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Source Coding Exponents for Zero-Delay Coding
With Finite Memory

Neri Merhay Fellow, IEEE,and loannis KontoyiannjsMiember, IEEE

Abstract—Fundamental limits on the source coding exponents for causal codes applied to the binary-symmetric memoryless
(or large deviations performance) of zero-delay finite-memory source with respect to (w.r.t.) the Hamming distortion measure.
(ZDFM) lossy source codes are studied. Our main results are the Subsequently, Piret [19] proved that this bound could be
following. For any memoryless source, a suitably designed encoder . ’ s .
that time-shares (at most two) memoryless scalar quantizers is as achieved by Cgusal sliding-block codes with feedback, and
good as any time-varying fixed-rate ZDFM code, in that it can Neuhoff and Gilbert [18] later showed that for memoryless
achieve the fastest exponential rate of decay for the probability of sources, optimum rate-distortion performance among all causal
excess distortion. A dual result is shown to apply to the probability source codes can be attained by time-sharing no more than two
of excess code length, among all fixed-distortion ZDFM codes with memoryless codes; see also [7] for an extension to Markov

variable rate. Finally, it is shown that if the scope is broadened h : b ds h b derived
to ZDFM codes with variable rate and variable distortion, then ~SOU'CES, Whereé periormance bounds have been cerived.

a time-invariant entropy-coded memoryless quantizer (without ~ More recently, Linder and Zamir [15] have shown that, in the
time sharing) is asymptotically optimal under a “fixed-slope” high-resolution limit, Neuhoff and Gilbert’s result continues to
large-deviations criterion (introduced and motivated here in hold for all stationary sources with finite differential entropy.

detail) corresponding to a linear combination of the code length Therefore, in the case of high resolution the price of causality
and the distortion. These results also lead to single-letter charac- . '

terizations for the source coding error exponents of ZDFM codes. IS the_ same als the “space-filling loss” _Of the uniform scalar
quantizer, i.e.; log,(2me/12) = 0.255 bits. For the subclass

Index Terms—Causal source codes, finite-memory codes, large 4 zar0-delay codes, Ericson [4] and Gaarder and Slepian [5]
deviations, sliding-block codes, source coding exponents, time 61 h h th t’ timal f . hieved b '
sharing, zero-delay source codes. ['] ave shown that optimal performance is achieved by op-

timal (Lloyd—Max) scalar quantization for the given memory-
less source. Recently, zero-delay [14] and limited-delay [22]
. INTRODUCTION codes have also been investigated in the individual-sequence

ERO-DELAY (or delayless) codes for lossy data compre§etting. .
Z sion form a subclass of the class of causal codes, namely\,/vhIIe causal and zero-delay source codes have evidently
codes for which the reproduction data stream depends on kgen studied quite extensively under the average rate-distortion
source data stream in a causal manner. Zero-delay codesPsidormance criterion (of expected code length versus expected
causal codes with the additional property that each reprod@géstortion), we are not aware of any existing results on the
tion symbol is entropy-coded separately (rather than in lontgrge-deviations” or “error-exponents” performance of these
blocks), and thus encoding and decoding can be carried outRfes. The large-deviations criteria are somewhat different
an instantaneous manner. Causal codes that are not zero-déRf) the average-performance criteria. While the latter are
are also of practical importance because they can still be ifi€aningful only if there are underlying “ergodic properties”
plemented with low delay by harnessing an arithmetic code ffhich guarantee that the expected values (of the cumulative
the entropy-coding part. The “price of causality” (and hence?de length and distortion) are manifested by long sequences
also of zero delay) is well known to be the inherent inabilit¥ith high probability, large-deviations criteria are aimed
to approach the rate-distortion function at strictly positive diglirectly at achieving the fastest possible convergence rates
tortion levels, although there are examples where causal cobward given, desired values of the rate and/or the distortion.
may come fairly close, especially in the high-resolution regiméheir immediate implication is in answering questions like
Lloyd [16], who was the first to study causal source codeﬁ]e following: how large should the block length be so as to
derived a lower bound on the best achievable compression r@¢@rantee that the probability of excess code length and/or
excess distortion would be kept below a prescribed thresftold
Referring to the existing literature on error exponents
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examined, oryice versathe maximum code length is fixed R
and the tail behavior of the distortion is examined. (The former

criterion is naturally motivated by the desire to combat the

potential damage that may be caused by overflow effects when
variable-rate bit streams are fed into fixed-rate channels, and ).\
the latter (dual) criterion is oriented more toward applications
of speech or image/video compression when there is a hy-
pothesized threshold distortion level below which the human
(auditory or visual) perception is no longer sensitive to defects
in the reconstructed data.) An exception to this asymmetric
approach to rate and distortion is a recent work [23], where
various tradeoffs between the large-deviations exponents of the
code length and the distortion are studied, with the rate apgl ; e rate distortion function (solid line) and the liRe= R, — AD
distortion being treated in a more symmetric manner. (dashed line).

R /A D

A. Motivation and Discussion of Main Results L . .
combination of the code length and the distortion exceeds a

Gilbert, but from a large-deviations perspective. We consider the

class of zero-delay finite-memory (ZDFM) codes without feed- Pr{(code length+ X - (distortion) > nRy} (1)
back, namely, those codes for which each reproduction symbol
depends (possibly, in a time-varying manner) on the curremhereX > 0 is a constant which plays the role of a Lagrange
input source symbol and on an arbitrarily large but fixed numbenultiplier. We henceforth refer to this probability as #wcess
of past source symbols. The two main problems we treat are degrangian probability Our main finding here is that, again, it
scribed in some more detail in the following two paragraphs.is enough to seek the optimum solution among entropy-coded
In the first problem (Section 1), we begin by fixing an arbi-memoryless scalar quantizers, but this time without even time
trary point(R, D) in the rate-distortion plane, lying above thesharing, i.e., one time-invariant memoryless code maximizes the
rate-distortion curve of the class of zero-delay codes. The axponential decay rate of (1).
jective is to characterize the best achievable rate of decay of thét this point, a few remarks are in order with regard to
excess distortion probabilityPr{distortion > nD}, n being the motivation behind the criterion of the excess Lagrangian
the data length, subject to the constraint of fixed-rate codingrobability, and on a meaningful choice of the paramefeys
namely, among all codes whosgcess code-length probabilityandA. In geometric terms, the probability in (1) can be thought
Pr{code length> nR} is zero. Our main result here is thatof as the probability that the rate-distortion performance of a
for any memoryless source, a suitably designed encoder thgaten code lies in the half-plane above the lide= Rg—\D in
time-shares (at most two) memoryless scalar quantizers, istlaes rate-distortion plane (after normalizing by. Note that the
good as any time-varying ZDFM code. At this point, an imporate-distortion function?(D) (in the ordinary, expected-rate,
tant comment is in order. It is not difficult to show (by a simplexpected-distortion sense) of a discrete memoryless source
application of the conditional expectation decomposition) th€dMS) w.r.t. afinite collection of codes, such as the family of
the same is true for the expected distortion criterion. It should B®FM codes considered here, is nonincreasing, convex, and
noted, however, that if one designs the best ZDFM (scalar) copiecewise lineam D.1 Therefore, if we choose the parameters
that achieves the minimuaveragedistortion D(R) (under the A andR, sothatthe lind?R = Ry— A D is parallel to and slightly
fixed distortion constraint), then it is easy to show (e.g., by @ove one of the linear segments ®fD) (see Fig. 1), then
simple application of the Chernoff bound for sums of indepethe probability in (1) is the probability that the performance
dent random variables) that this code will also give rise to af a given code will excee®(D) by a certain amount at this
exponentially decaying excess distortion probability for any diinear segment. Now, due to the convexity BD), the line
tortion levelD strictly larger thanD(R). However, the resulting R = Ry — AD lies below R(D) at essentially all its other
exponential rate may not be as good as the one obtained bylthear segments, hence, any code that operates in the region of
code designed directly under the large-deviations criterion. Itame of the other segments must have a very high probability
also not difficult to see that strictly positive source coding exef exceeding the lineR = Ry — AD. Therefore, the excess
ponents can be obtained for evdly> D(R). Lagrangian criterion in (1) identifies codes that operate very
A dual result is obtained in Section IlI-A, where the roleslose to the aimed linear segment with slopa.
of rate and distortion are interchanged. The objective now is toln summary, while the first problem we described was posed
maximize the exponential decay rate of the excess code-lengththe fixed-rate regime, and its dual counterpart was in the
probability, subject to the constraint of fixed-distortion coding, L . . .
. . . - . To see why this is true, observe that every time-varying code, given by
i.e., the excess distortion pI’ObabI|Ity bemg Zero. a certain sequence of members of the given finite family of codes, operates
In the second problem (Section Ill, Subsection IlI-B), wat a point in the rate-distortion plane given by a certain convex combination
consider a broader class of zero-delay codes, codes that mi\}@e rate-distortion points of time-invariant c_odes in the family, where the
. . . . eights correspond to the relative frequencies of usage of each member
variable rateand variable distortion. Here we seek the faste

) © ] - the family (time sharing). The rate-distortion function is then the lower
exponential rate of decay of the probability that a given lineabundary of the convex polygon spanned by these points.
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fixed-distortion regime, the second problem corresponds toccan be thought of as approximations of more general zero-delay
fixed slopeof the rate-distortion curve. codes with fading memory.

