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Abstract

Let xn
1

= (x1; x2; : : : ; xn) be a realization of the independent and identically distributed
random variables (X1; X2; : : : ; Xn). A compression algorithm operating at distortion level
D consists of an encoder that takes strings xn

1
to binary strings of variable length, and a

decoder that maps these binary strings to new strings yn
1

= (y1; y2; : : : ; yn), so that the
decoded yn

1
is always within distortion D of the encoded xn

1
. Distortion is measured by some

single-letter distortion measure such as mean-squared error. The description length `n(x
n
1
)

is the length of the binary description of xn
1
. For long realizations, the best compression

ratio `n(X
n

1
)=n that can be achieved by any sequence of algorithms operating at distortion

level D is given by Shannon's rate-distortion function R(D).

The following critical phenomenon was recently discovered in [10]. Depending on the dis-
tribution of the random variables Xi and the distortion level D, the fastest rate at which
`n(xn

1
)=n can converge to R(D) is either of order

p
n or of order logn. No other possibilities

exist. In this paper we show that in most cases the optimal convergence rate is O(
p
n): For

any �xed source distribution the rate can be O(logn) for at most �nitely many distortion
levels D, unless the Xi are uniformly distributed over a �nite set, in which case the rate is
O(logn) for all D.
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1 Introduction

Suppose that data is produced by a stationary memoryless source fXn ; n � 1g, so that the Xi

are independent and identically distributed (IID) random variables with common distribution
P . We will assume throughout that the Xi take values in some subset A of R called the source
alphabet, and that the reproduction alphabet Â is a �nite subset of R, say Â = fa1; a2; : : : ; akg.

The main objective of data compression is to �nd eÆcient approximate representations for
realizations xn1 = (x1; x2; : : : ; xn) from the data source Xn

1 = (X1;X2; : : : ;Xn). Speci�cally,
we wish to represent each source string xn1 by a corresponding string yn1 = (y1; y2; : : : ; yn)
taking values in the reproduction alphabet Â, so that the distortion between each xn1 and its
representation lies within some �xed allowable range. For our purposes, distortion is measured
by a family of single-letter distortion measures,

�n(x
n
1 ; y

n
1 ) =

1

n

nX
i=1

�(xi; yi) xn1 2 An; yn1 2 Ân; (1)

where � : A� Â ! [0;1) is a �xed nonnegative function. For example �(x; y) may be the
Hamming distortion, �(x; y) = 0 if and only if x = y, and �(x; y) = 1 otherwise; or it may be
the squared Euclidean distance �(x; y) = (x�y)2; making �n(x

n
1 ; y

n
1 ) equal to the mean-squared

error between xn1 and yn1 .
We consider variable-length block codes operating at a �xed distortion level, that is, codes Cn

de�ned by triplets (Bn; �n;  n) where:

(a) Bn is a subset of Ân called the codebook;

(b) �n : An ! Bn is a map called the encoder;

(c)  n : Bn ! f0; 1g� is an invertible representation of the elements of Bn by �nite-length
binary strings.

In (c), f0; 1g� denotes the set of all binary strings of �nite length. On top of being invertible,
we also assume that the map  n is pre�x-free, i.e., that in the range of  n no binary string is
a pre�x of another (this assumption can be made without any essential loss of generality; see
Chapter 5 in [5]).

For a �xed distortion level D � 0, the code Cn = (Bn; �n;  n) is said to operate at distortion

level D [8] if it encodes each source string with distortion D or less:

�n(x
n
1 ; �n(x

n
1 )) � D for all xn1 2 An:

From the point of view of data compression, the main quantity of interest is the description
length of a block code Cn, expressed by its length function `n : An ! N, where `n(x

n
1 ) denotes

the description length (in bits) assigned by Cn to the string xn1 :

`n(x
n
1 ) = length of [ n(�n(x

n
1 ))]:

Broadly speaking, the smaller the description length, the better the code.
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Shannon's 1959 celebrated source coding theorem identi�ed and characterized the best
achievable expected compression performance of block codes. It states that, for an arbitrary
sequence of block codes fCn = (Bn; �n;  n) ; n � 1g operating at distortion level D, the ex-
pected compression ratio E[`n(X

n
1 )]=n is asymptotically bounded below by the rate-distortion

function,

lim inf
n!1

E[`n(X
n
1 )]

n
� R(D) bits per symbol,

where R(D) = R(P;D) is the rate-distortion function of the memoryless source with distribution
P (precise de�nitions are given in the next section). Moreover, Shannon showed that there exist
codes achieving the above lower bound with equality; see Shannon's 1959 paper [11] or Berger's
classic text [4].

