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Source Coding Exponents for Zero-Delay Coding
With Finite Memory
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Abstract—Fundamental limits on the source coding exponents
(or large deviations performance) of zero-delay finite-memory
(ZDFM) lossy source codes are studied. Our main results are the
following. For any memoryless source, a suitably designed encoder
that time-shares (at most two) memoryless scalar quantizers is as
good as any time-varying fixed-rate ZDFM code, in that it can
achieve the fastest exponential rate of decay for the probability of
excess distortion. A dual result is shown to apply to the probability
of excess code length, among all fixed-distortion ZDFM codes with
variable rate. Finally, it is shown that if the scope is broadened
to ZDFM codes with variable rate and variable distortion, then
a time-invariant entropy-coded memoryless quantizer (without
time sharing) is asymptotically optimal under a “fixed-slope”
large-deviations criterion (introduced and motivated here in
detail) corresponding to a linear combination of the code length
and the distortion. These results also lead to single-letter charac-
terizations for the source coding error exponents of ZDFM codes.

Index Terms—Causal source codes, finite-memory codes, large
deviations, sliding-block codes, source coding exponents, time
sharing, zero-delay source codes.

I. INTRODUCTION

Z ERO-DELAY (or delayless) codes for lossy data compres-
sion form a subclass of the class of causal codes, namely,

codes for which the reproduction data stream depends on the
source data stream in a causal manner. Zero-delay codes are
causal codes with the additional property that each reproduc-
tion symbol is entropy-coded separately (rather than in long
blocks), and thus encoding and decoding can be carried out in
an instantaneous manner. Causal codes that are not zero-delay
are also of practical importance because they can still be im-
plemented with low delay by harnessing an arithmetic code for
the entropy-coding part. The “price of causality” (and hence
also of zero delay) is well known to be the inherent inability
to approach the rate-distortion function at strictly positive dis-
tortion levels, although there are examples where causal codes
may come fairly close, especially in the high-resolution regime.

Lloyd [16], who was the first to study causal source codes,
derived a lower bound on the best achievable compression rate
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for causal codes applied to the binary-symmetric memoryless
source with respect to (w.r.t.) the Hamming distortion measure.
Subsequently, Piret [19] proved that this bound could be
achieved by causal sliding-block codes with feedback, and
Neuhoff and Gilbert [18] later showed that for memoryless
sources, optimum rate-distortion performance among all causal
source codes can be attained by time-sharing no more than two
memoryless codes; see also [7] for an extension to Markov
sources, where performance bounds have been derived.

More recently, Linder and Zamir [15] have shown that, in the
high-resolution limit, Neuhoff and Gilbert’s result continues to
hold for all stationary sources with finite differential entropy.
Therefore, in the case of high resolution the price of causality
is the same as the “space-filling loss” of the uniform scalar
quantizer, i.e., 0.255 bits. For the subclass
of zero-delay codes, Ericson [4] and Gaarder and Slepian [5],
[6] have shown that optimal performance is achieved by op-
timal (Lloyd–Max) scalar quantization for the given memory-
less source. Recently, zero-delay [14] and limited-delay [22]
codes have also been investigated in the individual-sequence
setting.

While causal and zero-delay source codes have evidently
been studied quite extensively under the average rate-distortion
performance criterion (of expected code length versus expected
distortion), we are not aware of any existing results on the
“large-deviations” or “error-exponents” performance of these
codes. The large-deviations criteria are somewhat different
from the average-performance criteria. While the latter are
meaningful only if there are underlying “ergodic properties”
which guarantee that the expected values (of the cumulative
code length and distortion) are manifested by long sequences
with high probability, large-deviations criteria are aimed
directly at achieving the fastest possible convergence rates
toward given, desired values of the rate and/or the distortion.
Their immediate implication is in answering questions like
the following: how large should the block length be so as to
guarantee that the probability of excess code length and/or
excess distortion would be kept below a prescribed threshold?

Referring to the existing literature on error exponents
for source codes, it is natural to ask what are the best error
exponents achievable by causal or by zero-delay codes, in
analogy to Marton’s well-known error-exponents results for
general block codes; see [17], and also [10] for a generalization
to Gaussian sources. It is worth noting that, so far, almost
all of the error-exponent characterizations that have been
derived (even for noncausal block codes), are asymmetric:
either the maximum distortion is kept fixed and the optimal
exponent of decay for the probability of excess code length is
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examined, or,vice versa, the maximum code length is fixed
and the tail behavior of the distortion is examined. (The former
criterion is naturally motivated by the desire to combat the
potential damage that may be caused by overflow effects when
variable-rate bit streams are fed into fixed-rate channels, and
the latter (dual) criterion is oriented more toward applications
of speech or image/video compression when there is a hy-
pothesized threshold distortion level below which the human
(auditory or visual) perception is no longer sensitive to defects
in the reconstructed data.) An exception to this asymmetric
approach to rate and distortion is a recent work [23], where
various tradeoffs between the large-deviations exponents of the
code length and the distortion are studied, with the rate and
distortion being treated in a more symmetric manner.

A. Motivation and Discussion of Main Results

In this paper, we derive results in the spirit of Neuhoff and
Gilbert, but from a large-deviations perspective. We consider the
class of zero-delay finite-memory (ZDFM) codes without feed-
back, namely, those codes for which each reproduction symbol
depends (possibly, in a time-varying manner) on the current
input source symbol and on an arbitrarily large but fixed number
of past source symbols. The two main problems we treat are de-
scribed in some more detail in the following two paragraphs.