B. Technical Aspects Il. FIXED-RATE ZDFM CODES

We now give a brief description of the main ideas behind the \we begin with some notation and definitions. Throughout the
proof of one of our main results (Theorem 1); the arguments iaper, random variables (RVs) are denoted by capital letters,
the proofs of our other results follow roughly the same outlingpecific realizations of them are denoted by the corresponding
We also discuss a few other technical issues. lower case letters, and their alphabets are written as the respec-

Let us consider the case of ZDFM codes with a fixed-ratfe calligraphic letters. For example, an RY may take on
constraint. The cumulative distortion of such codes, whighhy valuer € X. For a sequence of lettefs:, }, the substring
behaves like an arbitrarily varying source (AVS) under oyt 4, ,,...,z,), wheret < 7, will be denoted byz7. A
assumptions, satisfies a certain version of the large-deviatigfigilar convention applies to RVs with capital letters replacing
principle (LDP), even if the relative frequencies of the states g@wer case letters.
not converge, where the “rate function” that can be expressedConsider a DMS. ., X_1, Xo, X1, X>, . .. with distribution
in terms of the moment-generating function of the cumulative over a finite alphabet’ of size 4 > 2. Without loss of gen-
distortion? First we show that the moment-generating functiogrality, we assume throughout th&tz) > 0 for all z € X.
of the cumulative distortion is always minimized by a sequenge fixed-rate, ZDFM encoder with memory of side— 1), is
of memoryless codes (due to the zero-delay assumption), agequence afeproduction functiong f;}+>1, where, at each
then we use the fact that the rate function of the above LDPtjghe t > 1, f, maps the source string_,_, into a reproduc-
determ_lne_d by thls_ moment-generating f_un_ctlon to shqv_v thﬁ’én letterd, = fi(z!_,,,) € X, where’ is the reproduction
our objective function, i.e., the large—deviations probability, iSiphabet of sizeB. We assume throughout that< B < A.

optimized by a memoryless encoder. Note that, although the entire source outpift_ is available
The main technical tools in the above argument are th¢ he encoder, onlk{® is to be coded.

nonasymptotic large-deviations bounds we develop for arbi-por eacht > 1 and any past string! L., € AF~1, let
trary varying sources (Lemmas 1_and 2_|n Appendix B). | t(ﬂftiﬂ) C X denote the range of;, so that

a more general setting, asymptotic versions of these results

have also been investigated in [11]. In the context of lossy data
compression, similar LDPs for independent but not identically

distributed random variables have been used in [2] and [12].To ensure that the sequenég; )} yields a decodable code

At this point, it should be pointed out that in the asymp- - t—1
totic arguments of our main results it is always assumed thag, oooome for now that the rangas = &;(z;”,,) are

the memory length (henceforth denoted @y — 1)) of the independent of the pasﬁ:}cﬂ, yet they still may depend on

competing ZDFM codes remains fixed, while the data leng (this assumption will be partially relaxed shortly). Writing

n grows without bound. In other words, we assert that time Fll = |Xf| for the si;e of the range oft, theinstantanepus_
sharing of properly chosen memoryless quantizers is as gorg&e of fu islog ||| bits per_symbol, -, NO entropy coding is
as any ZDFM code, as long asis fixed and finite. But we do performed on the reproduction symbels(here and throughout

not claim that this continues to hold for arbitrary zero-delathe paperlog denotes the basg logarithm andln denotes

codes with infinite memory, or even for finite-memory code he natural logarithm).

WA 1. remains anopenprobie o assess he opimyg 100 % IUen o rer e e The
attainable large-deviations performance if all zero-delay source :

. endent of the data (as opposed to the variable-rate codes of
codes are allowed to compete. In fact, we conjecture that éll’

. N ection IIl), yet it still may vary witht. Our restriction will be
main results may not hold in this case. over the total code length overpoints in timed_} . log || f

On the other hand, we expect that our results should Covvﬁich we will assume%o be aIvF\)/a s boundedztg:la(;%(gdtlgn th
tinue to hold for a subclass of infinite-memory zero-delay codes y y 9

- o of nR bits (hence “fixed rate”).
whose memory fades away sufficiently rapidly—so that these_l_he sequencéi:}, wherei, — ft(xﬁ_kﬂ): to1.2.

codes can be well approximated by ZDFM codes with lon .
enough, finite memory. For example, ZDFM codes with feet']g- referred to as theeproductionof the source sequene{et}.

. . A pak
back, where the output reproduction symbol depends on finit ;e ihattthere :js o?ly affm'tt? numt')tehr, namer). _k B 1 '
many past inputs and outputs (like in predictive encoders), m% IStinct reproduc |0nn unctions wi me_:mAc:lr)_/ sig - ):

fall in this category. We will elaborate on this more in the se- Sdlstoru?n between and its reprod_uctmml IS defm_ed as
quel. The important point to keep in mind here is that the ZDFM-t=1 p(zt, @), wherep : X x & — R is an arbitrary single-

codes with finite memory w.r.t. the input, but with no feedbacll‘?tter distortion measure. Note that, sinteand A" are finite

Sets, we have implicitly assumed that,., = max, ; p(z, &)

/?t(xtiﬂ) = {ft(xi—k-l—l) rwy € A}

20f course, the cumulative code length, and any linear combination betwejg'nﬁnite- ) )
the distortion and the code length, also satisfy corresponding LDPs. The following elementary observation shows that, &ory

3t is these two assumptions—instantaneous entropy coding and fixgeita sequenc{apt} (and hence also any source, not necessarily

memory lengttk—which give rise to the aforementioned LDPs. Similar result ;
can also be obtained if the memory lendthis allowed to grow sufficiently ?nemoryless)’ the performance of an arbltrary sequence of

slowly with 7. (possibly infinite-memory) reproduction functions can also be
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achieved by a sequence miemorylesseproduction functions and ford € ©(R,r;) define

(corresponding t& = 1).

Remark 1: For any reproduction functioff : x>~ — X
(with possibly infinite memory), there is a memoryless repro-
duction functiong : X — X with ||g|| < || f]|, such that

p(e,9(x1)) < p (@, fF(2_gy1)) (2
for all source sequences_, ;.

To see why this is true, note that for any sycve can define
a memoryless reproduction functigrby the nearest neighbor
rule: g(x) = argmin p(z, %) where the minimum is taken over 2.
all z in the range off. Then (2) trivially holds, and the range of
g is clearly no larger than that gf.

A. Optimal Error Exponents for Fixed-Rate ZDFM Codes

We now turn to the more general case wh@f{(art k+1) the
range off; g|venx§ 5.1, is allowed to depend on,—; , ;, but
||ft|| = || Xz k+1)|| the size of this range, is stillindependent
of x4~ ,1¢+1 4 Given a positive integet and an average rafe €

[0,10g B], we let€(R) denote the set of all fixed-rate encoders

= (f1, f2,--., fn) with memory sizg€k — 1), achieving an
average rate?
EN(R) = {fr:zlognﬁu gnR}. 3
t=1

For a given distortion leveD, thesource coding exponent func-
tion for fixed-rate, time-varying ZDFM codes with memory size
(k — 1) is defined by

F*¥(D, R) £ limsup

n—oo

1 n
——1 in P Xy, fo (X >nD | .
R {5 200

As we show next, here it also turns out that memoryless codesy
are at least as good as codes with finite memory, although the
reasons for this are no longer as obvious as in Remark 1. In
Theorem 1, we show th&&*(D, R) = F*(D, R) for all k <
oo, we provide a single-letter characterization 6t (D, R),
and we point out the structure of optimal encoders.

To be precise, le§1 ={g1,..., 9}, 9i : A= B, 1<i<ry,
ri 2 r(1) = B, be the set of all memoryless reproduction
functions (corresponding to= 1). Letf = (64,...,6,,) liein
the setO (R, r1), where

e(R,r)é{ =(61,...,00): > 6=

s=1

ZﬂslogHgSH < R,0, 20,3:1,...77"}

s=1

4The reader may wonder how decoding can be possible when the reproduction
alphabet depends on past source symbols, since these are not available to the
decoder. This can be the case, for example, if the dependence is only via past
reconstruction symbols, which are available to the decoder (e.g., in certain types
of predictive encoders). Moreover, for the purpose of converse theorems, it is
legitimate to allow any competing class of “genie-aided” decoders. And in any
case, as Theorem 1 will show, the performance of even such unrealistic codes
can be matched by memoryless ones.