A stronger version of Shannon's theorem was proved by Kie�er in 1991 [8], where it is shown
that the rate-distortion function is a pointwise asymptotic lower bound for `n(X

n
1 ):

lim inf
n!1

`n(X
n
1 )

n
� R(D) with prob. 1. (2)

In [8] it is also demonstrated that the bound in (2) can be achieved with equality.
The following re�nement to Kie�er's result was recently given in [10]:

(POINTWISE REDUNDANCY): For any sequence of block codes fCng with asso-
ciated length functions f`ng, operating at distortion level D,

`n(X
n
1 ) � nR(D) +

nX
i=1

f(Xi)� 2 log n eventually, with prob. 1, (3)

where f : A! R is a bounded function depending on P and D but not on the codes
fCng, such that EP [f(X1)] = 0. Moreover, there exist codes fCn; `ng that achieve

`n(X
n
1 ) � nR(D) +

nX
i=1

f(Xi) + 5 log n eventually, with prob. 1. (4)

[cf. Theorems 4 and 5 and eq. (18) in [10]; the function f is de�ned precisely in Section 3;
above and throughout the paper, `log' denotes the logarithm taken to base 2 and `loge' denotes
the natural logarithm.] This result says that, for any source distribution P and any sequence
of codes fCng operating at distortion level D, the \pointwise redundancy" in the description
lengths of the codes Cn, namely, the di�erence between `n(X

n
1 ) and the optimum nR(D) bits

redundancy = `n(X
n
1 )� nR(D)

is essentially bounded below by the sum of the IID, bounded, zero-mean random variables f(Xi).
So there are two possibilities:
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� Either the random variables f(Xi) are non-constant, in which case the best achievable
pointwise redundancy rate is of order

p
n (by the central limit theorem and the upper and

lower bounds in (3) and (4));

� or the random variables f(Xi) are equal to zero with probability one, in which case the
best pointwise redundancy is � 5 log n (by (4)).

Our purpose in this paper is to characterize exactly when each one of the above two cases
occurs, namely, when the minimal pointwise redundancy is O(

p
n) and when it is O(log n). In

the next section we show that it is almost never the case that f(X1) = 0 with probability one,
so the minimal pointwise redundancy is typically of order

p
n. In particular, in the common

case when the Xi take values in a �nite alphabet A = Â, then (under mild conditions) we show
that f(X1) = 0 with probability one if and only if the Xi are uniformly distributed.

Before stating our main results (Theorems 1, 2 and 3 in the next section) in detail, we recall
the following representative examples from [9] and [10].

Example 1. (Lossless Compression). In the case of lossless compression the objective is to �nd
eÆcient, uniquely decodable representations for the source strings xn1 . For a source fXng with
distribution P on the �nite alphabet A, a lossless code Cn is a pre�x-free map  n : An ! f0; 1g�.
[Or, to be pedantic, in our setting a lossless code is a code operating at distortion level D = 0
with respect to Hamming distortion.] In this case the function f has the simple form

f(x) = � logP (x)�H(P ) (5)

where H(P ) = EP [� logP (X1)] is the entropy of P , and the lower bound (3) is simply

`n(X
n
1 ) � nH(P ) +

nX
i=1

f(Xi)� 2 log n

= � logP (Xn
1 )� 2 log n eventually, with prob. 1. (6)

The lower bound (6) is a well-known information-theoretic fact called Barron's lemma (see [2][3]
and the discussion in [10]). It says that the description lengths `n(X

n
1 ) of an arbitrary sequence

of codes are (eventually eventually with probability 1) bounded below by the idealized Shannon
code lengths � logP (Xn

1 ), up to terms of order log n. From (5) it is obvious that f(X1) = 0
with probability one if and only if P is the uniform distribution on A.

Example 2. (Binary Source, Hamming Distortion). This is the simplest non-trivial lossy
example. Suppose fXng is a binary source with Bernoulli(p) distribution for some p 2 (0; 1=2].
Let A = Â = f0; 1g and take � to be the Hamming distortion measure, �(x; y) = 0 when x = y,
and equal to 1 otherwise. For each �xed D 2 (0; p) it is shown in [10] that

f(x) = � log

�
P (x)

1�D

�
�EP

�
� log

�
P (X1)

1�D

��
;

from which it is again obvious that f(X1) = 0 with probability one if and only if p = 1=2, i.e.,
if and only if P is the uniform distribution on A = f0; 1g.
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In a third example presented in [10] it is also found that f(X1) = 0 with probability one
if and only if P is the uniform distribution, and the natural question is raised as to whether
this pattern persists in general. In the next section we answer this question by showing (in
Theorem 1 and Corollary 1) that for a �xed source distribution P on a �nite alphabet A, f(X1)
can be equal to zero with probability one for at most �nitely many distortion levels D, unless P
is the uniform distribution and � is a \permutation" distortion measure. In Theorems 2 and 3
and in Corollary 2 the continuous case is considered, and it is shown that when P is a continuous
distribution it essentially never happens that f(X1) = 0 with probability one. Section 3 contains
the proofs of Theorems 1, 2 and 3 and Corollaries 1 and 2.

