we di�erentiate the eigenfunction equation L�h� =
��h� to obtain

L�
0h�+L�h

0
� = �0�h�+��h

0
�: (16)

Setting � = 0 then gives a version of Poisson's equation,

L00h0+Ph
0
0 = �00h0+h

0
0; (17)

where L00h0 = Ex [�m(�1)
Th0(�1)]. An application of Theorem 3 (ii) shows

that h00 2 L
V
1, which justi�es an integration of both sides of (17) with respect

to the invariant probability � to obtain

E� [�m(�1)
T]h0 = �M

T

h0 = �00h0:

This shows that �00 is an eigenvalue of�M , and h0 is an associated eigenvector

for M
T

. It follows that �00 = ��min(M) by maximality of ��.
We note that Poisson's equation (17) combined with equation (17.39) of

[25] implies the formula,

h00(x) = E�[h
0
0(�(0))]�

1X
l=0

Ex[(Ml+1�M)T]h0 : (18)

To prove (ii) we consider the second-derivative formula,

L00�h�+2L0�h
0
�+L�h

00
� = ��h

00
�+2�0�h

0
�+�

00
�h�:
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Evaluating these expressions at � = 0 and integrating with respect to � then
gives the steady state expression,

�000h0 = �2E�[(M1+�
0
0)h

0
0(�1)]: (19)

In deriving this identity we have used the expressions,

L00f (x) = Ex[M1f(�1)]; L000f (x) = 0; f 2 LV1; x 2 X:

This combined with (19) gives the desired formula since we may take v0 = h0
in (ii).

To prove (iii) we simply note that in the symmetric case the formula in
(ii) becomes,

�000 =
X
k 6=0

E�[kFkk
2] = trace (���) : �

2.3 Second-order statistics

In order to understand the second-order statistics of X it is convenient to
introduce another linear operator Q� as follows,

Q�f(x) = E [(I � �m(�1))
Tf(�1)(I � �m(�1))j�0 = x]

= Ex [(I � �M1)
Tf(�1)(I � �M1)] ;

(20)

where the domain of Q� is the collection of matrix-valued functions f : X!
C k�k . When considering Q� we rede�ne LV1 accordingly. It is clear that
Q� : LV1 ! LV1 is a bounded linear operator under the geometric drift
condition and the boundedness assumption on m.

Let �Qz denote the spectral radius of Q�. We can again argue that �Qz
is smooth in a neighborhood of the origin, and the following follows as in
Theorem 4:

Theorem 5. Assume that the eigenvalues of M are real and distinct. Then
there exists "0 > 0 such that for each z 2 B("0) there exists an eigenvalue
�z 2 C for Qz satisfying j�z j = �Qz , and �� is real for real � 2 (0; "0). The
eigenvalue �z is smooth on B("0) and satis�es,

�00(Q) = �2�min(M):

Proof. This is again based on di�erentiation of the eigenfunction equation
given by Q�h� = ��h�, where �� and h� are the eigenvalue and matrix-
valued eigenfunction, respectively. Taking derivatives on both sides gives

Q�
0h�+Q�h

0
� = �0�h�+��h

0
� (21)

where Q00h0 = Ex [�m(�1)
Th0(�1)� h0(�1)m(�1)]. As before, we then ob-

tain the steady-state expression,

E� [�m(�1)
Th0 � h0m(�1)] = �M

T

h0�h0M = �00h0: (22)

And, as before, we may conclude that �00 = 2�00 = �2�min(M). ut
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2.4 An illustrative example

Consider the discrete-time, linear time-varying model

yt = �Tt �t+nt; t � 0 ; (23)

where y = fytg is a sequence of scalar observations, n = fntg is a noise
process, � = f�tg is the sequence of k-dimensional regression vectors, and
�=f�tg are k-dimensional time-varying parameters. In this section we illus-
trate the results above using the LMS (least mean square) parameter esti-
mation algorithm,

b�t+1 = b�t+��tet;
where e = fetg is the error sequence, et := yt � b�Tt �t, t � 0.

As in the Introduction, writing e�t = �t � b�t we obtain
~�t+1 = (I���t�

T

t )
~�t+[�t+1 � �t � ��tnt] :

This is of the form (1) with Xt = ~�t,Mt = �t�
T

t andWt+1 = �t+1��t���tnt.
For the sake of simplicity and to facilitate explicit numerical calculations,

we consider the following special case: We assume that � is of the form
�t = (st; st�1)

T, where the sequence s is Bernoulli (st = �1 with equal
probability) and take n to be an i.i.d. noise sequence.

In analyzing the random linear system we may ignore the noise n and
take � = �. This is clearly geometrically ergodic since it is an ergodic, �nite
state space Markov chain, with four possible states. In fact, � is geometrically
ergodic with Lyapunov function V � 1. In the case k = 2, viewing h 2 LV1
as a real vector, the eigenfunction equation for L� becomes

L�h� =
1

2

2
664
A1 A0 A2 A0

A1 A0 A2 A0

A0 A2 A0 A1

A0 A2 A0 A1

3
775h� = ��h� (24)

where A0 =

�
0 0
0 0

�
, A1 =

�
1� � ��
�� 1� �

�
, A2 =

�
1� � �
� 1� �

�
.