F(D, §) £ sup |¢D — Ze In E exp{¢p(X, gs(X))}

£>0 s—1

®3)

Theorem 1, our main result in this section, states that
F*(D, R) is equal to the following expression:

F*(D,R)= sup F(D,?¥). (4)

0cO(R,r1)

Remarks:

Note that, for a given value df, the right-hand side
(RHS) of (3) depends on the vario§g,} only via the
moment-generating function& exp{{p(X, gs(X))}.

This means that a good quantizer, in the large-deviations
sense, is equivalent to a good quantizer designed with
respect to a modified distortion measure

p(z, &) = exp{ép(z, 1)}

(or equivalently,p(z,2) = exp{ép(z,2)} — 1 to
make 5(xz,2) = 0). Thus, an optimal quantizer in
the large-deviations sense may or may not coincide
with one of the expectation sense, depending on the
relationship betweep andp for the optimal value of.

SinceF (D, 6) is a convex function oD for everyd, it
is continuous inD in the interior of the domain where
it is finite. Similarly, F(D, ) is convex inf for each
D, and hence continuous thin the (relative) interior
of the set off’s for which it is finite. As we discuss in
Appendix A,F(D, 0)isfiniteiff D <" _6.D,, where

D, = max p(z, gs(x)). (5)

Moreover, F'(D, 0) is left-continuous at the boundary
pointD = %" _6,D,.

Let R € [0, logB]. As explained in Appendix A,
F*(D, R) is infinite when D is greater thanD*(R),
where

D*(R f 05Dy 6
( Ge@lnR 7“1)Z ( )

with D, as in (5). But in that range we also have
F*¥(D, R) = oc. To see this, note that for large
enough we can approximate the achievitign (6) by
ann-typed™ € ©(R,ry), such thatD > 3" 0" D,;
the existence of an achievirfj is, of course, obvious
from (6). Therefore, concatenatir(gwg")) copies of
each of the memoryless reproduction functignss =
1,2,...,r1, we obtain a memoryless ZDFM encoder
fir € EX(R), whose distortion orany data sequence
a7 is bounded above by 6D, < D. Thus, I
achieves

Pr{distortion > nD} =0

which implies that7'(D, R) = oo, and, therefore,
F*¥(D, R) = F*(D, R) = oo wheneverD exceeds
D*(R).
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In view of Remark 3, in Theorem 1 we restrict attention to Direct part. We first prove thatF*(D, R) > F*(D, R).
the interesting range of distortion valuBsbelow D*(R). For any sequence of memoryless reproduction functions

Theorem 1:ForallR € (0,log B), all D € (0, D*(R)), and

(f1y--., fn), the proces$ Z;}, where

any positive integek < oo Zy = p(Xe, fi(Xe)),  fr€Gr

F*D,R) = F*(D,R). is clearly amemoryless AVS, with states corresponding to the
’ ’ different choices off,. For eachs = 1,2,...,ry, letd, denote
the relative frequency of the reproduction functipnamong

Remarks: (fiy.--, In)-

5.

SinceF (D, ) is convex inD it follows thatF’* (D, R) Pick a#* € ©(R,r;) such that
is also convex inD, and also it is easily seen to be con- * *

, ’ . . . F(D —¢,6*)>F*(D—¢R) —e.
cave inR. Therefore,F*(D, R) is continuous in both ( 607 2 F*( & R)—e
D andR, as long as they lie in the interior of the correFor eachn, we can approximat@* by an n-type (") ¢
sponding intervals on which* (D, R) is finite. O(R,r1), where the sequencéd(™} is chosen so that

(n) *
An alternative expression fdr(D, #), of a more in- 6" — 6* and

formation-theoretic flavor, is the following: For every F(D —¢,0M™) = F(D — ¢,6%)
s=1,...,7r1, let P, denote the probability mass func-
tion (PMF) of Y, £ p(X,g.(X)), and letQ, be an
arbitrary PMF with the same support. Then, altern
tively we can define

asn — 00.

(To see that this can be done, note thaD — ¢, -) is continuous
é'rj the (relative) interior oB(R + ¢, r1). Also, its restriction to
the interior of any of the lower dimensional boundaries defined
by combinations of the constrainf, = 0} is continuous as
1 well. Finally, observe that if some of the componentgbhre
F(D,6) =inf > 6.D(Q.||P.) (7)  actually equal to zero, then we can take the corresponding com-
s=1 ponents o#(™ to be zero too, for alh.)
where the infimum is over all sets of PME®), } such For everyn, we consider a code consisting of a sequence
that ‘ (ff,.-., fr) of reproduction functions, where™  of
them are equal tg,, for eachs = 1,2,... ;. Obviously,
Al (fi,....f5) € EL(R). We are interested in assessing the
Z 0sEqQ.Ys 2 D probability of the even{>"}" | Z, > nD}, where{Z,} is the
=1 AVS defined byZ, = p(Xy, f{(Xy)),t > 1. This is a problem
with Eg_(-) denoting the expectation unde,. In that is generically hgndled_ in Appendix B. In fact, applying
Appendix A, we outline a proof of the fact that the-€mma 2 of Appendix B with Apax = Diax, = 71, and
two expressions in (4) and (7) are indeed equal. Algd= £, we have for every positive integér

note that the expression in (7) can be arrived at by (_»
using the method of types to prove Lemmas 1 and 2 Zp(Xt, fi(Xt))>nD
Appendix B. t=1

The theorem indicates that time-sharing among<exp{—nF (D_Dmax Fjﬂa_l} 79(71)) +{F(D, 9<n)) ]
memoryless reproduction functions (in proportions no
corresp*ondmg_to the optimaf for which /" (D, R) = (\ote that the assumptiaR + ¢ < D*(R) guarantees that we
F(D, 6%)) a_ch_leves the best gttalnable (_1|stort|0n_ erqlyn apply Lemma 2, at least for large enoughSinceF (D, §)
exponent within the class all fixed-rate, ime-varying ;s ondecreasing i (for each fixedd), we can pick? and
ZDFM codes with finite memory. In fact, after the prOOfthenM large enough, such that, for all > M, the RHS of
we show that time shfirlng among no more tha.n. Wi o preceding inequality is bounded above by
memoryless reproduction functions is always sufficient.
_ — e 8™ *

In view of Remark 1, if we only consider ZDFM codes eXp{ nk (D €0 ) + (D, R)} :

1

f+ whose rangeg; (=}, ,) do not depend on the pasty etting  go to infinity (for a fixed#) and recalling the choice
a:ﬁ:,lvﬂ, then the result of the theorem remains valid igf the sequencéd™)} yields that

the case of infinite-memory codes, correspondinig to
0.

Proof: Choose and fix a rat& € (0,log B), a distortion And sincee > 0 was arbitrary, by the continuity of"(-, i)

FYD,R) > F(D —¢,0%) > F*(D — ¢,R) — .

level D € (0, D*(R)), and an integek. Observe thaD*(R) We get 7'(D,R) > F*(D,R). Finally, since memory-

is always finite, and that, as a function Bf it is nonincreasing |€ss reproduction functions form a subset of the set of
and convex, which implies that it is also continuous for 0. finite-memory reproduction functions, then by definition,
Let an arbitrarily smalt > 0 be given, and assume it is smalf* " (D: R) > F*(D. R) for all k.

enough so thaD <_D*(R + 5? andD + e < D*(R). All the 5In fact, Lemma 2 is not quite necessary here and can be replaced by an or-
above quantities will remain fixed throughout the proof. dinary Chernoff-like bound.
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Converse partWe now prove tha*(D, R) < F*(D, R). Let us denote the set of gittuples of functions frong;, by
Fix an integep > k large enough so that Gy = [Gx]P. First, we show that for every > 0 and every
(91,...,9p) € Gy, there exist$71, ..., gp) € G7 such that

p * |
D< <m>D (R+¢) 8) P i
Eexp{ &Y p(X;,3;(X;))

and letN > ¢ 2 p+ k — 1 be so large that i=1

N P ,
min  Pr {Zp (X, f(X{_pi1)) > ND} < Eexp {£Zp(Xj7gj(X;_k+1))} (11)
ey (R) ey j=1
< exp{-N[F*(D, R) — €]}. and at the same timgg;|| < |lg,||, forall j = 1,...,p. To
) see why this is true, we use a simple idea similar to the one
Denote by(/T, /3., %) a sequence of reproduction funcseq phy stiglitz [21], where he proved that memoryless channels
tions attaining the minimum in the left-hand side (LHS) of thg ¢ |east favorable in terms of the jamming game of the error
last inequality. Letr = | V/q], and define exponent. Let us rewrite the RHS of (11), calliit, as follows:

tq 0
Zy = Z p (Xr, FE(XT_101)) s t=1,2,...,n. W_xoz P(aZt2)
r=(t—1)q+k —k+2
. . (_9) X Zp(il?l)exp {fl) ($1791($9k+27$1))}
Note that{ Z;} are independent RVs since they are functions of 1
nonoverlapping;-blocks of the independett.’s. Since there 1
arer(k) = BA" distinct reproduction functions with memory 8 ZP(M) oxp {69 (v2,02(7 1, 22)) §
of size(k—1), itis clear that{ Z;} is a memoryless AVS with N
r(k,p) £ [r(k)]P = BA'? states, corresponding to the(k)]? X ) Plap) exp {@ (”“’P'/gp(xi—llw%))} - (12
different possible combinations of reproduction functions Tr
{f:}i":(t_l)ﬁk. Consider first the part of the expression that dependg,on
Now, for eachs € {1,...,r(k,p)}, lets denote the propor- namely, only the last summation oveg. Note that in this part
tion of timest € {1,2,...,n} during which{f:}f’:a_l)ﬁk of the expressionz;g:,le can simply be thought of as an index of
coincides with the particular set pfreproduction functions in- 3 function ofz, from X — X (and the dependence on the past
dexed bys, and letd denote the vectofd, }. For convenience, is only via this index). Therefore, for amy _ ., this summation