2 Results

Suppose that the source alphabet A is an arbitrary (Borel) subset of R, and let P be a (Borel)
probability measure on R, supported on A (the special cases when P is purely discrete or purely
continuous are considered separately below). Let Â = fa1; a2; : : : ; akg be the �nite reproduction
alphabet of size k. Given an arbitrary, bounded, nonnegative function � : A�Â ! [0;M ] (for
some �nite constant M), de�ne a sequence of single-letter distortion measures �n : An�Ân !
[0;M ] as in (1). Throughout the paper, we make the usual assumption:

sup
x2A

min
y2Â

�(x; y) = 0: (7)

[If this is not satis�ed, for example when A is an interval of real numbers, Â is a �nite set, and
�(x; y) = (x � y)2, we may consider the distortion measure �0(x; y) = �(x; y) � min

z2Â �(x; z)
instead.] For D � 0, the rate-distortion function of the memoryless source with distribution P
is de�ned by

R(D) = inf
(X;Y )

I(X;Y ) (8)

where the in�mum is over all jointly distributed random variables (X;Y ) with values in A�Â
such that X has distribution P and E[�(X;Y )] � D; I(X;Y ) denotes the mutual information (in
bits) between two random variables X and Y (see [4] for more detailed de�nitions and various
properties of R(D)). Under our assumptions, the rate-distortion function R(D) is a convex,
nonincreasing function of D � 0, and it is �nite for all D.

For a �xed distribution P on A, let

Dmax = Dmax(P ) = min
y2Â

EP [�(X; y)]

and recall that R(D) = 0 for D � Dmax (see, e.g., Proposition 1 in Section 3). In order to avoid
the trivial case when R(D) is identically zero we assume that Dmax > 0, and from now on we
restrict our attention to the interesting range of distortion levels D 2 (0;Dmax).
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2.1 The Discrete Case: A = Â

We �rst consider the most common case where the source fXng takes values in a �nite alphabet.
Suppose that the random variables Xi are IID with common distribution P on A = Â =
fa1; a2; : : : ; akg, and assume, without loss of generality, that Pi = P (ai) > 0 for all i = 1; : : : ; k.
Given a distortion measure �, write �ij for �(ai; aj). We assume throughout this section that �
is symmetric,

�ij = �ji for all 1 � i; j � k;

and also that �ij = 0 if and only if i = j. We call � a permutation distortion measure, if all rows
of the matrix (�ij)i;j=1;:::;k are permutations of one another (which, by symmetry, is equivalent
to saying that all columns are permutations of one another).

Recall that the minimal pointwise redundancy is O(logn) if and only if f(X1) = 0 with
probability one; otherwise it is O(

p
n). Our �rst result says that the rate cannot be O(log n) for

many distortion levels D, unless the distribution P is uniform in which case the rate is O(log n)
for all distortion levels D.

Theorem 1.
(a) If P is the uniform distribution on A and � is a permutation distortion measure, then

f(X1) = 0 with probability one for all D 2 (0;Dmax).

(b) If f(X1) = 0 with probability one for a sequence of distortion values Dn 2 (0;Dmax) such
that Dn # 0, then P is the uniform distribution and � is a permutation distortion measure,
and therefore f(X1) = 0 with probability one for all D 2 (0;Dmax).

As we mentioned above, the rate-distortion function R(D) is convex for D 2 (0;Dmax). If it
is strictly convex (as it is usually the case { see the discussion in [4, Chapter 2]), then Theorem 1
can be strengthened to the following.

Corollary 1. Suppose the rate-distortion function R(D) is strictly convex over (0;Dmax).
If f(X1) = 0 with probability one for in�nitely many D 2 (0;Dmax) then P is the uniform
distribution and � is a permutation distortion measure, and therefore f(X1) = 0 with probability
one for all D 2 (0;Dmax).

Remark. In the examples presented in the previous section, it turned out that either f(X1) =
0 with probability one for all D, or it was never the case. But it may happen that f(X1) = 0
with probability one only for a few isolated values of D, while P is not the uniform distribution.
Such an example is given after Lemma 3 in Section 3.2.