In the first problem (Section II), we begin by fixing an arbi-
trary point in the rate-distortion plane, lying above the
rate-distortion curve of the class of zero-delay codes. The ob-
jective is to characterize the best achievable rate of decay of the
excess distortion probability, distortion , being
the data length, subject to the constraint of fixed-rate coding,
namely, among all codes whoseexcess code-length probability

code length is zero. Our main result here is that
for any memoryless source, a suitably designed encoder that
time-shares (at most two) memoryless scalar quantizers, is as
good as any time-varying ZDFM code. At this point, an impor-
tant comment is in order. It is not difficult to show (by a simple
application of the conditional expectation decomposition) that
the same is true for the expected distortion criterion. It should be
noted, however, that if one designs the best ZDFM (scalar) code
that achieves the minimumaveragedistortion (under the
fixed distortion constraint), then it is easy to show (e.g., by a
simple application of the Chernoff bound for sums of indepen-
dent random variables) that this code will also give rise to an
exponentially decaying excess distortion probability for any dis-
tortion level strictly larger than . However, the resulting
exponential rate may not be as good as the one obtained by the
code designed directly under the large-deviations criterion. It is
also not difficult to see that strictly positive source coding ex-
ponents can be obtained for every .

A dual result is obtained in Section III-A, where the roles
of rate and distortion are interchanged. The objective now is to
maximize the exponential decay rate of the excess code-length
probability, subject to the constraint of fixed-distortion coding,
i.e., the excess distortion probability being zero.

In the second problem (Section III, Subsection III-B), we
consider a broader class of zero-delay codes, codes that have
variable rateand variable distortion. Here we seek the fastest
exponential rate of decay of the probability that a given linear

Fig. 1. The rate distortion function (solid line) and the lineR = R � �D

(dashed line).

combination of the code length and the distortion exceeds a
threshold , being a given constant, i.e.,

code length distortion (1)

where is a constant which plays the role of a Lagrange
multiplier. We henceforth refer to this probability as theexcess
Lagrangian probability. Our main finding here is that, again, it
is enough to seek the optimum solution among entropy-coded
memoryless scalar quantizers, but this time without even time
sharing, i.e., one time-invariant memoryless code maximizes the
exponential decay rate of (1).

At this point, a few remarks are in order with regard to
the motivation behind the criterion of the excess Lagrangian
probability, and on a meaningful choice of the parameters
and . In geometric terms, the probability in (1) can be thought
of as the probability that the rate-distortion performance of a
given code lies in the half-plane above the line in
the rate-distortion plane (after normalizing by). Note that the
rate-distortion function (in the ordinary, expected-rate,
expected-distortion sense) of a discrete memoryless source
(DMS) w.r.t. afinite collection of codes, such as the family of
ZDFM codes considered here, is nonincreasing, convex, and
piecewise linearin .1 Therefore, if we choose the parameters

and so that the line is parallel to and slightly
above one of the linear segments of (see Fig. 1), then
the probability in (1) is the probability that the performance
of a given code will exceed by a certain amount at this
linear segment. Now, due to the convexity of , the line

lies below at essentially all its other
linear segments, hence, any code that operates in the region of
one of the other segments must have a very high probability
of exceeding the line . Therefore, the excess
Lagrangian criterion in (1) identifies codes that operate very
close to the aimed linear segment with slope.

In summary, while the first problem we described was posed
in the fixed-rate regime, and its dual counterpart was in the

1To see why this is true, observe that every time-varying code, given by
a certain sequence of members of the given finite family of codes, operates
at a point in the rate-distortion plane given by a certain convex combination
of the rate-distortion points of time-invariant codes in the family, where the
weights correspond to the relative frequencies of usage of each member
in the family (time sharing). The rate-distortion function is then the lower
boundary of the convex polygon spanned by these points.
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fixed-distortion regime, the second problem corresponds to a
fixed slopeof the rate-distortion curve.

B. Technical Aspects

We now give a brief description of the main ideas behind the
proof of one of our main results (Theorem 1); the arguments in
the proofs of our other results follow roughly the same outline.
We also discuss a few other technical issues.

Let us consider the case of ZDFM codes with a fixed-rate
constraint. The cumulative distortion of such codes, which
behaves like an arbitrarily varying source (AVS) under our
assumptions, satisfies a certain version of the large-deviations
principle (LDP), even if the relative frequencies of the states do
not converge, where the “rate function” that can be expressed
in terms of the moment-generating function of the cumulative
distortion.2 First we show that the moment-generating function
of the cumulative distortion is always minimized by a sequence
of memoryless codes (due to the zero-delay assumption), and
then we use the fact that the rate function of the above LDP is
determined by this moment-generating function to show that
our objective function, i.e., the large–deviations probability, is
optimized by a memoryless encoder.

The main technical tools in the above argument are the
nonasymptotic large-deviations bounds we develop for arbi-
trary varying sources (Lemmas 1 and 2 in Appendix B). In
a more general setting, asymptotic versions of these results
have also been investigated in [11]. In the context of lossy data
compression, similar LDPs for independent but not identically
distributed random variables have been used in [2] and [12].