T2

we visualize the state as ap-vector(o1,...,0,), where each over{z,} cannot be smaller than the minimum of
or € {1,...,r(k)} designates the index of theh-reproduc-
tion function within the clas§, of reproduction functions with Z P(x)exp{&p(z,g(x))}
memory of sizék—1). We will further assume that > r(k, p), x
which means thalv' > ¢B4'?. over allj € G; such that|g|| < ||g,||, or equivalently
Moreover, we writeR, = log||g.|| for the (instantaneous)
rate of the reproduction functia,, and we takey (and hence log (|3 < log|lgpll = R,
n) large enough so that the average rate achieve] 63l it 1, \ote that the minimize§, depends op only via R,,. Denoting
satisfies the value of the minimum bi.(R,,), we have bounded the RHS
p u of (11) below b
R2 Z os'lZRJT<Z)L<R+6 - d o
alls=(o1,...,0p) L —" n(g —k+1) m(R,) - Z Pz 4)

(10) ""gk+2
where (a) follows from the observation that, having omitted 0
o . : P
N — n(q — k + 1) of the original N reproduction functions, X Z (1) expigp(@r, g1( =iz, 71))}
the average rate cannot increase by more than a factor of

1

N/[n(q — k + 1)]. X > P(w2) exp{ép(wa, oty g, w2))} -+
Let us define vz
X Pap_1)exp{€p (2p-1,9p—1 (22 71, 2p1
F,(D,8) £ sup ; P { (p r (Pkl P ))}
§20
r(k, p) » for which the summation over,_, is similarly bounded below
€D — 0.l Eexpl &S p(Xr g0 (XT_, by m(f,—1), and so on. Continuing this way until the summa-
; Tzzl ( Kr-rn1)) tion overz, our conclusion is that we foundgatuple of mem-
oryless reproduction functiorigs., .. ., g,) € G¥ for which the
wheref ¢ @(R r(k, p)). Our first step will be to show that moment-generating function of the associated distortion, at a
. . given value of, does not exceed that of a givéfi, ..., g,) €
F,(pD,0) <p-F*(D,R), forall@ € O(R, r(k, p)). P, while maintaining the instantaneous rafes . .., R, and
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hence also the total rafe; + - - -

bottom of the page follows.
From the choice ofV and by an application of Lemma 1

(Appendix B) with{Z;} as defined above) ,.x = PDmax,

r = r(k, p), and¢ = F,, we have the following. Let > 0 be

sufficiently small,¢ > [2pr(k, p)Dmax/]

+ R,. As aresult, (13) at the

£3 2D2
> max
"= [ §21n2 w
and assume, for the moment, thatlies in the range within

which Lemma 1 can be applied (we come back to justify this
assumption at the end of the proof). Then

exp{—N[F¥(D,R) — €]}
N
> Pr {Z p(Xe, f1(X{ _gy1)) > ND}

> Pr {i Zy > n(q + 1>D}
t=1
S exp (=n 1y (4 DD + (6, p Do), 0

+Vn(£7 6p;poax7 T(kp))]}

> exp { - % [Fp ((p+ k)D + Ce(6p, pPDrmax). 0)

+VTL(£76p7poaX7r(k7p))] } (14)

615

p

[ —
“p+k-1

X

F* ((p; k) D+ - Cz(5p PDmax), R)

+ (4, 6D, pDnax, (k. p))

<P F*(<p+k)D
p+k—-1 D

1
+]_7<5<6p7poax)7R + 6)

+ (4, 6D, pDax, (k. p))

where the last step follows from recalling (10) and that
F*(D, R) is an increasing function of:. Taking the limit

N — oo (and hencen — o0), then/ — oo, and finally

p — oo, we get, by the continuity of™*(D, R) in D, that

FH(D, R) < F*(D, R+ ¢) +e.

Sincee > Ois arbitrarily smalland™ (D, R) is also continuous
in R, we have

F*(D, R) < F*(D, R).

This completes the proof, subject to justifying the application
of Lemma 1 in stefda) of (14).

For that, it suffices to show thd? < D*(R) lies in the range

and using (13)

((p + k)D + CE(lsp poaX) 0)
“+vp (gl (Sp,poa)u T(k7p))] te€

FHD, R) < ;[

allowed by Lemma 1, namely, thég + 1)D < A, (), where

r(k,p)

Z 0, II'laXZ (iﬂjn%j (:Ej—k“))

F,(pD,0) < sup
60cO(R,r(k,p))

Fy(pD,0)

r(1,p)
< sup sup

0cO(R,r(1,p)) £20 o—1
r (1)
= sup sup [{pD— ) 6, 1nHEeXp{£p i 905 (X))}
0cO(R,r(1,p)) £20 s—1 j=1
r r(1,p) P

= sup sup |&pD —
GEG(R,T(I,I))) £20

= sup sup
GEG(R.T<1 p)) £>0

EpD — Z 0s1n E exp

{fzp(Xjagﬂj (Xj))}
j=1

Z 0, ZlnEeXp{fp ngtrj( ))}

EpD—pi:( Z > 8

j=1ls:0;=0

) In Eexp{ép(X, 9-(X))}

=p- sup sup [&D ZH In Eexp{{p(X, ga(X))}]

0cO(R,ry) §20
=p- - F*(D, R).

o=1

(13)
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Moving the sum ovey in front of the maximization, fixing an B. Time-Sharing Between Two Codes is Enough
arbitrary=} ", and sequentially maximizing over;, for j = Here we show that™ (D, R) can be attained by a vectér

k, ..., q, with a slight abuse of notation we get that with no more than two nonzero components, and therefore, at
most two memoryless codes need to be time shared.

r(k,p) q .
-~ j— Let us rewritef™* (D, R) as
5,0)> Y 8.3 maxp (2,05, (z;+271,,)) (15) (0.1
s=1 1=k : F*(D,R)
where x denotes concatenation of strings. For egchafter . S
/71, has been fixed, we can think @b, (z; * ©/7;,,)) &0 D - GGg}g}ﬁ)Zles In Eexp {{p (X, gs(X))}
as a memoryless reproduction function appliedcto call it =
95, (x;), so that For a given value of, consider the inner minimization of
j—1 A -
max p (xj,gaj (ﬂ?j * wj-ik+1)) = Aq; = maxp(, g, (7). > 0.l Eexp{ép(X, go(X))}
J s=1
Note also that each such memorylg§§has rate no greater thangyerg. Denotingd = (61, ....,6,,), Rs 2 log||gs||, andu, 2

that of the corresponding; . Rearranging the terms in (15) and,, i exp{€p(X, gs(X))}, s = 1,...,r1, we have the following
rewriting the memoryless reproduction functigyisn terms of  |iqear programming problem:

the earlier enumeration,, s = 1,2, ...,ry, we can rewrite the

lower bound in (15) as 1
min O, pts
1 [4 5221 st
A (0) > 0D,
o(0) > ; ° subject to
with D, as in (5), and the vectdf sums to(q — k + 1) = p. 6, >0, s=1,...,m
Or, alternatively TZI
0, =1

Ay(0) > p ; 0D, Zl 0.R. <R.
s=1

" __ 1
where)_, ; = 1. Moreover, tracing these steps backwarq,he necessary and sufficient Kuhn—Tucker conditions for the

and recalling (10), it is easy to see that we actually hve

- . optimality of * = (07, ..., 0y, ) are that there exists a constant
O(f + ¢, m). Therefore, by the definition ab* () a >0, equalto zero "L 2R, < R, and a constant such
A,(8) > pD*(R+¢) > (q+1)D that, foralls = 1,...,7r;
ps +aRg > 8 (16)

where the last inequality follows from (8). This shows that
(¢ +1)D < Ap(0), as required, thereby completing the proofwith equality for alls for which 6* > 0. Obviously, all points
U (R,, us) for which8* > 0 must then be on the same line (i.e.,

