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Abstract — Since Shannon’s original experiment in 1951, several methods have been applied to the
problem of determining the entropy of English text. These methods were based either on prediction by
human subjects, or on computer-implemented parametric models for the data, of a certain Markov order.
We ask why computer-based experiments almost always yield much higher entropy estimates than the
ones produced by humans. We argue that there are two main reasons for this discrepancy. First, the
long-range correlations of English text are not captured by Markovian models and, second, computer-
based models only take advantage of the text statistics without being able to “understand” the contextual
structure and the semantics of the given text.

The second question we address is what does the “entropy” of a text say about the author’s literary
style. In particular, is there an intuitive notion of “complexity of style” that is captured by the entropy?

We present preliminary results based on a non-parametric entropy estimation algorithm that offer
partial answers to these questions. These results indicate that taking long-range correlations into account
significantly improves the entropy estimates. We get an estimate of 1.77 bits-per-character for a one-
million-character sample taken from Jane Austen’s works. Also comparing the estimates obtained from
several different texts provides some insight into the interpretation of the notion of “entropy” when
applied to English text rather than to random processes, and the relationship between the entropy and
the “literary complexity” of an author’s style.

Advantages of this entropy estimation method are that it does not require prior training, it is uniformly
good over different styles and languages, and it seems to converge reasonably fast.
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1 Introduction

The purpose of this note is to address the following two questions.
1. What is it that makes humans so much more efficient at estimating entropy than machines?

Shannon in 1951 [25] devised an experimental method for determining the entropy of a piece of text
that was based on human subjects predicting the next character after having seen the preceding
text. Using this method he estimated the “entropy of English” to be between 0.6 and 1.3 bits-per-
character (bpc). This method was modified by Cover and King in 1978 [7] who asked their subjects
to gamble on the next symbol outcome. Their method produced sharper estimates between 1.25
and 1.35 bpc.

But why use human subjects? An obvious method for entropy estimation is the following: Run
an efficient compression algorithm on the data and calculate the compression ratio. With the great
development of compression algorithms over the past 20 years and the tremendous advances in
computer technology, one would expect that we should be able to get more efficient machine-based
entropy estimates than the ones produced by humans. Experience shows it is not so. In 1992,
Brown et al. [2] used a word trigram language model and a corpus of more than 500 million words
to get an estimate of 1.75 bpc. More recently, Teahan and Cleary [26] in 1996 used a modification
of a PPM-based arithmetic coding scheme to obtain estimates between 1.46 and 1.48 bpc.

Cover and Kings’s result has remained, for the past 18 years, the benchmark for evaluating the

performance of new compression algorithms.
2. What does entropy say about the “complexity” of language?

In other words, which facets of the notion of literary complexity does the entropy capture? We first
need to be a little more specific about the meaning of the phrase “entropy of language” or “entropy
of English.” In information theory, the notion of entropy has a clear operational interpretation.
It is the optimum compression ratio one can hope to achieve, on the average, over long messages
emitted by a stationary source. It is the smallest number of bits per character required to describe
the message in a uniquely decodable way. So entropy characterizes the redundancy of a source.
Therefore different texts should be regarded as different sources and assigned different entropies

in the same way that different authors have different styles, some of higher and some of lower



complexity than others.

Which brings us to the interpretation of entropy as a measure of complexity. The smaller
the redundancy of the text the harder it is to predict it, and the more complex it seems. This
connection between entropy and complexity was rigorously formulated by Kolmogorov in 1965
[12] and is discussed in some detail in [6] and [8]. But does entropy capture, in an intuitive way,
any aspects of the complexity of an author’s style in the literary sense? The entropy-complexity

analogy is a very appealing one, and one that is easy to occasionally carry a little too far.

1.1 A nonparametric method for entropy estimation

We offer the following partial answer to the first question. The main problem of machine-
implemented algorithms has been the fact that they are almost always based on parametric Markov
models of the English language. It seems to be a well-understood fact that, as already argued by
Chomsky 40 years ago [4], Markovian models are not adequate linguistic descriptions for natural
languages. From our point of view (that of entropy estimation), one obvious deficiency of Markov
models is that they have bounded context-depths and thus cannot capture the strong long-range
dependencies encountered in written English. This motivates us to look for efficient nonparametric
entropy estimation algorithms.