At this point, it should be pointed out that in the asymp-
totic arguments of our main results it is always assumed that
the memory length (henceforth denoted by ) of the
competing ZDFM codes remains fixed, while the data length

grows without bound.3 In other words, we assert that time
sharing of properly chosen memoryless quantizers is as good
as any ZDFM code, as long asis fixed and finite. But we do
not claim that this continues to hold for arbitrary zero-delay
codes with infinite memory, or even for finite-memory codes
with . It remains an open problem to assess the optimum
attainable large-deviations performance if all zero-delay source
codes are allowed to compete. In fact, we conjecture that our
main results may not hold in this case.

On the other hand, we expect that our results should con-
tinue to hold for a subclass of infinite-memory zero-delay codes,
whose memory fades away sufficiently rapidly—so that these
codes can be well approximated by ZDFM codes with long
enough, finite memory. For example, ZDFM codes with feed-
back, where the output reproduction symbol depends on finitely
many past inputs and outputs (like in predictive encoders), may
fall in this category. We will elaborate on this more in the se-
quel. The important point to keep in mind here is that the ZDFM
codes with finite memory w.r.t. the input, but with no feedback,

2Of course, the cumulative code length, and any linear combination between
the distortion and the code length, also satisfy corresponding LDPs.

3It is these two assumptions—instantaneous entropy coding and fixed
memory lengthk—which give rise to the aforementioned LDPs. Similar results
can also be obtained if the memory lengthk is allowed to grow sufficiently
slowly with n.

can be thought of as approximations of more general zero-delay
codes with fading memory.

II. FIXED-RATE ZDFM CODES

We begin with some notation and definitions. Throughout the
paper, random variables (RVs) are denoted by capital letters,
specific realizations of them are denoted by the corresponding
lower case letters, and their alphabets are written as the respec-
tive calligraphic letters. For example, an RV may take on
any value . For a sequence of letters , the substring

, where , will be denoted by . A
similar convention applies to RVs with capital letters replacing
lower case letters.

Consider a DMS with distribution
over a finite alphabet of size . Without loss of gen-

erality, we assume throughout that for all .
A fixed-rate, ZDFM encoder with memory of size , is
a sequence ofreproduction functions , where, at each
time , maps the source string into a reproduc-
tion letter , where is the reproduction
alphabet of size . We assume throughout that .
Note that, although the entire source output is available
to the encoder, only is to be coded.

For each and any past string , let
denote the range of , so that

To ensure that the sequence yields a decodable code,
we assume for now that the ranges are
independent of the past , yet they still may depend on

(this assumption will be partially relaxed shortly). Writing
for the size of the range of , the instantaneous

rate of is bits per symbol, i.e., no entropy coding is
performed on the reproduction symbols(here and throughout
the paper, denotes the base logarithm and denotes
the natural logarithm).

A word of clarification is in order at this point: The term
fixed-rate code here means that the instantaneous rate is inde-
pendent of the data (as opposed to the variable-rate codes of
Section III), yet it still may vary with . Our restriction will be
over the total code length overpoints in time ,
which we will assume to be always bounded by a fixed length
of bits (hence “fixed rate”).

The sequence , where ,
is referred to as thereproductionof the source sequence .
Note that there is only a finite number, namely, ,
of distinct reproduction functions with memory size .
The distortion between and its reproduction is defined as

, where is an arbitrary single-
letter distortion measure. Note that, sinceand are finite
sets, we have implicitly assumed that
is finite.

The following elementary observation shows that, forany
data sequence (and hence also any source, not necessarily
memoryless), the performance of an arbitrary sequence of
(possibly infinite-memory) reproduction functions can also be
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achieved by a sequence ofmemorylessreproduction functions
(corresponding to ).

Remark 1: For any reproduction function
(with possibly infinite memory), there is a memoryless repro-
duction function with , such that

(2)

for all source sequences

To see why this is true, note that for any suchwe can define
a memoryless reproduction functionby the nearest neighbor
rule: where the minimum is taken over
all in the range of . Then (2) trivially holds, and the range of

is clearly no larger than that of.

A. Optimal Error Exponents for Fixed-Rate ZDFM Codes

We now turn to the more general case where , the
range of given , is allowed to depend on , but

, the size of this range, is still independent
of .4 Given a positive integer and an average rate

, we let denote the set of all fixed-rate encoders
with memory size , achieving an

average rate

For a given distortion level , thesource coding exponent func-
tion for fixed-rate, time-varying ZDFM codes with memory size

is defined by

As we show next, here it also turns out that memoryless codes
are at least as good as codes with finite memory, although the
reasons for this are no longer as obvious as in Remark 1. In
Theorem 1, we show that for all

, we provide a single-letter characterization for ,
and we point out the structure of optimal encoders.

To be precise, let , ,
, be the set of all memoryless reproduction

functions (corresponding to ). Let lie in
the set , where

4The reader may wonder how decoding can be possible when the reproduction
alphabet depends on past source symbols, since these are not available to the
decoder. This can be the case, for example, if the dependence is only via past
reconstruction symbols, which are available to the decoder (e.g., in certain types
of predictive encoders). Moreover, for the purpose of converse theorems, it is
legitimate to allow any competing class of “genie-aided” decoders. And in any
case, as Theorem 1 will show, the performance of even such unrealistic codes
can be matched by memoryless ones.

and for define

(3)
Theorem 1, our main result in this section, states that

is equal to the following expression:

(4)

Remarks:

2. Note that, for a given value of, the right-hand side
(RHS) of (3) depends on the various only via the
moment-generating functions .
This means that a good quantizer, in the large-deviations
sense, is equivalent to a good quantizer designed with
respect to a modified distortion measure

(or equivalently, to
make ). Thus, an optimal quantizer in
the large-deviations sense may or may not coincide
with one of the expectation sense, depending on the
relationship between and for the optimal value of .