2.2 The Continuous Case: A = R

Here we take A = R and we assume that the distribution P of the source has a positive density
g (with respect to Lebesgue measure), or, more generally, that there exists a (nonempty) open
interval I � R on which P has an absolutely continuous component with density g such that
g(x) > 0 for x 2 I. Since the reproduction alphabet Â = fa1; a2; : : : ; akg is �nite, given a
distortion measure � we can write

�j(x) = �(x; aj) for all 1 � j � k; x 2 A:
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We assume that for all j the functions �j are continuous on I. For convenience we also de�ne,
for j = 0, �j(x) � 0 on I.

Our next result gives a suÆcient condition on the distortion measures �j , under which the
best redundancy rate in (2) can never be O(log n).

Theorem 2. If for every � < 0 the functions fe��j (�) ; 0 � j � kg are linearly independent on
I, then f(X1) cannot be equal to zero with probability one for any distortion levelD 2 (0;Dmax):

Next we provide a somewhat simpler set of conditions, under which we get a weaker con-
clusion. Theorem 3 says that the best redundancy rate in (2) cannot be O(log n) for many
distortion levels D (as long as the distortion measure satis�es one of two mild conditions).

Theorem 3. Under either one of the following two conditions, f(X1) cannot be equal to zero
with probability one for distortion levels D > 0 arbitrarily close to zero.

(a) There exist (distinct) points fx0; x1; : : : ; xkg in I such that, for all 0 � i 6= j � k, with
j 6= 0, we have �j(xj) > �j(xi):

(b) There exist (distinct) points fx0; x1; : : : ; xkg in I such that, for every permutation � of
the indices f0; 1; : : : ; kg with � not equal to the identity, we have

kX
j=0

�j(xj) 6=
kX
j=0

�j(x�(j)):

Although the conditions of Theorems 2 and 3 may seem unusual, they are natural and
generally easy to verify. To illustrate this, we present below two simple examples.

Example 1. (Mean-Squared Error). Suppose P has a positive density on the interval I =
[�2; 2], let Â consist of the two reproduction points �1, and let � be the mean-squared error
distortion measure. Recall that, to satisfy (7), �(x; y) is actually de�ned by �(x; y) = (x �
y)2 � minf(x � 1)2; (x + 1)2g; the corresponding distortion functions �1(x) = �(x;�1) and
�2(x) = �(x;+1) are shown in Figure 1 (a). Here, condition (a) of Theorem 3 is easily seen to
hold with x0 = 0; x1 = 2 and x2 = �2.

Example 2. (L1 Distance). Suppose P has a positive density on the interval I = [0; 6],
let Â = f1; 3; 5g; and take � to be the normalized L1 distance jx � yj adjusted so that (7) is
satis�ed; the resulting functions �j(�) are shown in Figure 1 (b). Here it is easy to verify that
the condition of Theorem 2 is satis�ed, i.e., that the functions fe��j(�) ; 0 � j � 3g are linearly
independent on I. For this it suÆces to observe that e��1 and e��3 are linearly independent on
[2; 4] (essentially because the functions e�x and e��x are linearly independent on [0; 2]), and that
e��2 is not constant outside [2; 4].

Like in the discrete case, under some additional assumptions on the rate-distortion function
R(D), it is possible to get a stronger version of Theorem 3:
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Figure 1: Distortion measures in Examples 1 and 2. Reproduction points are shown as x's.

Corollary 2. Suppose the rate-distortion function R(D) is di�erentiable and strictly convex
over (0;Dmax). Under either one of the assumptions (a) and (b) in Theorem 3, there can be at
most �nitely many D 2 (0;Dmax) such that f(X1) = 0 with probability one.

Remark. Under somewhat more restrictive assumptions on the distortion measure �, it is
possible to prove that, for any P with a continuous component as above, there can be at most
k(k+1)=2 distortion levels D for which f(X1) = 0 with probability one. Since the proof of this
slightly stronger result relies on an argument di�erent from the ones used to prove Theorems 2
and 3, we omit it here.

3 Proofs

3.1 Preliminaries

Before giving the proofs of Theorems 1, 2 and 3, we recall some de�nitions and notation from
[10] and give the precise form of the function f (see equation (12) below).

Let P be a source distribution on A, and let Q be an arbitrary probability mass function on
Â. Write X for a random variable with distribution P on A, and Y for an independent random
variable with distribution Q on Â. Let S = fa 2 Â : Q(a) > 0g be the support of Q and de�ne

DP;Q
min = EP

�
min
a2S

�(X; a)

�
DP;Q

max = EP�Q [ �(X;Y )] :
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For � � 0, let

�P;Q(�) = EP

h
logeEQ

�
e��(X;Y )

�i
;

and for D � 0 write ��P;Q for the Fenchel-Legendre transform of �P;Q,

��P;Q(D) = sup
��0

[�D � �P;Q(�)]:

We also de�ne
R(P;Q;D) = inf

(X;Z)
[I(X;Z) +H(QZkQ)]

where H(RkQ) = P
a2Â

R(a) log[R(a)=Q(a)] denotes the relative entropy (in bits) between R
and Q, QZ denotes the distribution of Z, and the in�mum is over all jointly distributed random
variables (X;Z) with values in A�Â such that X has distribution P and E[�(X;Z)] � D. In
view of (8), we clearly have

R(D) = inf
all Q

R(P;Q;D): (9)

In Lemma 1 and Proposition 1 below we summarize some useful properties of �P;Q, �
�
P;Q and

R(P;Q;D) (see Lemma 1 and Propositions 1 and 2 in [10]).