In this report we use nonparametric entropy estimators based on string matching [15] [13], that
are closely related to the celebrated Lempel-Ziv data compression algorithms [31] [32], and are
similar to methods that have been used in DNA sequence analysis [3], [9]. We apply two of these
estimators that are described in detail in Section 4 below. Here we briefly describe how one of the
two estimators works.

We model text as a string produced by a stationary process X = {..., X 1, Xy, X1, Xo, ...},
with each X; taking values in a finite alphabet A (this assumption will remain in effect throughout).
Suppose we are given a long realization of the process starting at time zero: zyx; ...x,. For each
position ¢ > 1 of the “text” woxy...xy we calculate the length of the shortest prefix starting at
x;, that does not appear starting anywhere in the previous ¢ symbols z¢x; ... z; 1, and denote this
length by [;. (We allow the possibility that there is overlap between the prefix starting at z; and

the matching string starting somewhere in xgxy ...x;_;.) For example, if we are given the binary



string

01100101011001001

then for ¢ =5 we get [; = 3:

01100101 011001001.
—
I5=3

The first entropy estimator [15] is given by the formula
-1

iy = |4 S sy i

— log(i+1)

for some N < M (logarithms here and throughout this report are taken to base two). Motivation
for this formula will be given in Section 4 below. The prefix-length [; can be thought of as the
length of the next phrase to be encoded by the Lempel-Ziv algorithm, after the past up to time
(¢ — 1) has been encoded. Since, as i grows, there is no restriction on how far into the past we
can look for a long match, the estimator (1) can take into account very long range correlations in
the text, and this, in view of the discussion following our first question above, partly explains our
motivation for introducing this method.

With respect to our second question now, it is interesting to recall the notion of Lempel-Ziv
complexity which was originally introduced in conjunction with studying the complexity of finite
strings [16]. There, a measure of complexity for finite strings was introduced based on Lempel-Ziv
parsing, and its properties were discussed and compared with those of other complexity measures.
This encourages us to interpret the estimate (1), for finite values of N, as a complexity measure
of the author’s style for a given text, although some remarks are in order here about what exactly

we mean by that.

1.2 The complexity of style

We applied estimator (1) to several different English texts including the King James Bible, a
concatenation of four novels by Jane Austen (Sense and Sensibility, Northanger Abbey, Persuasion
and Mansfield Park) and two novels by James Joyce (Ulysses and Portrait of the Artist as a
Young Man). We chose these texts because they are stylistically very different, and each one is

representative of a different category. It is a well-known linguistic fact that, excluding proper



names, there are only about 500 roots in the Bible. This means that there is a lot of repetition
and therefore considerably high redundancy, i.e. low descriptional complexity. But there is also a
definite sense in which the bible is a very complex piece of writing. The thought process that is
described is found (by many people) quite deep, and although the language is simple and easy to
read, the meaning of the text is rather complex and occasionally hard to follow.

James Joyce, on the other, hand seems hard to read. The style does not seem to strictly follow
any definite syntactic rules, it is not restricted to the standard English vocabulary, and is not
easy to follow. In this sense James Joyce’s writing is more complex that the Bible, but it may be
that the Bible is more complex in what it means for a reader, given the context within which it
is interpreted. Finally Jane Austen was chosen as a representative author of the standard 19th
century heavy literary style.

We run estimator (1) on a 500,000-character piece of each one of the above three texts. The

results are shown in the table below.

text Entropy Estimate | number of chrs.
Bible 0.92 bpc 500,000
J. Austen | 1.78 bpc 500,000
J. Joyce 2.12 bpc 500,000

These results agree well with our intuition that entropy captures statistical structure and de-
scriptional complexity, but not the complexity that comes from the actual contextual and semantic

meaning of the text.

1.3 Organization

The rest of this report is organized as follows: In the next section we outline the history of the
problem of entropy estimation. In Section 3 we discuss our first question, namely the differences
between humans and computers estimating entropy. Section 4 contains a description of our entropy

estimator, and Section 5 a discussion of our results.