3. Since is a convex function of for every , it
is continuous in in the interior of the domain where
it is finite. Similarly, is convex in for each

, and hence continuous inin the (relative) interior
of the set of ’s for which it is finite. As we discuss in
Appendix A, is finite iff where

(5)

Moreover, is left-continuous at the boundary
point .

4. Let . As explained in Appendix A,
is infinite when is greater than ,

where

(6)

with as in (5). But in that range we also have
. To see this, note that for large

enough we can approximate the achievingin (6) by
an -type , such that ;
the existence of an achieving is, of course, obvious
from (6). Therefore, concatenating copies of
each of the memoryless reproduction functions,

, we obtain a memoryless ZDFM encoder
, whose distortion onany data sequence

is bounded above by . Thus,
achieves

which implies that , and, therefore,
whenever exceeds

.
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In view of Remark 3, in Theorem 1 we restrict attention to
the interesting range of distortion valuesbelow

Theorem 1: For all , all , and
any positive integer

Remarks:

5. Since is convex in it follows that
is also convex in , and also it is easily seen to be con-
cave in . Therefore, is continuous in both

and , as long as they lie in the interior of the corre-
sponding intervals on which is finite.

6. An alternative expression for , of a more in-
formation-theoretic flavor, is the following: For every

, let denote the probability mass func-
tion (PMF) of , and let be an
arbitrary PMF with the same support. Then, alterna-
tively we can define

(7)

where the infimum is over all sets of PMFs such
that

with denoting the expectation under . In
Appendix A, we outline a proof of the fact that the
two expressions in (4) and (7) are indeed equal. Also
note that the expression in (7) can be arrived at by
using the method of types to prove Lemmas 1 and 2 in
Appendix B.

7. The theorem indicates that time-sharing among
memoryless reproduction functions (in proportions
corresponding to the optimal for which

) achieves the best attainable distortion error
exponent within the class ofall fixed-rate, time-varying
ZDFM codes with finite memory. In fact, after the proof
we show that time sharing among no more than two
memoryless reproduction functions is always sufficient.

8. In view of Remark 1, if we only consider ZDFM codes
whose ranges do not depend on the past

, then the result of the theorem remains valid in
the case of infinite-memory codes, corresponding to

.

Proof: Choose and fix a rate , a distortion
level , and an integer . Observe that
is always finite, and that, as a function of, it is nonincreasing
and convex, which implies that it is also continuous for .
Let an arbitrarily small be given, and assume it is small
enough so that and . All the
above quantities will remain fixed throughout the proof.

Direct part. We first prove that .
For any sequence of memoryless reproduction functions

, the process , where

is clearly a memoryless AVS, with states corresponding to the
different choices of . For each , let denote
the relative frequency of the reproduction functionamong

.
Pick a such that

For each , we can approximate by an -type
, where the sequence is chosen so that

and

as

(To see that this can be done, note that is continuous
in the (relative) interior of . Also, its restriction to
the interior of any of the lower dimensional boundaries defined
by combinations of the constraints is continuous as
well. Finally, observe that if some of the components ofare
actually equal to zero, then we can take the corresponding com-
ponents of to be zero too, for all .)

For every , we consider a code consisting of a sequence
of reproduction functions, where of

them are equal to , for each . Obviously,
. We are interested in assessing the

probability of the event , where is the
AVS defined by , . This is a problem
that is generically handled in Appendix B. In fact, applying
Lemma 2 of Appendix B5 with , , and

, we have for every positive integer

(Note that the assumption guarantees that we
can apply Lemma 2, at least for large enough.) Since
is nondecreasing in (for each fixed ), we can pick and
then large enough, such that, for all , the RHS of
the preceding inequality is bounded above by

Letting go to infinity (for a fixed ) and recalling the choice
of the sequence yields that

And since was arbitrary, by the continuity of
we get . Finally, since memory-
less reproduction functions form a subset of the set of
finite-memory reproduction functions, then by definition,

for all .

5In fact, Lemma 2 is not quite necessary here and can be replaced by an or-
dinary Chernoff-like bound.
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Converse part.We now prove that .
Fix an integer large enough so that

(8)

and let be so large that

Denote by a sequence of reproduction func-
tions attaining the minimum in the left-hand side (LHS) of the
last inequality. Let , and define

(9)
Note that are independent RVs since they are functions of
nonoverlapping -blocks of the independent ’s. Since there
are distinct reproduction functions with memory
of size , it is clear that is a memoryless AVS with

states, corresponding to the
different possible combinations of reproduction functions

.
Now, for each , let denote the propor-

tion of times during which
coincides with the particular set ofreproduction functions in-
dexed by , and let denote the vector . For convenience,
we visualize the stateas a -vector where each

designates the index of theth-reproduc-
tion function within the class of reproduction functions with
memory of size . We will further assume that ,
which means that .