Remarks: y = 3— ax). But then, to achieve boflr_ 6% 1, andy>, 6% R,

9. Observe thatin the proof of the fact that the exponentiiglis sufficient to take an appropriate weighted average just of
moment of the cumulative distortion is minimized by ahe two extreme points on this line, namely, the one with min-
memoryless code, we have not used the fact th&t imum R, and maximumu, and the one with maximur®, and
finite. This means that, if the objective function was théninimum .. Thus, the minimum ob", s might as well
moment-generating function of the distortion (instead @fe achieved by a vectdr having no more than two nonzero
the probability that the distortion exceed®), then the components. Finally, recall that the above optimization dver
finite memory limitation could be relaxed. is defined for a given value &, and so, the indexes of the two

+ memoryless reproduction functions that take part in the time

10. Note that in the definition of Z;} in the converse par k . _
sharing may depend dn Specifically, we can writd™ (D, R)

we have created “guard spaces’kdime units between
successive segments in order to avoid dependence.aﬁ,fOHOWS:

more generally, the code has infinite memory that fad _

away fast enough to make the procéseX,, X, )} suffi- (D, ) = s [€D = nn Eexp {£p(X), g5, (6)(X) }

ciently rapidly mixing, then for sufficiently large “guard —(1—n)lnEexp {f/)(X),gSQ(g)(X)}] )
spaces” (depending only on the code and not\on

the distribution of{Z;} can be well approximated by Thus, after carrying out the optimization ov&rthe optimal

a product distribution on an exponential scale, and ougproduction functions that are time-shared agrg,-) and
converse result will continue to hold. Js,(¢+), Whereg™ achieves the maximum in the last expression.
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Il. V ARIABLE-RATE ZDFM CODES duction functions{¢., g2, .- -, 9- }- FOr a given reproduction

t{gnctlongS € Gy and any¢ > 0, let LS : X = Z . minimize
exp {¢€L (gs(X))} over all (adm|SS|bIe) memoryless length

qfunctionsL(-) that satisfy Kraft's inequalityy_; 2~ L) < 1,

here the summation is over the rangegef For simplicity,

e will sometimes use the shorthand notatibf(X) for

£(gs(X)). For any vectop in the set

In this section, we consider the problem of determining t
best achievable error exponents for zero-delayiable-rate
codes with finite memory. The model we adopt is the sa
as before, with the difference that we now allow for variv
able-rate lossless compression (or “entropy coding”) of tl
reproduction symbolg:;}. In analogy to the finite-memory
assumption that we made regarding the reproduction func- N
tions {f,}, we will also assume that the associated entrofy (D:71) = {9 €01 :y 0. =1,

T1

coders have finite memory: every reproduction symlgl s=1
will be described usingﬂt(;itﬁf:}c“) bits, depending on the
(k — 1) previously decoded reproduction outcoremhere 216 Ds <D0, 20,5 =1,....m

Le(-|#, 25 1) ¢ X: — Z, is the length function of a uniquely _
deupherable fixed-to-variable length code, satisfying Kraft@hereDs = max, p(z, gs(z)) as before, we define

inequality
G(R,0) =sup [(R — 0,In Eexp {EL5(X )
Z 2—Li(-’tt|zt k+1) <1, for all Ai i—i—l' £>0 ; { }
&.EeX, Then, the best achievable code-length exponent is given by

Note that, since each, = f,(z!_,,,), the overall memory of & (D, R), the supremum of:(R, ) over allé € (D, ry).

the entropy coder cascaded with the reproduction function,(RE€€ Remark 11 below for the range of validity of this resuit.)

(K —1) = 2(k - 1). Alternatively, G*(D, R) can be defined in a manner that
frOm Now on we restrict attennoﬁ‘ore closely parallels the definition of the optimal exponent

Without loss of generality, R) in the fixed-rate case. Let

to admissibleentropy coders, that is, to those whose perfonF

mance cannot be strictly dominated by another entropy coder. (r1,r2)
Formally, an entropy coder with length functidn (-|#{").,.1)  ©”(D,r1,m) 280 0,1 > 6, =1,
isinadmissibldf there exists another entropy coder with length- s=(1,1)
function L} (-|#)=;,) such that (ram2)
Ly (#]#175,,) < Lo (&]3071,5) > 6D, <D

s=(1,1)
for all z;, and .
where the vectord = (0;) € ©”(D,r1,r2) are indexed by

Ly (#1275 01) < Le (2|#0541) pairs of indexess = (s1,s2) € {1,...,m1} x {1,...,72},
which run over allr;r, possible comblnatlon(Sgsl, LSQ) of

for at least one',.. Note that all admissible coders have reproduction functions i, and admissible entropy coders.

max L} (&|2}- i“) <(B-1) To avoid cumbersome notation, we will denagtg and L,
o simply by g, and L, respectively, with the understanding that
and, therefore, there are only finitely many, sayof them. the former depends only on the first componet, of s and
. ] ) ) the latter depends only on the second comporenEor 6 €
A. Variable-Rate/Fixed-Distortion ZDFM Codes ©"(D,r1,73), we let

Following the exact same steps as in the derivation of the (r1,72)
best exponent for fixed-rate codes, it is easy to derive thefastes&, R.0) =sup |¢R - Z 0, In E exp{¢L4(g:(X))}
exponential rate of decay of £>0 ’ e

s=(1,1)
Pr {Zn:Lt (Xt Xtt 11+1) > nR} (17) so that we can define
t=1 G*(D, R) 2 sup  G(R,9).
subject to the constraint that the overall distortion achieved is 0€0”(D,r1,m2)
no greater thamD, i.e., It is straightforward to see that the two definitions@f(D, R)
n are equivalent.
Z max p (xt It (Lt k+1)) <nD. Remarks:
=1 Ptk 11. Arguing precisely as inthe caselofD, ) (see Remark

The best exponent in this case can be characterized as 2), it is seen thati(R, 6) is finite iff R < > _0,ps,
follows. Consider again the s€; of all memoryless repro- where

6Although there is no reason to assuangriori that the memory length of the Ps £ max Ly(gs(z)).

entropy coder is the same as the memory qfthis assumption is made here

for the sake of simplicity. It is only a straightforward exercise to extend all our . . . .
subsequent results to the case of codes with entropy coders and reproduction Moreover, for each give#, it is continuous ink for 0 <
functions of different memory lengths. R < Y bsps,anditis left-continuous @ = 3 0ps.
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12. As discussed earlieG*(D, R) is the best achievable

over all fixed-distortion ZDFM codes achieving max-
imum distortion no greater thanD. As before, this re-
sult holds for all interesting values &f and R, namely,
forall D € (0, Dy,ax) and allR € (0, R*(D)), where

R*(D) 2 inf

0sps.
€0 (D,r1,r2) Z Ps

S

13. In complete analogy to the derivation of Section II-B, it
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Remarks:
rate at which the probability in (17) decays to zero, 14.

Arguing as in the case @(D, f) (see Remark 2), we
see that for any given > 0, H(X, Ry, 0) is finite iff
Ry < Y. 0,W,, where

W, = max [Ls(gs(x)) + Ap(, g5(2))].

This implies thatH (A, Ry) is infinite for R, greater
than

min ZS: 0, W, = min W,. (20)

is easy to show that, here too, time sharing between two
memoryless encoders is as good as among any number
of such encoders.

But for Ry in that range it is easy to see that the mem-
oryless encode(ys, L) with s achieving the minimum

in (20) achieves zero probability of “error” (as in (18)),
implying that forR, greater thamins W, we also have
Hk(/\7R0) = Q.

We note thall (\, Ry, 6) is a convex function oRy, and
hence soig7 (A, Ry). Therefore, the functiofl (A, Ry)
is continuous inR, for all Ry € (0, ming W).

B. Variable-Rate/Variable-Distortion ZDFM Codes

We now turn to the more general case of variable-rate zero-
delay codes with variable distortion. Our goal here, as explainedi 5.
in detail in the Introduction, is to determine the fastest asymp-
totic rate of decay of the “error probability”

Pr {Z L (Xt|X;:;) A3 (X, Xr) > nRg} as 16
t=1 t=1

for given constants and Ry.