In this case, we have the following local behavior:

Theorem 6. In a neighborhood of 0, the spectral radii of L�, Q� satisfy

d
d���

���
�=0

= ��min(M) = �1; d
d��

Q
�

���
�=0

= �2�min(M) = �2

dn

d�n ��

���
�=0

= 0; n � 2; dn

d�n �
Q
�

���
�=0

= 0; n � 3:

So �� and �� are linear and quadratic around 0, respectively.
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Fig. 2. The �gure on the left shows the Perron-Frobenius eigenvalue �� = �� for
the LMS model with �t = (st; st�1)

T. The �gure on the right shows the case where
�t = (st; st�1; st�2)

T. In both cases, the sequence s is i.i.d. Bernoulli.

0.2- 0.2 0.4 0.6 0.8 1

α

α

Stability region

0 = 1

0.5

η′
0(Q) = 2λ′

0(L)

= −2λ min(M)

η

η

Fig. 3. The maximal eigenvalues �� = �Q� are piecewise quadratic in � in the case
where �t = (st; st�1)

T with s as above.

Proof. This follows from di�erentiating the respective eigenfunction equa-
tions. Here we only show the proof for operator Q; the proof for operator L
is similar.

Taking derivatives on both sides of the eigenfunction equation for Q�

gives,

Q�
0h�+Q�h

0
� = �0�h�+��h

0
� (25)

Setting � = 0 gives a version of Poisson's equation,

Q00h0+Qh
0
0 = �00h0+�0h

0
0 (26)
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Using the identities of h0 and Q
0
0h0 = Ex[�M

T

1 h0�h0M1], we obtain the
steady state expression

M
T

h0+h0M = ��00h0: (27)

Since M = I , we have �00 = �2. Now, taking the 2nd derivatives on both
sides of (25) gives,

Q00�h�+2Q0�h
0
�+Q�h

00
� = �00�h�+2�0�h

0
�+��h

00
�: (28)

Letting � = 0 and considering the steady state, we obtain

2M
T

h0M�2E�[M
T

1 h
0
0+h

0
0M1] = �000h0+2�00E�[h

0
0]: (29)

Poisson's equation (26) combined with equation (27) and equation (17.39)
of [25] implies the formula,

h00(x) = E�(h
0
0) +

P1

l=0 Ex[�M
T

l+1h0 � h0Ml+1 � �00h0]

= E�(h
0
0) +

P1

l=0 Ex[(M �Ml+1)
Th0 + h0(M �Ml+1)]:

(30)

So, from M = I , �00 = �2 and (29) we have �000 = 2. In order to show ��
is quadratic near zero, we take the 3rd derivative on both sides of (28) and
consider the steady state at � = 0,

Q0000 h0+3Q
00
0h
0
0+3Q

0
0h
00
0+Q0h

000
0 = �0000 h0+3�

00
0h
0
0+3�

0
0h
00
0+�0h

000
0 : (31)

With equation (17.39) of [25] and �00 = �2 and �000 = 2, we can show

�0000 = 0 and �
(n)
0 = 0 for n > 3, hence �� is quadratic around 0. ut

3 Nonlinear models

We now turn to the nonlinear model shown in (6). We take the special form,

Xt+1 = Xt��[f(Xt; �t+1)+Wt+1] ; (32)

We continue to assume that � is geometrically ergodic, and thatWt = w(�t),
t � 0, with w2 2 LV1. The associated ODE is given by

d

dt

t = f(
t); (33)

where f(
) =
R
f(
; x)�(dx), 
 2 Rk .

We assume that W = E�[W1] = 0, and the following conditions are im-
posed on f . The function f1 appearing in Condition (N1) may be used to
construct an ODE that approximates the behavior of (32) when the initial
condition is very large.
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(N1) The function f is Lipschitz, and there exists a function f1 : Rk ! Rk

such that

lim
r!1

r�1f(r
) = f1(
); 
 2 R
k :

Furthermore, the origin in Rk is an asymptotically stable equilibrium
point for the ODE,

d

dt

1t = f1(
1t ): (34)

(N2) There exists bf <1 such that sup

2Rk

kf(
; x)�f(
)k2 � bfV (x); x 2 X.

(N3) There exists a unique stationary point x� for the ODE (33) that is a
globally asymptotically stable equilibrium.

De�ne the absolute error by

"t :=kXt�x
�k; t � 0: (35)

The following result is an extension of Theorem 1 of [8] to Markov models:

Theorem 7. Assume that (N1){(N3) hold. Then there exists "0 > 0 such
that for any 0 < � < "0:

(i) For any Æ > 0, there exists b1 = b1(Æ) <1 such that

lim sup
n!1

P("n � Æ) � b1�:

(ii) If the origin is a globally exponentially asymptotically stable equilibrium
for the ODE (33), then there exists b2 < 1 such that for every initial
condition �0 = x 2 X, X0 = 
 2 Rk ,

lim sup
n!1

E["2n] � b2�:

Proof Outline for Theorem 7 The continuous-time process fxot : t � 0g
is de�ned to be the interpolated version of X given as follows: Let Tj = j�,
j � 0, and de�ne xo(Tj) = �Xj , with x

o de�ned by linear interpolation on the
remainder of [Tj ; Tj+1] to form a piecewise linear function. Using geometric
ergodicity we can bound the error between xo and solutions to the ODE (33)
as in [8], and we may conclude that the joint process (X;�) is geometrically
ergodic with Lyapunov function V2(
; x) = k
k2 + V (x). ut

We conclude with an extension of Theorem 2 describing the behavior of
the sensitivity process S.

Theorem 8. Assume that (N1){(N3) hold, and that the eigenvalues of the
matrix M have strictly positive real part, where

M :=rf (x�) :

Then there exists "1 > 0 such that for any 0 < � < "1, the conclusions of
Theorem 7 (ii) hold, and, in addition:
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(i) The spectral radius �� of the random linear system (7) describing the
evolution of the sensitivity process is strictly less than one.

(ii) There exists a stationary process X� such that for any initial condition
�0 = x 2 X, X0 = 
 2 Rk ,

Ex[kXt�X
�
t k

2]! 0; t!1 :
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