Moreover, we write for the (instantaneous)
rate of the reproduction function , and we take (and hence

) large enough so that the average rate achieved by, call it ,
satisfies

(10)
where follows from the observation that, having omitted

of the original reproduction functions,
the average rate cannot increase by more than a factor of

.
Let us define

where . Our first step will be to show that

for all

Let us denote the set of all-tuples of functions from , by
. First, we show that for every and every

, there exists such that

(11)

and at the same time , for all . To
see why this is true, we use a simple idea similar to the one
used by Stiglitz [21], where he proved that memoryless channels
are least favorable in terms of the jamming game of the error
exponent. Let us rewrite the RHS of (11), call it, as follows:

(12)

Consider first the part of the expression that depends on,
namely, only the last summation over. Note that in this part
of the expression, can simply be thought of as an index of
a function of from (and the dependence on the past
is only via this index). Therefore, for any , this summation
over cannot be smaller than the minimum of

over all such that , or equivalently

Note that the minimizer depends on only via . Denoting
the value of the minimum by , we have bounded the RHS
of (11) below by

for which the summation over is similarly bounded below
by , and so on. Continuing this way until the summa-
tion over , our conclusion is that we found a-tuple of mem-
oryless reproduction functions for which the
moment-generating function of the associated distortion, at a
given value of , does not exceed that of a given

, while maintaining the instantaneous rates , and
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hence also the total rate . As a result, (13) at the
bottom of the page follows.

From the choice of and by an application of Lemma 1
(Appendix B) with as defined above, ,

, and , we have the following. Let be
sufficiently small,

and assume, for the moment, that lies in the range within
which Lemma 1 can be applied (we come back to justify this
assumption at the end of the proof). Then

(14)

and using (13)

where the last step follows from recalling (10) and that
is an increasing function of . Taking the limit
(and hence ), then , and finally

, we get, by the continuity of in , that

Since is arbitrarily small and is also continuous
in , we have

This completes the proof, subject to justifying the application
of Lemma 1 in step of (14).

For that, it suffices to show that lies in the range
allowed by Lemma 1, namely, that , where

(13)
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Moving the sum over in front of the maximization, fixing an
arbitrary , and sequentially maximizing over , for

, with a slight abuse of notation we get that

(15)

where denotes concatenation of strings. For each, after
has been fixed, we can think of

as a memoryless reproduction function applied to, call it
, so that

Note also that each such memorylesshas rate no greater than
that of the corresponding . Rearranging the terms in (15) and
rewriting the memoryless reproduction functionsin terms of
the earlier enumeration , , we can rewrite the
lower bound in (15) as

with as in (5), and the vector sums to .
Or, alternatively

where Moreover, tracing these steps backward
and recalling (10), it is easy to see that we actually have

. Therefore, by the definition of

where the last inequality follows from (8). This shows that
as required, thereby completing the proof.

Remarks:
9. Observe that in the proof of the fact that the exponential

moment of the cumulative distortion is minimized by a
memoryless code, we have not used the fact thatis
finite. This means that, if the objective function was the
moment-generating function of the distortion (instead of
the probability that the distortion exceeds ), then the
finite memory limitation could be relaxed.

10. Note that in the definition of in the converse part
we have created “guard spaces” oftime units between
successive segments in order to avoid dependence. If,
more generally, the code has infinite memory that fades
away fast enough to make the process suffi-
ciently rapidly mixing, then for sufficiently large “guard
spaces” (depending only on the code and not on),
the distribution of can be well approximated by
a product distribution on an exponential scale, and our
converse result will continue to hold.

B. Time-Sharing Between Two Codes is Enough

Here we show that can be attained by a vector
with no more than two nonzero components, and therefore, at
most two memoryless codes need to be time shared.

Let us rewrite as

For a given value of , consider the inner minimization of

over . Denoting , , and
, , we have the following

linear programming problem:

subject to

The necessary and sufficient Kuhn–Tucker conditions for the
optimality of are that there exists a constant

, equal to zero if , and a constant such
that, for all

(16)

with equality for all for which . Obviously, all points
for which must then be on the same line (i.e.,

). But then, to achieve both and ,
it is sufficient to take an appropriate weighted average just of
the two extreme points on this line, namely, the one with min-
imum and maximum and the one with maximum and
minimum . Thus, the minimum of might as well
be achieved by a vector having no more than two nonzero
components. Finally, recall that the above optimization over
is defined for a given value of, and so, the indexes of the two
memoryless reproduction functions that take part in the time
sharing may depend on. Specifically, we can write
as follows:

Thus, after carrying out the optimization over, the optimal
reproduction functions that are time-shared are and

, where achieves the maximum in the last expression.
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III. V ARIABLE-RATE ZDFM CODES

In this section, we consider the problem of determining the
best achievable error exponents for zero-delayvariable-rate
codes with finite memory. The model we adopt is the same
as before, with the difference that we now allow for vari-
able-rate lossless compression (or “entropy coding”) of the
reproduction symbols . In analogy to the finite-memory
assumption that we made regarding the reproduction func-
tions , we will also assume that the associated entropy
coders have finite memory: every reproduction symbol
will be described using bits, depending on the

previously decoded reproduction outcomes,6 where
is the length function of a uniquely

decipherable, fixed-to-variable length code, satisfying Kraft’s
inequality

for all

Note that, since each , the overall memory of
the entropy coder cascaded with the reproduction function, is

.
Without loss of generality, from now on we restrict attention

to admissibleentropy coders, that is, to those whose perfor-
mance cannot be strictly dominated by another entropy coder.
Formally, an entropy coder with length function
is inadmissibleif there exists another entropy coder with length-
function such that

for all , and

for at least one . Note that all admissible coders have

and, therefore, there are only finitely many, sayof them.