More specifically, for anyA > 0 and R, > 0, the source
coding exponent function for variable-rate/variable-distortion,
time-varying ZDFM codes with memory side— 1) is defined

It is not difficult to show that the fixed-slope Lagrange
criterion of (18) gives, in the case of general block codes,
an error exponent of

min {D(an) :inf[R(D, Q)+ AD] > Ro}

where R(D, Q) is the rate-distortion function of a

by memoryless source.
HE(A, Ry) = lims _11 . In view of the preceding discussion, in our main result of this
)= ISL;;I’ o {(}fl,ant)} section, Theorem 2, we restrict attention to the interesting range
n of values ofR € (0, min; Wy).
PO "
Pr {; [Lt (Xt|Xt—k) +Ap (X“Xtﬂ = nRO} (19) Theorem 2:For allA > 0, all Ry € (0, min, W), and every

h positive integert < oo,
H* (X, Ro) = H(X, Ry).

Remark 17: Note that here, unlike the fixed-rate (or fixed-
distortion) case, there is no need for time sharing: optimal per-
formance can be achieved by usingjeglememoryless encoder
(g, L). Thisis because, as previously noted, the supremum over
where the supremum w.r.t. is over all (ryr;)-dimensional ¢ in the definition of H (), Ry) is always achieved by a vectér
vectors whose components are nonnegative and sum to URiith only one nonzero component.

(without any additional constraints), and

where the minimum is oveall encoderg (f, Lt)} 7 ;. Wit
memory parametek (without any further restrictions on their
instantaneous rate, distortion, or alphabets).

Next we define

H(X\, Ry) =sup H(A, Ro, )
9

Proof: The direct part asserting that
H*(\, Ro) > H(\, Ro)

is easily established by analyzing the performance of the
memoryless encod€y,-, L) that achieved? (A, Ry), using
Lemma 2 (or simply applying the Chernoff bound), as in the
proof of the direct part of Theorem 1.

For the converse part, we also apply a method similar to the
one in Theorem 1. As noted earlier, the concatenation of re-
production functions and entropy coders all having meniory
yields encoders with overall memofy — 1 = 2(k — 1). In
view of this, we repeat the same construction as in the proof of
Theorem 1, but withk’ = (2k — 1) replacingk.

Let an arbitrarily smalt > 0 be given, and choose and fix an
integerq > k' such that

-k +1
Ry < <u> min W,
qg+1 s

H(X, Ro,0) = sup
£>0

(R — > 0.nE

exp {f [Ls(!]s(X)) + /\P(X7 98<X))]} :

Interchanging the two suprema in the definitioniéf\, Ry),
and observing that the supremum o#és attained by the vector
¢ that puts all its mass on the paif = (s7, s3) that minimizes
E exp {€[La(g:(X)) + Ap(X, g.(X))]}, we also have

HO\ Ro) =sup €0 = minln B exp{€l(95(X)
+ (X, g5(X))]}]
= zgg[SRo — In E'exp{¢[L- (g (X))

+ AP, g2 (O] (1)
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Writep = (¢ — k' + 1), and letN > ¢ be sufficiently large so To this end, consider the expression
that for the optimum encodd€ f;, L;“)}i\;_ﬂ1 achieving the

minimum in (19) withn = N, has P

C £ Eexp {fz (Lo, (90, (X7 _ 1) X T 00 00)

T=1

Pr {Z [Li‘ (thXfierl) + AP(Xthf)} 2 NRO} +20 (X7, 9o, (XT—k+1))]}

t=1 T
< exp {~N[H*(\, Ro) — €]} (22)
which is obviously part of the LHS of (23). We next show that
Letn = |N/q|, recall the definition of the AVS Z,} from is minimized by a pair consisting of a memoryless reproduction

(9), and fort = 1,2,...,n similarly defineZ! as the sum function and a memoryless entropy coder. Expandiras
g Eex gi (Lo, (g0, (XT_ppa) IX77L )
Z (L5 (fr (X7 pgn) o (XT 2 P € — or Jor \Rr—kt1) 1 r—2k+2
T=(t—1)q+k’ -
ok (X::§:ﬁ2)) + Ao(X7), f7 ( :—k+1))] ‘ +Ap (XT79177 (X:—k+1))]}
Clearly, {Z;} is also an AVS, where the number of different = % P (2253)
states(k, p) is now upper-bounded bg4 <. [B*~1(B—1)!]?, 2% s
corresponding to all possible combinationsidt’ g-vectors p I 1 0
of reproduction function§f(;_1),+1, - - - , fzq) together with all % ; (z1) exp {& [Lay (90, (7 x12) |2 2145)
(B — 1)! possible binary trees of prefix codes with at most ' A\ 1
B leaves for every context! "}, ., € X*~! and everyr = 20 (71, 90, (12542)) ]}
(q — l)t + 2k — 1./ . ,tq. X ZP(ZEQ) exp {f [LJQ (90'2 (x%k+3) |1171,2k+4)
Continuing as in the proof of Theorem 1, we &t denote @
the relative frequency o8 € {1,...,7(k,p)}, namely, the A0 (22, goy (2% 443))]} X -
proportion of timest during which the vector of reproduction . p—1
functions {f;*}iq:(t_l)ﬁk and the vector of entropy coders X ZP<"7P)€XP {5 [L% (g% ($P—k+1) |x2’—2k+2)
{Lj_}’;q:(t_l) 4 all coincide with the particular set of pairs ’
of reproduct(fon functions and entropy coders indexed.dyor +Ap (wmgap ($£—k+1))i| } (24)
convenience, we visualize the states ap-vector(o, ..., 0,),
where eaclr, € {1,...,r(k, 1)} designates the index of theand arguing as in the proof of Theorem 1, the last summation

rth pair of a reproduction function and an entropy coder.  cannot be smaller than the minimum of
In analogy to the definition of,(D, ) in the proof of

Theorem 1, we now defindl, (), Ry, 8) as > P(z)exp {€[L(g(z)) + Ap(x, g(z))]}
r(k,p) = Eexp {{[L(g(X) + Ap(X, g(X))]} (25)
sup |&Rg — Z 0. nE
£>0 =1 over all pairs(g, L) corresponding to memoryless encoders.
P Repeating this argument for the summation oees_+ }, and
exp {EZ (Lo, (90, (X7 _ji1) 1XI20040) continuing inductively, it follows that is bounded below by
=1 the expression in (25) raised to the powerzofThus,

A0 (Xrs 90 (XT_j11))] }‘| H,(\,pRy,0)
< sup({pRo — pminln Eexp {¢ [Ls(gs(X))
£20 s

+A0(X, gs(X))]})
=p-H(\ Ro). (26)

where we use the shorthand notation

Lo, (9o, (XI_141) |X::21k+2)
A T T—1

= Lo, (97, (X7_k41) 190, (erkﬂ) 1 Next we will apply Lemma 1 (Appendix B) to the AVEZ; },

Gorer (XIZ5E5)) - With Anax =p[(B = 1) +ADumax], r=r(k, p), and¢ = H, as

follows. Take$ > 0 sufficiently small, and let

In order to further lower bound the LHS of (22), our first step
will be to show that €2 [2pr(k, p)[(B = 1) + ADmax] /0]
and

HP(/\vaO'/a) <p- H()‘/RU) (23) n> IV(£3Ar2nax)/(52 In 2)-| .
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Assuming for now thaR, lies in the range within which Lemma IV. CONCLUSION AND FUTURE RESEARCH
1 applies (we come back to justify this shortly) and proceeding

. ) In this paper, we have analyzed the best achievable exponents
exactly as in the proof of Theorem 1, we obtain bap y P

of ZDFM source codes for lossy compression under three
different regimes: fixed rate, fixed distortion, and fixed slope.
exp {—N [H*(\, Ro) — ]} Our main finding, in all three of them, was that the best
N large-deviations performance is achieved by memoryless codes
> eXP{ — —[Hy (A, (p + k') Ro + Ce(8p, Amax), 0) (in the case of fixed slope) or by time sharing between at
1 most two such codes (in the cases of fixed rate and fixed
distortion). At the heart of the analysis lies a simple “onion-
+n (€, 6P, Amax, (K, )] } peeling” argument (cf. (12), (24)), which tells us that the
moment-generating function of the code length (or of the
distortion, or of any linear combination between the two),
is always minimized by memoryless codes. Since the code
, length and the distortion of ZDFM codes satisfy an LDP, the
HE(\, Ro) < p lH <)\7<p+k> Ro—i—lg(ép:Amax)) optmal exponents (correspor.1('j|'ng to the !arge-deV|at|pn§ rate
p+k -1 p functions of the error probabilities), are similarly maximized
by the same memoryless codes.
+e. A few words are in order regarding the extension from mem-
oryless sources to Markov sources. It turns out [20], as one
might naturally expect, that in the case of a Markov source, the
Taking the limitN' — oo (and hence: — o0), then/ — oo,  “onion-peeling” argument identifies a large-deviations-optimal
and, finally,g — oo (hence, alsp — o0), by the continuity encoder as one whose memory length is equal to the order of the
of H(\, Ry) in R, (see Remark 13) we get that*(\, Ry) < Markov source. This is different from the setting of [18], where
H(X, Ry) + €. Sincee > 0 was arbitrary, this implies that the extension to Markov sources [7] yields bounds only.
H*(X, Rg) < H(X, Ry) and completes the proof, subjecttojus- Itis natural to expect that the “onion-peeling” technique may