2 Some History

In his landmark 1948 paper, [24], Shannon defined the entropy and the redundancy of a language,
and he presented a series of approximations to written English based on finite-order Markov chains.
He considered zeroth to third order letter approximations and first and second order word approx-
imations, and based on these he computed an entropy estimate of 2.3 bpc for 27-character English
(26 letters plus space). Three years later, Shannon [25] came up with a more sophisticated experi-
mental procedure for determining the entropy of a given text. Instead of postulating a Markovian
model for the data and then estimating the relevant model parameters, the new method utilized
the knowledge of the language statistics possessed by those who speak it, and was based on human
subjects predicting the next letter after having seen the preceding text. Experiments on an excerpt
from Dumas Malone’s Jefferson the Virginian [17] produced upper and lower bounds of 0.6 and
1.3 bpc, respectively. It is worth noting here that the transition from using a method based on a
Markov model for the data to a method that uses humans for prediction can be thought of as a
transition from a parametric to a nonparametric family of models.

Shannon’s estimates [25] were calculated on the basis of how many guesses it took the subject to
correctly identify the next letter after having seen the preceding text. This method was improved
upon by Cover and King [7] in 1978. They asked the subjects to not only try to predict the
following character, but at the same time identify the probability with which they thought their
guess was correct. This was done by placing sequential bets on the next symbol occurrence. The
subjects gambled on a sentence extracted from [17] and produced entropy estimates between 1.29
and 1.90 bpc. A plausible method for combining these estimates was employed by Cover and King
which produced overall results between 1.25 and 1.35 bpc. These seem to be the most reliable
entropy estimates to date.

Now for the computer-based methods. The obvious way to obtain an upper bound for the
entropy of a given piece of text is to run a compression algorithm on it and then calculate the
compression ratio. The most successful methods, that is, the methods producing the lowest es-
timates, have been the ones based on the “Prediction by Partial Matching” (PPM) variation of
the arithmetic coding algorithm — see [1] for a comprehensive discussion of PPM-related methods.

The first experiments [19] [1] that used initially empty contexts (and no training) reported results



between 2.19 and 2.40 bpc. In a recent paper, Teahan and Cleary [26] used statistical preprocessing
of the text and a training method to obtain estimates as low as 1.46bpc.

Finally, Brown et al. [2] used a large corpus of more than 500 million words to create a word
trigram language model which produced an estimate of 1.75 bpc. As pointed out in [26] part of
the reason why Brown et al.’s estimate is not as high as one would hope for given the amount of
data they used, is that instead of 27-letter English they did their experiments using all 96 printable
ASCII characters.

Several other methods have appeared in the literature since Shannon’s original papers, where
they are applied to specific problems in many areas outside information theory such as psychology,
education, music, linguistics. Newman and Waugh [21] in 1960 used a statistical method to study
the differences in entropy across languages. They came up with estimates between 2.4 to 2.8 bpc
for different English texts, but their method was not fully rigorously justified and has not been
widely used. Jamison and Jamison in 1968 [10] used Shannon’s method of guessing to get an
estimate of 1.65 bpc and they pointed out a connection between entropy and partial knowledge
of languages in linguistics. The use of information theoretic methods in the study of language
has been studied extensively by Mandelbrot [18], Chomsky [4], Newman [20], Yaglom, Dobrushin
and Yaglom [30] and Paisley [23], among many others. The texts [29], [27] [1], and the paper [7]

contain extensive bibliographies on the subject.

3 Machines vs Humans

How come humans, using just a few characters, can estimate entropy so much more accurately
than powerful computers using hundreds of millions of words? It seems that humans not only have
a very good knowledge of the statistics of language, they can also extract information from the
context and the semantics of the given passage. We can guess the answers to rhetorical questions,
we can predict the characters’ psychological reactions in novels. Humans are good at keeping track
of long-range dependencies within long texts. Typically, machine-based language models keep
track of contexts of at most a few characters long, whereas humans can easily follow book plots
that are hundreds of pages long. If, for example, the first two words in a book are “The Bible” we

are pretty certain that we will not come across the phrase “non-differential manifolds” somewhere
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in the middle of the book, whereas if we were merely looking at statistics, this phrase would have
a definite positive probability.