Lemma 1.

(i) �P;Q is in�nitely di�erentiable on (�1; 0), and �00P;Q(�) � 0 for all � � 0.

(ii) If D 2 (DP;Q
min ;D

P;Q
max) then there exists a unique � < 0 such that �0P;Q(�) = D and

��P;Q(D) = �D � �P;Q(�).

Proposition 1.

(i) For all D � 0, R(P;Q;D) = infW EP [H(W (�jX)kQ(�))] ; where the in�mum is over
all probability measures W on A� Â such that the A-marginal of W equals P and
EW [�(X;Y )] � D:

(ii) For all D � 0, R(P;Q;D) = (log e)��P;Q(D):

(iii) For 0 < D < Dmax we have 0 < R(D) <1, whereas for D � Dmax, R(D) = 0.

(iv) For every D 2 (0;Dmax) there exists a Q = Q� on Â achieving the in�mum in (9), and

D 2 (DP;Q�

min ;DP;Q�

max ).

For any distribution P on A and any distortion level D 2 (0;Dmax(P )), by Proposition 1
we can pick a Q� achieving the in�mum in (9) so that R(D) = R(P;Q�;D) and also D 2
(DP;Q�

min ;DP;Q�

max ), so by Lemma 1 we can pick a �� < 0 with

��D � �P;Q�(��) = ��P;Q�(D) = (loge 2)R(P;Q
�;D) = (loge 2)R(D): (10)
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Note also that

�� ! �1 as D ! 0 (11)

(see the Appendix for a short proof). Finally we can de�ne the function f :

f(x)
4
= (log e)

h
��D � logeEQ�

�
e�

��(x;Y )
�i
�R(D); x 2 A: (12)

Since EP [f(X1)] = 0, f(X1) = 0 with probability one if and only if

kX
j=1

Q�(aj)e
���(x;aj) = Constant for P � almost all x. (13)

Next we give an useful interpretation for the constant �� in the representation of R(D) in (10):
Lemma 2 says that if the rate-distortion function is di�erentiable at D, then �� is proportional
to its slope at D; it is proved in the Appendix.

Lemma 2. For any D 2 (0;Dmax):

(i) (loge 2)R(D) = sup��0 [�D � �(�)]; where �(�) = supQ �P;Q(�).

(ii) Let �� be chosen as in (10). If R(�) is di�erentiable at D, then �� = (loge 2)R
0(D):

3.2 Proofs in the Discrete Case

For the proof of Theorem 1 we will need the following lemma. It easily follows from Theorem 3.7
in Chapter 2 of [6] (see the Appendix). Recall the notation Pi = P (ai) and �ij = �(ai; aj).

Lemma 3. A probability mass function Q� on A achieves the in�mum in (9) if and only if
there exists a �� < 0 such that the following all hold:

(a) �0P;Q�(��) = D:
(b) If we de�ne, for ai; aj 2 A,

W (ai; aj) = PiQ
�(aj)

e�
��ijP

j0 Q
�(aj0)e

���ij0

then the second marginal of W is Q�.
(c) If Q�(aj) = 0 for some j, thenX

i

Pi
e�

��ijP
j0 Q

�(aj0)e
���ij0

� 1:

Example. Here we present a simple example illustrating the fact that it may happen that
f(X1) = 0 for a few isolated values D even when P is not uniform. Take A = Â = f0; 1; 2g, let
� = loge[3e=(4 � e)], and consider the distortion measure

(�ij) =

0@ 0 1 �
1 0 �
� � 0

1A :
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Then, with P = Q� = (4=13; 4=13; 5=13) and �� = �1, it is straightforward to check that
condition (b) of Lemma 3 holds (condition (c) is irrelevant here), and also (13) is satis�ed.
Therefore, at D = �0P;Q�(��) � 0:43, we must have f(X1) = 0 with probability one.