And using (26)

+n (4, 0P, Amax, (K, p))

tifying the application of Lemma 1 in stefp) above. be useful in other problem areas in communications and infor-
To dothis, it suffices to show thdi, lies in the range allowed mation theory, particularly in the context of zero-delay systems.
by Lemma 1, namely, that T. Weissman has suggested to us that this might be the case
in joint source-channel coding of memoryless sources through
r(k,p) q memoryless channels, where both the encoder and the decoder
(g+ 1Ry < Z 0, max Z [LU]. (g(,j are (possibly, stochastic and time-varying) ZDFM systems. In-
s=1 L deed, Le{U;} be a DMS, encoded by a stochastic ZDFM code

Wi j-1 , j characterized by the product distributiph, P¢ (x4 |ut_ ,
(xj‘k“) |xj‘2’“+2) A (x]’g‘” (xj"‘“)) ] @n and let the encoder outpyitX,} be trangr%ittéd(vi; a éi?c)rete
) _ memoryless channel (DMC) with distributiof], P(y:|z:),
But, arguing as in the proof of Theorem 1, we see that the REg$,ose outputY;} is decoded by a stochastic ZDFM decoder
above is no smaller thamin,[(¢ — &' + 1)W;], and by the T1, P{ (ve]y!_,.,)- The probability of excess distortion
choice ofg in (21) we see that (27) is trivially satisfied, thereby ~

completing the proof. O { n
Pre " p(Up, Vi) > nD

Finally we note that the above characterization of the best =1

achievable exponent in the fixed-slope case can easily be ex-
tended to characterize the fastest possible exponential decay
of the probability of the “error event”

be estimated using its moment-generating function, whose
tth "layer” in our onion-peeling argument is given by

n Z P(uy) Pf (1Et|ui—k+1) P(y|z:)
{Z (Lo (lXi2E) + 0 (X0, %) | > no,

= XPtd (Ut|yf—k+1) exp {€p(ut, ve)} -

n ; t—1 t—1
Lo (%Y + Vo (x. X\ > nr b (28 Asin(12) and (25)u,—,, andy,”, ., can be thought of as
; [ t ( 2 t—k) tAY ( b t)} =" 0} (28) “indexes,” and so the above expression cannot be smaller than

the minimum of

As before, this can be treated by considering the moment-gen- e d
erating function of linear combinations of distortion and code Z P(u)Pe (wlu) P(yle) P (vly) exp{p(u, v)},
length as in (28). Recalling the discussion in the Introduction,
where the formulation of Theorem 2 was motivated, we noteer all memoryless systemi$ (z|u)} and{P¢(v|y)}. More-
that, here, a reasonable choice of the paraméte®,, \', R}))  over, since this is a linear functional éf¢ and P¢, this min-
would correspond to two adjacent linear segments of the rabewum is achieved by some deterministic encodé(z|u) =
distortion functionR(D). §(z — f(u)) and deterministic decodét?(v|y) = §(v — g(y)).

U,T,Y,v
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Thus, for DMSs and DMCs, time-invariant deterministic mem- It would be interesting to settle the conjecture above,

oryless encoders and decoders are as good as any time-varying stating that/*(D, R, a) = U(D, R, ) for ZDFM codes.

stochastic ZDFM encoders and decoders in the sense of the This would provide a symmetric characterization of the

excess distortion exponent. best distortion error exponent versus the best rate error
Finally, we lista number of open questions and possible direc-  exponent.

tions for future research which might be interesting to consider. | Codes with finite anticipationHow can our results be

» Zero-delay codes with infinite memoihe open problem
presented in the Introduction: Is it possible to relax the

finite-memory assumption and extend Theorems 1 and 2

to infinite-memory zero-delay codes?

Excess-distortion versus excess-rate exponeitten
considering  variable-rate/variable-distortion = ZDFM
codes, we may alternatively choose to examine (as in
[23]) the best achievable tradeoff between the asymptotic
exponents of the probabilities of the events

extended to the richer class of finite-memory codes with
finite anticipation (delay)?

Universal zero-delay codingerhaps the most intriguing
direction for future research is to investigate the existence
of universalzero-delay schemes for memoryless sources.
Is there a zero-delay code that achieves the optimal source
coding exponent for any memoryless source? While in the
noncausal case [17] such codes exist, in the zero-delay
case the answer is not obvious. If it turned out that there

were some unavoidable price for universality, then the
guestion would be how to minimize it in some uniform
sense across the class of all memoryless sources.

t=1 t=1
For anya > 0, the corresponding source-coding exponent

function is defined by APPENDIX A

1
U*(D,R,a) £ limsup {—— min In
n

n—oo

b {Zp (0o (X)) 2 DH

AN INFORMATION-THEORETIC EXPRESSION FORF'(D, #)
We would like to show that

- . . . . F(D,0) = sup[¢D — A(¢)] (A1)
where the minimum is over all variable-rate/variable-dis- £>0
tortion ZDFM codes with memory parametersuch that whereA(€) = 3. 6, In Ep, 5" is equal to
Pr{ZLt (fe (X7 _pgn) Loma (XT20) - F(D,§) & inf 3" 0.D(Q.IP).  (A2)
t=1 {Qs}zzs 0:EqQ .Y 2D s

frorgr (X{2555)) > nR} < e First define

A=A0)=3 0.EpY,
In view of our results in Sections Il and lll, the nat- B
ural guess for a single-letter expression characteriziagd
U*(D, R, ) is the function A=17() = Z 0.A,
U(D,R,a) 2 sup  F(D,6). s
{6:G(R,0)>a}

~ whereA; = max{z : Ps(z) > 0}.

Unfortunately, we have not been able to show that indeedpe proof of the equality betwedi(D, #) andF (D, 6) fol-
U*(D, R, a) =U(D, R, ). Thisis due to the following 5y very closely the corresponding proof in [13, Appendix II,
two new subtleties arising here. First, it appears thakoposition 1 ii)]. Here, we outline the necessary modifications
U(D, R, a) may not necessarily be jointly continuousg that proof. First, it easy to check that D, §) = F(D, 6) = 0

in all three of its arguments. But it can be shown tgyr pH < A Also, itis straightforward to show that(D, §) =

be continuous aalmostall such triplets(D, R, «), and F(D,EB — oo for D > A, which implies that, as claimed in

following the same argument as in the proofs of thgeaction Il, indeed?*(D, R) = oo for D > D*(R). Next we
direct parts of Theorems 1 and 2 it can be shown thghserve that\(¢) is differentiable in¢, with

U*(D, R, o) <U(D, R, «) at all continuity points of VoY
v. INGED N [7"6 i }
The second and more serious subtlety is that the main ©) 25: P Ep,efYs

argument in the proofs of the converses in Theoremsa%dA,,(g) > 0, forall € > 0,

and 2 (the “onion-peeling” argument of (12), (24)) does In the rangeA < D < &, it is easy to show that the

I e I Cepremum (A1) s achiove by e e 0 s
' (¢*) = D.Fix#, D € (A, A), and a corresponding, and

Theorem 1) to the case of ZDFM codes with memorylesas fine a new familv of distributions
entropy coding, showing that the best achievable exponer%at y

achieved by such codes is inddédD, R, «) (at all con-
tinuity points ofU).

ey .
W s (Y)-

A

11s(y)



622 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 3, MARCH 2003

Then context, that [24, Theorem 3] also includes a result that can be
o interpreted as a nonasymptotic large-deviations principle for the
> 6.E,Y.=N()=D AVS. However, the result therein is not directly applicable for
* our needs.
and, therefore, Consider an AVS withr states, emitting symbolsg, , 7, . . .,
F(D7 0) < Z 0,D(1us||Ps) lZn from a finite subse of IR, according to the probability
. aw
€Y n
ZZHSEMS(Q)IHW P(zl,...,zn):HP(zt|st)
s 2 t=1
R AR *
=CAE) = AE) wheresy, ..., s,, st € S = {1,...,r} (r a positive integer) is
=F(D,9). (A3) an arbitrary (deterministic) sequence of states.d.e€ [0, 1]
Conversely, take any candiddt®. } asin (A2). Then foreach denote the relative frequency of = s alongsy, ..., s,, i.e.,

(by [3, Lemma 6.2.13], after taking(y) = £*y inthe definition 6, = [{t : s; = s}|/n, s € S. For a giver{ > 0, define
of A*), we have that M,(€) = Z P(Z|s)e§z7 ses.