According to Tom Cover [5] “When a computer can compress text as well as the best human
can, we should say that the machine understands the text.” Computers, on the other hand, can
calculate and store statistics extremely accurately. Given the current state of computer technology
computers can have much larger memory and process the information stored much faster than a
human could. Based on these considerations, Teahan and Cleary [26] remark that “There is no
reason that machine models cannot do better than humans.”

It was already argued in the Introduction and it seems to be a generally accepted fact that
there exists a part of natural language, corresponding to the intuitive notion of understanding the
content of a phrase, that is not captured by purely statistical models. In view of this there are two

questions that remain unanswered:

1. How big is the entropy content of that part of the language? How much can understanding

the message reduce the length of its most efficient description?

2. Humans are good at “understanding” but machines are extremely efficient at keeping and
processing statistics. What is the nature of this tradeoff? Will computers eventually strictly

dominate human performance as memory and processing time become faster and cheaper?

4 The Method

In this section we describe two recent entropy estimators, (2) and (3) below [15] [13] [9].
Consider a stationary process X = {..., X_1, X, X1, Xo, ...} with values in the finite alphabet
A. We denote an infinite realization of the process by = = (..., x_1, %, 21, T2,...) and for i < j,
xf denotes the string (z;, ;41,..., ;). In 1989 Wyner and Ziv discovered the following interesting
connection between match lengths along a realization of the process and its entropy rate H. Given
a realization  and an integer N > 1, we let Ly denote the length of the shortest string starting
at o that does not appear starting anywhere within the past N symbols z~}, where we allow

for overlap between the two matching strings. Equivalently, Ly can be thought of as the longest



match length plus one:
Ly =Ly(z) =max{k>0: 2} = 1:;%_1 for some — N < j < —1}.

Wyner and Ziv [28] conjectured that, as the size N of our “database” grows to infinity, Ly will
grow logarithmically with slope equal to 1/H:

Ly . 1
log N H

a.s.

Ornstein and Weiss [22] formally established this result. One would hope to use this in practice to
estimate the entropy, but simulations show that the convergence is very slow. Also, in an intuitive
sense, we do not seem to be making very efficient use of our data. So we suggest the following
modification. We fix a large integer N as the size of our database. Given a realization z and some
fixed time instant ¢, instead of looking for matches starting at time zero we look at the length of
the shortest string that starts at time ¢ and does not appear starting anywhere in the previous N
symbols X/~\. If we call that length AY = A?(x) then it is clear that AN (z) = Ly (T"z), where
T is the usual shift operator. Therefore the stationarity of X immediately implies that, for any
fixed index i, A /log N will converge to 1/H with probability one.

Let us remark in passing that AY can be interpreted as the length of the next phrase to be
encoded by the sliding-window Lempel-Ziv algorithm [31], when the window size is N. Similarly
A? can be thought of as length of the phrase that would be encoded next by the Lempel-Ziv
algorithm [32] with knowledge of the past z~'. Observe that A? is the quantity we called /; in the
introduction.

Following [9] [15] [13], in order to make more efficient use of the data we suggest that instead
of just looking at the match length A) at just one position i, we look at several positions i =
1,2,..., M and we average these estimates out. This can be done by either sliding a window of
size N behind the current position,

1 X AN

_Z log N’

or by considering a window of growing size,

M Az
Z

= logz—i—l)



The following is proved in [13]:

Theorem. Let X be a stationary ergodic process with entropy rate H and let N grow linearly

with M as M — oo. Then

L AT Moo i, a.s. and in L', (2)
M 1ism log N H
1 Al M 1
— — T a5 andin LY, 3
M IS%M log(i + 1) H (3)

provided the following mixing condition holds:
Doeblin Condition (DC): There exists an integer r > 1 and a real number (3 € (0,1) such that

with probability one,

P{Xy=xo|XZ} >, forallz,e A

We interpret (DC) as saying that “if we wait for r time-steps, anything can happen with non-
zero probability.” Or, to be a little more precise, “conditional on any realization of the infinite
past from time —oo to —r, any symbol can occur at time zero with strictly positive probability.”
For the case of English text we believe that the validity of (DC) is a plausible assumption. In the
context of string matching problems (DC) was first introduced by Kontoyiannis and Suhov [14],

where its properties are discussed in greater detail.