A. Variable-Rate/Fixed-Distortion ZDFM Codes

Following the exact same steps as in the derivation of the
best exponent for fixed-rate codes, it is easy to derive the fastest
exponential rate of decay of

(17)

subject to the constraint that the overall distortion achieved is
no greater than , i.e.,

The best exponent in this case can be characterized as
follows. Consider again the set of all memoryless repro-

6Although there is no reason to assumea priori that the memory length of the
entropy coder is the same as the memory off , this assumption is made here
for the sake of simplicity. It is only a straightforward exercise to extend all our
subsequent results to the case of codes with entropy coders and reproduction
functions of different memory lengths.

duction functions . For a given reproduction
function and any , let minimize

over all (admissible) memoryless length
functions that satisfy Kraft’s inequality ,
where the summation is over the range of. For simplicity,
we will sometimes use the shorthand notation for

. For any vector in the set

where as before, we define

Then, the best achievable code-length exponent is given by
, the supremum of over all .

(See Remark 11 below for the range of validity of this result.)
Alternatively, can be defined in a manner that

more closely parallels the definition of the optimal exponent
in the fixed-rate case. Let

where the vectors are indexed by
pairs of indexes ,
which run over all possible combinations of
reproduction functions in and admissible entropy coders.
To avoid cumbersome notation, we will denote and
simply by and , respectively, with the understanding that
the former depends only on the first component,, of and
the latter depends only on the second component. For

, we let

so that we can define

It is straightforward to see that the two definitions of
are equivalent.

Remarks:

11. Arguing precisely as in the case of (see Remark
2), it is seen that is finite iff ,
where

Moreover, for each given, it is continuous in for
, and it is left-continuous at .
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12. As discussed earlier, is the best achievable
rate at which the probability in (17) decays to zero,
over all fixed-distortion ZDFM codes achieving max-
imum distortion no greater than . As before, this re-
sult holds for all interesting values of and , namely,
for all and all , where

13. In complete analogy to the derivation of Section II-B, it
is easy to show that, here too, time sharing between two
memoryless encoders is as good as among any number
of such encoders.

B. Variable-Rate/Variable-Distortion ZDFM Codes

We now turn to the more general case of variable-rate zero-
delay codes with variable distortion. Our goal here, as explained
in detail in the Introduction, is to determine the fastest asymp-
totic rate of decay of the “error probability”

(18)

for given constants and .
More specifically, for any and , the source

coding exponent function for variable-rate/variable-distortion,
time-varying ZDFM codes with memory size is defined
by

(19)

where the minimum is overall encoders with
memory parameter (without any further restrictions on their
instantaneous rate, distortion, or alphabets).

Next we define

where the supremum w.r.t. is over all -dimensional
vectors whose components are nonnegative and sum to unity
(without any additional constraints), and

Interchanging the two suprema in the definition of ,
and observing that the supremum overis attained by the vector

that puts all its mass on the pair that minimizes
, we also have

Remarks:

14. Arguing as in the case of (see Remark 2), we
see that for any given , is finite iff

, where

This implies that is infinite for greater
than

(20)

But for in that range it is easy to see that the mem-
oryless encoder with achieving the minimum
in (20) achieves zero probability of “error” (as in (18)),
implying that for greater than we also have

.

15. We note that is a convex function of , and
hence so is . Therefore, the function
is continuous in for all .

16. It is not difficult to show that the fixed-slope Lagrange
criterion of (18) gives, in the case of general block codes,
an error exponent of

where is the rate-distortion function of a
memoryless source .

In view of the preceding discussion, in our main result of this
section, Theorem 2, we restrict attention to the interesting range
of values of .

Theorem 2: For all , all , and every
positive integer ,

Remark 17: Note that here, unlike the fixed-rate (or fixed-
distortion) case, there is no need for time sharing: optimal per-
formance can be achieved by using asinglememoryless encoder

. This is because, as previously noted, the supremum over
in the definition of is always achieved by a vector

with only one nonzero component.

Proof: The direct part asserting that

is easily established by analyzing the performance of the
memoryless encoder that achieves , using
Lemma 2 (or simply applying the Chernoff bound), as in the
proof of the direct part of Theorem 1.

For the converse part, we also apply a method similar to the
one in Theorem 1. As noted earlier, the concatenation of re-
production functions and entropy coders all having memory
yields encoders with overall memory . In
view of this, we repeat the same construction as in the proof of
Theorem 1, but with replacing .

Let an arbitrarily small be given, and choose and fix an
integer such that

(21)
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Write , and let be sufficiently large so
that for the optimum encoder achieving the
minimum in (19) with , has

(22)

Let , recall the definition of the AVS from
(9), and for similarly define as the sum

Clearly, is also an AVS, where the number of different
states is now upper-bounded by ,
corresponding to all possible combinations of -vectors
of reproduction functions together with all

possible binary trees of prefix codes with at most
leaves for every context and every

.
Continuing as in the proof of Theorem 1, we let denote

the relative frequency of , namely, the
proportion of times during which the vector of reproduction
functions and the vector of entropy coders

all coincide with the particular set ofpairs
of reproduction functions and entropy coders indexed by. For
convenience, we visualize the stateas a -vector ,
where each designates the index of the

th pair of a reproduction function and an entropy coder.
In analogy to the definition of in the proof of

Theorem 1, we now define as

where we use the shorthand notation

In order to further lower bound the LHS of (22), our first step
will be to show that

(23)

To this end, consider the expression

which is obviously part of the LHS of (23). We next show that
is minimized by a pair consisting of a memoryless reproduction
function and a memoryless entropy coder. Expandingas

(24)

and arguing as in the proof of Theorem 1, the last summation
cannot be smaller than the minimum of