Proof of Theorem 1, (a): Suppose � is a permutation distortion measure and P is the uniform
distribution on A, Pi = 1=k for all i = 1; : : : ; k. First we claim that for any D 2 (0;Dmax) we
can take Q� to also be uniform. With Q�(aj) = 1=k for all j, it suÆces to �nd �� < 0 satisfying

(a) and (b) of Lemma 3 (part (c) is irrelevant here). We have DP;Q�

min = 0 and

DP;Q�

max =
X
i;j

1

k

1

k
�ij =

1

k
�

where we have written � for the quantity
P

i �ij ; which is independent of j since � is a per-
mutation. Also by the permutation property, Dmax = minj EP [�(X; aj)] = minj

P
i(1=k)�ij =

(1=k)�: Choose and �x a D 2 (0;Dmax). Then D 2 (DP;Q�

min ;DP;Q�

max ) and we can pick �� < 0
as in (10) so that Lemma 3 (a) holds. With this �� and Q� being uniform let W � be as in
Lemma 3 (b); then

X
i

W �(ai; aj) =
X
i

1

k

1

k

e�
��ijP

j0
1
k
e�

��ij0
=

1

k

X
i

e�
��ijP

j0 e
���ij0

:

But the sum in the denominator aboveX
j0

e�
��ij0 is independent of i (14)

because � is a permutation, so
P

iW
�(ai; aj) = 1=k = Q�(aj), and (b) is satis�ed. This proves

that we can take Q� to be uniform. Now simply multiplying (14) by 1=k we obtain (13), and
this implies that f(x) = 0 for all x 2 A. Since D 2 (0;Dmax) was arbitrary, we are done. 2

Proof of Theorem 1, (b): Let Dn; n � 1; be a sequence of of distortion values in (0;Dmax) for
which f(X1) = 0 with probability one, and such that Dn # 0. By Lemma 1 and Proposition 1, for
each Dn there is a Qn and a �n < 0 such that R(Dn) = (log e)��P;Qn

(�n) and Dn = �0P;Qn
(�n):

By (11), �n ! �1 as n!1. Let

eD = (min
i
Pi)(min

i6=j
�ij) > 0:

Then for all n large enough so that Dn < eD, we must have Qn(ai) > 0 for all i (otherwise it is
trivial to check that �0P;Qn

(�) � eD for any � < 0, contradicting the choice of �n). From now on
we restrict attention to these large enough n's. As discussed above, f(X1) = 0 with probability
one if and only if condition (13) holds, which, in this case, becomes

kX
j=1

Qn(aj)e
�n�ij is independent of i. (15)

10



By Lemma 3 (b) we have that for all j

X
i

Pi
e�n�ijP

j0 Qn(aj0)e
���ij0

= 1;

but by (15) the denominator is independent of i soX
i

Pie
�n�ij = cn; independent of j. (16)

Since �n ! �1, letting n ! 1 yields Pj = limn cn for all j; so P is the uniform distribution
(recall our assumption that �ij = 0 if and only if i = j). Moreover, from (16) it follows thatX

i

e�n�ij = kcn; independent of j: (17)

To show that � is a permutation, �x two arbitrary indices j 6= j0 and reorder the vectors
(�1j ; : : : ; �kj) and (�1j0 ; : : : ; �kj0) so that their elements are nondecreasing. Let (�1; : : : ; �k) and
(�01; : : : ; �

0
k) be the corresponding ordered vectors. Then �1 = �01 = 0 and (17) implies that

kX
i=2

e�n(�i��
0
2) =

kX
i=2

e�n(�
0
i��

0
2):

Next we show that if �2 6= �02, say �2 > �02, we get a contradiction. Since �i��02 > 0 for all i � 2,
as n!1 the left-hand-side above tends to 0 but the right-hand-side is � 1. Therefore �2 = �02.
Continuing inductively, �i = �0i for all i, so (�1j ; : : : ; �kj) and (�1j0 ; : : : ; �kj0) are permutations
of one another. Since j and j0 were arbitrary, this completes the proof. 2

Proof of Corollary 1: As before, let Dn; n � 1; be a sequence of of distortion values in
(0;Dmax) for which f(X1) = 0 with probability one, and let Qn and �n < 0 be chosen such that
R(Dn) = (log e)��P;Qn

(�n). Since R(D) is di�erentiable on (0;Dmax) (see [4, Theorem 2.5.1]),
from Lemma 2 we get that �n = (loge 2)R

0(Dn). Moreover, since we assume that R(D) is strictly
convex on (0;Dmax), the �n are all distinct.

If the sequence f�ng is unbounded, i.e., it has a subsequence that tends to �1, then we can
proceed exactly as in the proof of Theorem 1. So assume that the sequence f�ng is bounded.
Since for each n, R(P;Qn;Dn) = R(Dn) > 0, there must be a subset S of f1; 2; : : : ; kg of size
N = jSj � 2, such that in�nitely many of the Qn are supported on faj : j 2 Sg. Without loss
of generality we can relabel the elements of A so that S = f1; 2; : : : ; Ng. If N = k then we can
again repeat the argument in the proof of Theorem 1.