5 Results

In this section we present preliminary results based on our experiments using the estimators de-

scribed in the previous section.

5.1 Texts

Below we present the results of the sliding-window type estimator (2) applied to the three texts
described in the introduction. The window length is equal to (1/2)x(#of characters — 500).
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5.2 Sentences

In human-based experiments, the subjects are typically asked to predict or gamble on a piece of text
no longer than two or three hundred characters long. So in a sense the quantity that is calculated
is the entropy of the sentence examined, given the subjects’ knowledge of the preceding text and
of the language it is written in. Cover and King in their experiments [7] used a 75 character long
sequence from [17] that was contained in a one sentence. This brings up the question about how

typical was the sentence picked by Shannon or by Cover and King (this question is discussed in

[11] and [26]).

We modified our estimator (2) to examine just one sentence at a time, using a large window
size. In (2) we take position i = 1 to be the beginning of a sentence, let N large (window length)

and M = 75 to be the length of the part of the sentence to be analyzed. Below are the results we

text Entropy Estimate | number of chrs.
Bible 1.46 bpc 10,000
1.31 bpc 20,000
1.10 bpc 400,000
0.92 bpc 800,000
J. Austen | 2.00 bpc 10,000
1.87 bpc 100,000
1.78 bpc 400,000
1.77 bpc 1,000,000
J. Joyce 2.21 bpc 100,000
2.11 bpc 200,000
2.12 bpc 400,000
2.15 bpc 1,000,000

obtained on sentences taken from Jane Austen’s works:

11




sentence | Entropy Estimate | Window length
1 1.25 bpc 2310598
2 1.37 bpc 2361100
3 1.49 bpc 2319260
4 1.52 bpc 2362203
5 1.84 bpc 2360000

— sentence 1: “good heavens charles how can you think of such a thing take a box for tomor”
— sentence 2: “ of sir william it cannot be doubted that sir walter and elizabeth were sho”
— sentence 3: “ could imagine she read there the consciousness of having by some complicat”
— sentence 4: “she had but two friends in the world to add to his list lady russell and mr”

— sentence 5: “imself to raise even the unfounded hopes which sunk with him the news of hi”

6 Text sources

All the texts that were used for our experiments were downloaded from public domain sites on the
Internet. The King James Bible and Jane Austen’s Mansfield Park, Northanger Abbey, and Per-
suasion we got from Project Gutenberg at http://192.76.144.75/books/gutenberg; Jane Austen’s
Sense and Sensibility we got from the Educational Resources of the University of Maryland at Col-
lege Park Web site at http://www.inform.umd.edu:8080/EdRes/ Topic/WomenStudies/ReadingRoom;
James Joyce’s Portrait of the Artist as a Young Man and Ulysses we got from the Bibliomania

Web site at http://www.bibliomania.com/Fiction.

References

[1] J.G. Bell, T.C. Cleary and I.H. Witten. Text Compression. Prentice Hall, New Jersey, 1990.

[2] P.F. Brown, S.A. Della Pietra, V.J. Della Pietra, J.C. Lai, and R.L. Mercer. An estimate of
an upper bound for the entropy of English. Computational Linguistics, 18(1):31-40, 1992.

[3] S. Chen and J.H. Reif. Using difficulty of prediction to decrease computation: Fast sort,

priority queue and convex hull on entropy bounded inputs. In 34th Sympsium on Foundations

12



[11]

[12]

of Computer Science, pages 104—112, Los Alamitos, California, 1993. IEEE Computer Society

Press.

N. Chomsky. Three models for the description of language. IRE Trans. Inform. Theory,
2(3):113-124, 1956.

T.M. Cover. private communication. April 1996.

T.M. Cover, P. Gacs, and R.M. Gray. Kolmogorov’s contributions to information theory and

algorithmic complexity. Ann. Probab., 17(3):840-865, 1989.

T.M. Cover and R. King. A convergent gambling estimate of the entropy of English. IEEE
Trans. on Inform. Theory, 24(4):413-421, 1978.