D(Qs|IPs) > Eq,[¢"Y.] — In Ep, [¢* ] €z
so multiplying both sides b§, and summing oves, we get Let A, = max{z : P(z]s) > 0}, A = Y _s0.A,, and
Z 65D<Q5||PS) Zg* Z HSEQSYS _ A(é-*) Amax = ImaXg As- For a g|VenD S |:07 As), let
s s ¢s(D) =sup[¢D — In M(£)]
>¢'D — A(€%) = F(D,0). €20
Taking the infimum over al{ Q. } as in (A2), we gef'(D, #) > :I?Zaé([gD ~ In M(9)], s€S.
(D, ). This together with the upper bound in (A3) shows thtor 4 givens > 0, let¢, (§) < oo be the (usually unique) value

F(D,§) = F(D,¢) for A < D < A. i of ¢ that achieves, (A, — 6), and [eté(8) = maxses & (6).
Finally, if D = A > A, then both#'(D, §) and (D, §) can - ginally, for a givens > 0 andD € [0, A — 25], define
be evaluated explicitly, and they are both equal to
#(D.0) = supleD - > 0. In M(€)]

51320 [EA-A@©)] =) 6.In {ﬁ} . (A ses
s e whered 2 (01,....6,).

And, moreover,F'(D,6) is left-continuous at the poinb = The following two lemmas provide lower and upper bounds
A > A.To see this, recall that(D, 0) is nondecreasing iV, 5, p, (", Z, > nD}.

and also
- e - Lemma 1: Let 6 € (0, Amax/(21n2)), D € [0, A—26], and
h?TIanF(D’ b) = hIPﬁ)nf Sgp [€(A =) = A©)] let ¢ be a positive integer at least as largd asA ,,,.< /6. Then,
(a) . for all
— nz | ——S—
:glim [gA — A(g)] 621n2
) we have
>F (A,0) n
where(a) follows by takingé = ¢~/2 in the supremum, and Pr {Z Zr 2 nD}
(b) follows from (A4). O =
>exp{—n[p(D+ (6, Amax), ) + vn (4,6, Amax, )]}
APPENDIX B where
267 In 2
LARGE-DEVIATIONS ANALYSIS FOR ARBITRARILY Ce(0, Amax) = PA_

VARYING SOURCES

. . . and

In this appendix, we present and prove two auxiliary lemmas
that give upper and lower bounds on the probability of a certain,, (s 5 A, r) = £(8)Amax (f P Zan) n In2
large-deviations event associated with an AVS. These lemmas, ¢ n n
which are used in the proofs of the main results, are quite stan-
dard except for the fact they hold for every sample size and notLemma 2: Let D € (0, A). Then, for every positive integér
merely asymptotically. The importance of this feature liesinthe ( »
fact that the main term in the exponent of the large-deviatioits {Z Zy > nD}
probability under consideration depends on the relative frequen- { t=1

cies of the various states of the AVS, which may not stabilize, ‘L r
in general, as the sample size grows. It should be noted, in this = <P {_WS (D ~ Amax [E + Z} ’€> + (D, 0)} :
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Proof of Lemma 1:We begin with a lower bound for thet = 1,...,n), we see that both and are upper-bounded by
caser = 1, where{Z,} are independent and all drawn from thexp{—2ne?/A2}. Therefore,
same PMFP, whose moment-generating functionfig(¢) =

3. P(2)e%*, and where the maximum value sfwith positive Pr{E} > sup [1 2exp {_ 2ne? H
probability isA. Let ee(0,] A?
-exp {—ndz(D) — 2§(6)e}
D)=s D—InM
¢2(D) 5121%[5 n M) > exp {—n¢Z(D) —28(6)AvnIn2 —In 2}

and for a givers > 0, D € [0,A — 26),e € (0,6], let&* € . . .
[0, 50) ach?eveqSZ(D + o) n[amely be)the ur(liquL maiimizerWhere the last inequality follows from settiag= A+/In2/n,

of [E(D 4 ¢) — In M(£)]. Note that sinceD + ¢ < A — 6, ¢* which is in the allowed rang@, 6] for all
is upper-bounded bg(§) < oo (the value of¢ that achieves n> { A? -‘

; - Bl
#z(A — 6)). Let us now denote the event of interest by 621n2 (B1)
n We now return to the case of anstate AVS with relative

E= {Z" : Zzt > nD} frequencies of state, .. ., f,.. Let us re-index the RV$Z,}
t=1 as{Ws: r=1,...,0;n,s € S}, whereW?$ is Z;, with ¢ being

the rth occurrence of; = s. Fix a (large) positive integef,

and let and let/, = |6.£|. Now generaten = |n//| independent and

n identically distributed (i.i.d.) RVsY,...,Y,,, according to

F= z":ZztSn(D—I—ZG) . y ( ) Y1 ' g
= tlg
e=> Y Wi t=1L...m
Now, defining the PMAP (z) = P(z)et* /M(€), we have SES T=(t—1)€,+1
Pr{E} >Pr{ENF} where if¢, = 0, the inner summation is defined as zero. Now,
B n obviously, sinceZ;} are nonnegative random variables

zm€ENF t=1

=S {Ire Pr{zn:ZthD}ZPr{thZnD}

" t=1 t=1
=ME" - > [le 7 Pe (=) m ,
2" €ENF t=1 >Pr ZYthI 7 (-

t=1 n

2[M(E") - exp{—€"(D + 2e)}]" Z H Pe: (). Thus, it is enough to lower-bound the RHS, which corresponds

sreEnrr=1 to the i.i.d. RVs{Y,}, all having a PMF whose moment-gener-
As for the first factor, we have ating function is
[M(€) - exp{—€*(D + 26)}]" > exp{—€*en)} My (&) = T]IM.(€))".
-exp{—-ndz(D +¢€)} Lot us defi ses
> exp{—26(6)en) et us define
~exp{—ndz(D)}. ¢y (D) = 2;%[@ —In My (¢)]
For the second factor of the RHS of (B1), we first apply the
union bound :21;% ¢D - Z;KS In M(€) | -
> =
Z Hpg*(zt) >1— Z Hpg*(zt) It is_easy to see tha(6) is an upper pound to the va]ue@fhat_
neBAF i—1 nepe =1 achievespy (3, s £s(As — 6)). This means that if a certain
n value of D satisfies
R (D < ;zS(AS 5)
To further lower-bound the last expression, we upper-boufgkn
both o and 5 using Hoeffding's inequality [9], which asserts
that givene > 0 andn independent RVY4,...,Y,, ranging ¢y (UD) =sup |£4D — ng In M, (&)
over an interval of sizeé\ €20 scs

Pr{i(Yt—EYt)Zne}Sexp{—%f}. = sup [EKD—ZﬁslnMe(S)]

=1 0<E<E(S) =

Applying this inequality for (withY; = —Z;, EY; = —(D+e¢), < sup |¢D- Z(ws — 1) In M, (€)
t =1,...,n)and forg (withY; = Z; andEY; = D + e, 0<E<E(8) ics
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namely, no more thaé+-rn /¢ terms{Z;} are omitted from the
summation. Therefore,

Pr {Z Z, > nD}
t=1

<tp(D,6) + ) In M, (£(8))

qu/)(D/ 6) + Tf(é)Ama)v

We now apply the lower bound (B1) td;}, with n, ¢z(D),
andA,.x replaced byin, ¢y ((D/(1 — £/n)), andlA ax, re-

spectively, under the condition < Pr {Z Y, >n|D— Apax %)} }
n _ 2A =1
_ max 2
7% 2 T

(B2)
{Z Y. >mt

|:D Amax <_ + %):| }
which parallels the earlier condition (B1) we had foe 1. First t=1

observe that the assumptiohs [2rA,.x/6] and (B2) guar-

antee that (B2) is applicable f@ = D/(1 — ¢/n), whenever S exp=mey | £1D = Amax |

D < A - 26, provided tha < Apax/(21n2). We, therefore, \yhere the last step follows from the Cherno bound. Next
have that the probability observe that for ever

Pr {Z Z, > nD}
t=1

is bounded below by l

> sup
exp{ maoy < > —26(0)0AmaxVmIn2 — 1112}

(B3) ¢y (£D) = sup lffD Zf In M (f)]

£20 seS

§D = 6.1 M, (g)]

£20 seS

- L =1¢p(D,0).
D Thus, the probability of the event of interest is further upper-
> exp - Lo = 9 +7£(0) Amax bounded by
B } {322 )

{r
<e —mlp | D — Apax | — + =1 ,0
el (12 cenfons (0= s [£+7])
n L r
< —(n—0)¢|D—Apax |—+ 1,0
T {In2 In2 _exp{ (n )(b( {n*—ﬂ}/ )}
+£(6)Am axy +2 +— ;- P
" " SGXP{_TLQS (D_Amax |:_+_:| 79> +£¢(D79)}
. . n /
Since we assume thatis so large that i
which proves the lemma. O
12 < 6%1n2
—2A2, +26%1In2
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which in turn implies that the probability in (B3) is bounded
below by
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