Assuming N � k � 1; we proceed to get a contradiction. Since f(x) = 0 with probability
one, condition (13) implies that

kX
j=1

Qn(aj)e
�n�ij =

NX
j=1

Qn(aj)e
�n�ij = cn; independent of i.

11



De�ning �i0 = 0 for all i and letting T (�) denote the (N + 1)�(N + 1) matrix with entries
exp(��ij) for i = 1; : : : ; N + 1 and j = 0; 1; : : : ; N; the above conditions imply that0BBBBBBBB@

1 1 e�n�12 � � � � � � e�n�1N

1 e�n�21 1 e�n�23 � � � e�n�2N

...
...

. . .
...

...
...

. . .
...

1 e�n�N1 � � � � � � e�n�N(N�1) 1

1 e�n�(N+1)1 � � � � � � � � � e�n�(N+1)N

1CCCCCCCCA
| {z }

T (�n)

0BBBBBB@
�cn

Qn(a1)
...
...

Qn(aN )

1CCCCCCA = 0 2 R
N+1 :

Therefore det(T (�n)) = 0 for all �n. The sequence f�ng is bounded so it must have an accu-
mulation point, and since det(T (�)) is an analytic function of � it can only have isolated zeroes
unless it is identically zero (see, e.g., the discussion in [1, Section 4.3.2]). So here we must have
that det(T (�)) � 0 for all � � 0. But as �! �1, T (�) converges to the matrix

T1 =

0BBBBBBBB@

1 1 0 � � � � � � 0
1 0 1 0 � � � 0
...

...
. . .

...
...

...
. . .

...
1 0 � � � � � � 0 1
1 0 � � � � � � 0 0

1CCCCCCCCA
which has determinant equal to 1 or �1, and this provides the desired contradiction. 2

3.3 Proofs in the Continuous Case

Proof of Theorem 2: We argue by contradiction. Suppose f(X1) = 0 with probability one for
some D 2 (0;Dmax). Choose a Q

� and a �� < 0 as in (10). Then (13) implies that

kX
j=1

Q�(aj)e
���(x;aj) = Constant for P � almost all x,

but since P has an absolutely continuous component with positive density on I, and since the
functions �j(�) are assumed to be continuous, this holds for all x 2 I, and therefore contradicts
the linear independence assumption of Theorem 2. 2

Proof of Theorem 3: First we observe that condition (a) immediately implies condition (b).
Therefore it suÆces to show that if condition (b) holds, f(X1) cannot be equal to zero with
probability one for distortion levels D > 0 arbitrarily close to zero. We proceed as in the proof
of Corollary 1. Assuming that there is a sequence Dn; n � 1; of distortion values in (0;Dmax)
for which f(X1) = 0 with probability one, and such that Dn # 0, we will derive a contradiction.

12



Pick Qn and �n < 0 such that R(Dn) = (log e)��P;Qn
(�n). By (11), �n ! �1 as n ! 1, and

by (13),

kX
j=1

Qn(aj)e
�n�j(x) = cn for P -almost all x 2 I: (18)

Since P has an absolutely continuous component with positive density on I, and since the
functions �j(�) are assumed to be continuous, (18) holds for all x 2 I. In particular, for the
points x0; : : : ; xk in condition (b), (18) becomeseT (�n) (�cn; Qn(a1); : : : ; Qn(ak))

0 = 0 2 R
k+1 ;

where eT (�) is the (k+1)�(k+1) matrix with entries exp(��j(xi)), 0 � i; j � k, and v0 denotes
the transpose of a vector v. Therefore, since the entries of the vector (Qn(a1); : : : ; Qn(ak)) sum
to 1, it follows that det(eT (�n)) = 0 for all n, or, equivalently,

det(eT (�n)) =X
�

(�1)sign(�)e�n
Pk

j=0 �j(x�(j)) =
X
�

(�1)sign(�)e�ns� = 0; (19)

where the sums are over all permutations � of the set f0; 1; : : : ; kg, and the constants s� are
given by

Pk
j=0 �j(x�(j)). Therefore, for any real number s � 0, we must have thatX

� : s�=s

(�1)sign(�) = 0: (20)

To see this, let fs(1); s(2); : : :g be the (�nite) increasing sequence of all possible values for the
constants s�. Then (19) implies thatX

� : s�=s(1)

(�1)sign(�)e�ns(1) +
X

� : s�>s(1)

(�1)sign(�)e�ns� = 0:

Multiplying both sides by e��ns(1) and letting n ! 1 yields (20) with s = s(1). Continuing
this way with s(2), then s(3) and so on, proves (20) for all s.