(25)

over all pairs corresponding to memoryless encoders.
Repeating this argument for the summation over , and
continuing inductively, it follows that is bounded below by
the expression in (25) raised to the power of. Thus,

(26)

Next we will apply Lemma 1 (Appendix B) to the AVS ,
with , , and as
follows. Take sufficiently small, and let

and
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Assuming for now that lies in the range within which Lemma
1 applies (we come back to justify this shortly) and proceeding
exactly as in the proof of Theorem 1, we obtain

And using (26)

Taking the limit (and hence ), then ,
and, finally, (hence, also ), by the continuity
of in (see Remark 13) we get that

. Since was arbitrary, this implies that
and completes the proof, subject to jus-

tifying the application of Lemma 1 in step above.
To do this, it suffices to show that lies in the range allowed

by Lemma 1, namely, that

(27)

But, arguing as in the proof of Theorem 1, we see that the RHS
above is no smaller than , and by the
choice of in (21) we see that (27) is trivially satisfied, thereby
completing the proof.

Finally we note that the above characterization of the best
achievable exponent in the fixed-slope case can easily be ex-
tended to characterize the fastest possible exponential decay rate
of the probability of the “error event”

(28)

As before, this can be treated by considering the moment-gen-
erating function of linear combinations of distortion and code
length as in (28). Recalling the discussion in the Introduction,
where the formulation of Theorem 2 was motivated, we note
that, here, a reasonable choice of the parameters
would correspond to two adjacent linear segments of the rate-
distortion function .

IV. CONCLUSION AND FUTURE RESEARCH

In this paper, we have analyzed the best achievable exponents
of ZDFM source codes for lossy compression under three
different regimes: fixed rate, fixed distortion, and fixed slope.
Our main finding, in all three of them, was that the best
large-deviations performance is achieved by memoryless codes
(in the case of fixed slope) or by time sharing between at
most two such codes (in the cases of fixed rate and fixed
distortion). At the heart of the analysis lies a simple “onion-
peeling” argument (cf. (12), (24)), which tells us that the
moment-generating function of the code length (or of the
distortion, or of any linear combination between the two),
is always minimized by memoryless codes. Since the code
length and the distortion of ZDFM codes satisfy an LDP, the
optimal exponents (corresponding to the large-deviations rate
functions of the error probabilities), are similarly maximized
by the same memoryless codes.

A few words are in order regarding the extension from mem-
oryless sources to Markov sources. It turns out [20], as one
might naturally expect, that in the case of a Markov source, the
“onion-peeling” argument identifies a large-deviations-optimal
encoder as one whose memory length is equal to the order of the
Markov source. This is different from the setting of [18], where
the extension to Markov sources [7] yields bounds only.

It is natural to expect that the “onion-peeling” technique may
be useful in other problem areas in communications and infor-
mation theory, particularly in the context of zero-delay systems.
T. Weissman has suggested to us that this might be the case
in joint source-channel coding of memoryless sources through
memoryless channels, where both the encoder and the decoder
are (possibly, stochastic and time-varying) ZDFM systems. In-
deed, Let be a DMS, encoded by a stochastic ZDFM code
characterized by the product distribution ,
and let the encoder output be transmitted via a discrete
memoryless channel (DMC) with distribution ,
whose output is decoded by a stochastic ZDFM decoder

. The probability of excess distortion

may be estimated using its moment-generating function, whose
th “layer” in our onion-peeling argument is given by

As in (12) and (25), and can be thought of as
“indexes,” and so the above expression cannot be smaller than
the minimum of

over all memoryless systems and . More-
over, since this is a linear functional of and , this min-
imum is achieved by some deterministic encoder

and deterministic decoder .
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Thus, for DMSs and DMCs, time-invariant deterministic mem-
oryless encoders and decoders are as good as any time-varying
stochastic ZDFM encoders and decoders in the sense of the
excess distortion exponent.

Finally, we list a number of open questions and possible direc-
tions for future research which might be interesting to consider.

• Zero-delay codes with infinite memory.The open problem
presented in the Introduction: Is it possible to relax the
finite-memory assumption and extend Theorems 1 and 2
to infinite-memory zero-delay codes?

• Excess-distortion versus excess-rate exponents.When
considering variable-rate/variable-distortion ZDFM
codes, we may alternatively choose to examine (as in
[23]) the best achievable tradeoff between the asymptotic
exponents of the probabilities of the events

and

For any , the corresponding source-coding exponent
function is defined by

where the minimum is over all variable-rate/variable-dis-
tortion ZDFM codes with memory parameter, such that

In view of our results in Sections II and III, the nat-
ural guess for a single-letter expression characterizing

is the function

Unfortunately, we have not been able to show that indeed
. This is due to the following

two new subtleties arising here. First, it appears that
may not necessarily be jointly continuous

in all three of its arguments. But it can be shown to
be continuous atalmostall such triplets , and
following the same argument as in the proofs of the
direct parts of Theorems 1 and 2 it can be shown that

at all continuity points of
.
The second and more serious subtlety is that the main

argument in the proofs of the converses in Theorems 1
and 2 (the “onion-peeling” argument of (12), (24)) does
not generalize in a straightforward manner to this case.
Nevertheless, it does generalize (exactly as in the proof of
Theorem 1) to the case of ZDFM codes with memoryless
entropy coding, showing that the best achievable exponent
achieved by such codes is indeed (at all con-
tinuity points of ).