T.M. Cover and J.A. Thomas. Elements of Information Theory. J. Wiley: New York, 1991.

M. Farach, et al. On the entropy of DNA: Algorithms and measurements based on memory

and rapid convergence. In Proceedings of the 1995 Sympos. on Discrete Algorithms, 1995.

D. Jamison and K. Jamison. A note on the entropy of partially-known languages. Inform.

Contr., 12:164-167, 1968.

F. Jelinek. Self-organized language modelling for speech recognition. In Readings in Speech

Rcognition, pages 450-506. Morgan Kaufmann Publishers Inc., 1990.

A.N. Kolmogorov. Three approaches to the quantitative definition of information. Problemy

Peredachi Informatsii, 1(1):3-11, 1965.

[. Kontoyiannis, P.H. Algoet, and Yu.M. Suhov. Two consistent entropy etimates for sta-
tionary processes and random fields. NSF Technical Report no. 91, Statistics Department,

Stanford University, April 1996.

[. Kontoyiannis and Yu.M. Suhov. Prefixes and the entropy rate for long-range sources.

Chapter in Probability Statistics and Optimization (F.P. Kelly, ed.). Wiley, New York, 1994.

13



[15]

[16]

[17]

18]

[19]

[20]

22]

23]

[24]

[25]

[26]

[. Kontoyiannis and Yu.M. Suhov. Stationary entropy estimation via string matching. In Pro-
ceedings of the Data Compression Conference, DCC 96, Snowbird, UT, 1996. IEEE Computer

Society Press.

A Lempel and J. Ziv. On the complexity of finite sequences. IEEE Trans. Inf. Theory,
22(1):75-81, 1978.

D. Malone. Jefferson the Virginian. Little Brown and Co., Boston, 1948.

B. Mandelbrot. An informational theory of the statistical structure of language. In W. Jackson,

editor, Communication Theory, pages 485-502. New York: Academic Press, 1953.

A. Moffat. Implementing the PPM data compression scheme. [IEEE Trans. Comm.,
38(11):1917-1921, 1990.

E.B. Newman. Men and information: a psychologists view. Nuovo Cimento Suppl., 13(2):539—
559, 1959.

E.B. Newman and N.C. Waugh. The redundancy of texts in three languages. Inform. Contr.,
3:141-153, 1960.

D. Ornstein and B. Weiss. Entropy and data compression schemes. IEFE Trans. Inf. Theory,
39(1):78-83, 1993.

W.J. Paisley. The effects of authorship, topic structure and time of composition on letter

redundancy in English texts. J. Verbal Learning and Verbal Behaviour, 5(1):28-34, 1966.

C.E. Shannon. A mathematical theory of communication. Bell System Technical J., 27:379—
423, 623-656, 1948.

C.E. Shannon. Prediction and entropy of printed English. Bell System Technical J., 30:50—64,
1951.

W.J. Teahan and J.G. Cleary. The entropy of English using PPM-based models. In Proceedings
of the Data Compression Conference, DCC 96, Snowbird, UT, 1996. IEEE Computer Society

Press.

14



[27]

28]

[31]

32]

K. Weltner. The Measurement of Verbal Information in Psychology and Education. Springer-
Verlag, Berlin-Heidelberg-New York, 1973.

A. Wyner and J. Ziv. Some asymptotic properties of the entropy of a stationary ergodic data
source with applications to data compression. IEEE Trans. Inf. Theory, 35(6):1250-1258,
1989.

A.M. Yaglom and .M. Yaglom. Probabiliity and Information. Kluwer, Boston, 1983. Trans-

lation of: Veroiatnosti informatsiia, 3rd rev. and enl. ed., Izd-vo Nauka, Moscow.

[.LM. Yaglom, R.L. Dobrushin, and A.M. Yaglom. Information theory and linguistics. Problems
of Linguistics, 1:100-110, 1960.

J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Trans.

Inf. Theory, 23(3):337-343, 1977.

J. Ziv and A. Lempel. Compression of individual sequences by variable rate coding. [FEFE

Trans. Inf. Theory, 24(5):530-536, 1978.

15