But now notice that condition (b) implies that, if �� denotes the identity permutation, then
s� 6= s�� for all other permutations �. Therefore, taking s = s�� in (20) we get the desired
contradiction. 2

Proof of Corollary 2: Let Dn; n � 1; be a sequence of distortion values in (0;Dmax) for which
f(X1) = 0 with probability one, and pick Qn and �n < 0 as in the proof of Theorem 3.

If the sequence f�ng is unbounded, we can repeat the exact same proof as for Theorem 3.
So assume that f�ng is bounded. Since we also assume that R(D) is di�erentiable and strictly
convex, it follows from Lemma 2 that the �n = (loge 2)R

0(Dn) are all distinct. Proceeding as in
the proof of Theorem 3, we get that det( eT (�)) = 0 for all � = �n. The sequence f�ng is bounded
so it must have an accumulation point, and det(eT (�)) is an analytic function of �. Therefore,
arguing as in the proof of Corollary 1, det(T (�)) � 0 for all � � 0. So we can �nd a sequence
�0m ! �1 for which det( eT (�0m)) = 0. With �0m in place of �n, the argument proceeds exactly
as in the proof of Theorem 3. 2
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Appendix

Proof of (11): Suppose (11) is false. Then it is possible to pick a constant K <1 and a sequence
of Dn 2 (0;Dmax) with corresponding ��n < 0, such that Dn ! 0 as n ! 1 but ��n � �K for
all n. Let Q�n achieve (9) with D = Dn, so that

�0P;Q�
n
(��n) = Dn: (21)

For each n, recalling that �(x; y) �M for all x; y,

�0P;Qn
(��n) = EP

"
EQn

�
�(X;Y )e�

�
n�(X;Y )

�
EQn

�
e��n�(X;Y )

� #
� EP

h
EQn

�
�(X;Y )e�

�
n�(X;Y )

�i
� EQn

�
EP

�
�(X;Y )e�KM

��
� e�KMDmax;

which is bounded away from zero. Since the Dn # 0, this contradicts (21). 2

Proof of Lemma 2: Part (i) immediately follows from the minimax representation in [10,
Lemma 2]. For (ii) note that, since �P;Q(�) is continuous and convex in � (Lemma 1), �(�)
is lower semicontinuous and convex. Then by convex duality (see, e.g., Lemma 4.5.8 in [7]), it
follows that �(�) = supx�0[�x� (loge 2)R(x)]. For D 2 (0;Dmax) and �

� as in (10), we have

�(��) = ��D � (loge 2)R(D) = sup
x�0

[��x� (loge 2)R(x)]:

But since R(�) is convex and (by assumption) di�erentiable at D, it must be that the derivative
of [��x� (loge 2)R(x)] vanishes at x = D, i.e., �� = (loge 2)R

0(D). 2

Proof of Lemma 3: First suppose that for some �� < 0, (a), (b) and (c) all hold. For
i = 1; : : : ; k; let

Bi =
PiP

j Q
�(aj)e�

��ij
:

Then (b) and (c) imply that equations (3.19) and (3.20) in [6, p. 145] are satis�ed with Æ = ���,
so by [6, Theorem 3.7] equation (3.18) is satis�ed by W �. This, together with Lemma 3.1 in [6,
Chapter 2] imply that R(D) = H(WkP�W �

Y ), where W
�
Y is the second marginal of W �. But

W �
Y = Q�, so R(D) = EP [H(W �(�jX)kQ�(�))], and by the de�nition of W � and Proposition 1,

EP [H(W �(�jX)kQ�(�))] = R(P;Q�;D).
Conversely, suppose Q� achieves the in�mum in (9). Then by Lemma 1 there is a (unique)

�� < 0 such that (a) holds, and letting W � be de�ned as in (b) we also have

R(D)
(a)
= R(P;Q�;D)

(b)
= H(W �kP�Q�)

14



(c)
= H(W �kP�W �

Y ) +H(W �
Y kQ�)

(d)

� H(W �kP�W �
Y )

(e)

� R(D)

where (a) follows by assumption; (b) from (10), Proposition 1 and the de�nition of W �; (c) by
the chain rule for relative entropy (see [5, Theorem 2.5.3]); (d) is because relative entropy is
nonnegative; and (e) follows from the de�nition of R(D) in (8). Therefore H(W �

Y kQ�) = 0,
implying (b). Finally note that the above argument shows that W � achieves R(D). Then by
Theorem 3.7 in [6, p. 145] W � satis�es equation (3.18) of [6, p. 145] with Æ = ���, and by the
uniqueness of the constants Bi and equation (3.19) of [6, p. 145] we get (c). 2
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