It would be interesting to settle the conjecture above,
stating that for ZDFM codes.
This would provide a symmetric characterization of the
best distortion error exponent versus the best rate error
exponent.

• Codes with finite anticipation.How can our results be
extended to the richer class of finite-memory codes with
finite anticipation (delay)?

• Universal zero-delay coding.Perhaps the most intriguing
direction for future research is to investigate the existence
of universalzero-delay schemes for memoryless sources.
Is there a zero-delay code that achieves the optimal source
coding exponent for any memoryless source? While in the
noncausal case [17] such codes exist, in the zero-delay
case the answer is not obvious. If it turned out that there
were some unavoidable price for universality, then the
question would be how to minimize it in some uniform
sense across the class of all memoryless sources.

APPENDIX A

AN INFORMATION-THEORETICEXPRESSION FOR

We would like to show that

(A1)

where is equal to

(A2)

First define

and

where .
The proof of the equality between and fol-

lows very closely the corresponding proof in [13, Appendix II,
Proposition 1 ii)]. Here, we outline the necessary modifications
to that proof. First, it easy to check that
for . Also, it is straightforward to show that

for , which implies that, as claimed in
Section II, indeed for . Next we
observe that is differentiable in , with

and , for all .
In the range , it is easy to show that the

supremum in (A1) is achieved by the unique satisfying
. Fix , , and a corresponding , and

define a new family of distributions
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Then

and, therefore,

(A3)

Conversely, take any candidate as in (A2). Then for each
(by [3, Lemma 6.2.13], after taking in the definition
of ), we have that

so multiplying both sides by and summing over, we get

Taking the infimum over all as in (A2), we get
This together with the upper bound in (A3) shows that

for .
Finally, if , then both and can

be evaluated explicitly, and they are both equal to

(A4)

And, moreover, is left-continuous at the point
. To see this, recall that is nondecreasing in ,

and also

where follows by taking in the supremum, and
follows from (A4).

APPENDIX B

LARGE-DEVIATIONS ANALYSIS FOR ARBITRARILY

VARYING SOURCES

In this appendix, we present and prove two auxiliary lemmas
that give upper and lower bounds on the probability of a certain
large-deviations event associated with an AVS. These lemmas,
which are used in the proofs of the main results, are quite stan-
dard except for the fact they hold for every sample size and not
merely asymptotically. The importance of this feature lies in the
fact that the main term in the exponent of the large-deviations
probability under consideration depends on the relative frequen-
cies of the various states of the AVS, which may not stabilize,
in general, as the sample size grows. It should be noted, in this

context, that [24, Theorem 3] also includes a result that can be
interpreted as a nonasymptotic large-deviations principle for the
AVS. However, the result therein is not directly applicable for
our needs.

Consider an AVS with states, emitting symbols
from a finite subset of , according to the probability

law

where , ( a positive integer) is
an arbitrary (deterministic) sequence of states. Let
denote the relative frequency of along , i.e.,

, . For a given , define

Let , , and
. For a given , let

For a given , let be the (usually unique) value
of that achieves , and let .
Finally, for a given and , define

where .
The following two lemmas provide lower and upper bounds

on .

Lemma 1: Let , , and
let be a positive integer at least as large as . Then,
for all

we have

where

and

Lemma 2: Let . Then, for every positive integer
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Proof of Lemma 1:We begin with a lower bound for the
case , where are independent and all drawn from the
same PMF , whose moment-generating function is

, and where the maximum value of, with positive
probability is . Let

and for a given , , , let
achieve , namely, be the unique maximizer

of . Note that since ,
is upper-bounded by (the value of that achieves

). Let us now denote the event of interest by

and let

Now, defining the PMF , we have

As for the first factor, we have

For the second factor of the RHS of (B1), we first apply the
union bound

To further lower-bound the last expression, we upper-bound
both and using Hoeffding’s inequality [9], which asserts
that given and independent RVs , ranging
over an interval of size

Applying this inequality for (with ,
) and for (with and ,

), we see that both and are upper-bounded by
. Therefore,

where the last inequality follows from setting ,
which is in the allowed range for all

(B1)

We now return to the case of an-state AVS with relative
frequencies of states . Let us re-index the RVs
as , where is , with being
the th occurrence of . Fix a (large) positive integer,
and let . Now generate independent and
identically distributed (i.i.d.) RVs, , according to

where if , the inner summation is defined as zero. Now,
obviously, since are nonnegative random variables

Thus, it is enough to lower-bound the RHS, which corresponds
to the i.i.d. RVs , all having a PMF whose moment-gener-
ating function is

Let us define

It is easy to see that is an upper bound to the value ofthat
achieves . This means that if a certain
value of satisfies

then
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We now apply the lower bound (B1) to , with , ,
and replaced by , , and , re-
spectively, under the condition

(B2)

which parallels the earlier condition (B1) we had for . First
observe that the assumptions and (B2) guar-
antee that (B2) is applicable for , whenever

, provided that . We, therefore,
have that the probability

(B3)

is bounded below by

Since we assume thatis so large that

we have

which in turn implies that the probability in (B3) is bounded
below by

Thus, Lemma 1 is proved.

Proof of Lemma 2:Let us define similarly as in
the proof of Lemma 1. First, observe that the total number of

which are accounted for within is

namely, no more than terms are omitted from the
summation. Therefore,

where the last step follows from the Chernoff bound. Next
observe that for every

Thus, the probability of the event of interest is further upper-
bounded by

which proves the lemma.
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