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Over the past 45 years, Andrew Barron has been a world-leading researcher in
information theory, statistics, and statistical learning, and he is yet to show any signs
of slowing down. His many important contributions, which cover an unusually broad
range of questions in science and engineering, can roughly be categorized in three
major groups: (𝑖) information-theoretic methods in probability, (𝑖𝑖) core statistical
theory and methodology, and (𝑖𝑖𝑖) statistical learning and neural networks.

Below we outline some of Barron’s major contributions in each of these directions.
The papers in this volume are similarly grouped into three corresponding parts.

1 Information theory in probability

The Shannon-McMillan-Breiman theorem. Barron’s first major published re-
search work [7] settled a fundamental open problem in information theory, which
has significant implications for several of other fields as well. To set the stage, we
recall that perhaps the deepest and most critical insight in Shannon’s pioneering
1948 paper [33] was the so-called asymptotic equipartition property (AEP). The
AEP provides a different way of viewing long realizations of symbols produced by
a discrete random source with entropy rate 𝐻. It says that, for large 𝑛, all possible
realizations of length 𝑛 can be viewed as being either typical or non-typical. There
are about 2𝑛𝐻 typical ones, all with approximately the same probability, 2−𝑛𝐻 , while
the set of all non-typical realizations has vanishingly small probability.
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The strongest version of the mathematical expression of the AEP is known as the
Shannon-McMillan-Breiman theorem (SMBT), and it applies to all finite-valued,
stationary and ergodic sources. It would be hard to overstate its importance to the
development of information-theoretic results, particularly coding theorems, over the
years. The SMBT also played a fundamental role in the evolution of isomorphism
theory of dynamical systems, and it became the main link in the very fruitful connec-
tion between information theory and ergodic theory. Moreover, it was observed that
the same mathematical computation – the identification of the exponential rate of
decay of the Radon–Nikodym derivatives between the finite-dimensional marginals
of two different stationary processes – corresponds to the optimal error exponent in a
hypothesis test between the two underlying processes. After a handful of generaliza-
tions of Shannon’s original result, the definitive version of the SMBT for processes
with densities was established by Barron in 1985 [7].

The central limit theorem. Barron’s second major research work, which appeared
only a year later later, was on the information-theoretic approach to the central limit
theorem (CLT). The idea of looking at the CLT through an information-theoretic
lens has its roots in the early work of Linnik in the late 1950s [27, 28]. This was
followed by a number of papers deriving increasing stronger results, and the first
major breakthrough – the first general CLT in the sense of relative entropy, for sums
of continuous random variables – was Barron’s 1986 proof [8] of the following
elegant statement: The relative entropy between the law of the standardized sum of
independent and identically distributed (i.i.d.) random variables and the standard
Gaussian converges to zero if and only if it is ever finite. Barron’s derivation was
first described in a technical report two years earlier [5], which has become a useful
reference in its own right, as it contains the first rigorous development of an important
collection of results (Stam’s Fisher information inequality, de Bruijn’s identity, and
others) that have come to play a major role in information theory and its connections
with other parts of analysis and probability in the past 20 years or so.

In 2004, Barron returned to the CLT and, in paper jointly written with Oliver
Johnson [22], they established conditions under which explicit convergence rates
could be derived for the entropic CLT. The same year, Artstein, Ball, Barthe and
Naor [1] proved that the convergence in the entropic CLT is monotonic. Equivalently,
they showed that the entropy of the standardized partial sums of i.i.d. continuous ran-
dom variables increases to its maximum possible value under the obvious variance
constraint, namely, that of the Gaussian. In 2007, Madiman and Barron [29] gave
a new proof of this monotonicity. In fact, the provided a broad, unifying treatment
of a number of important information-theoretic inequalities, including new gen-
eralizations of Stam’s Fisher information inequality and Shannon’s entropy power
inequality.

Martingales and 𝜎-algebras. In addition to usual information-theoretic functionals
of entropy and mutual information, there are numerous other, different quantitative
notions of “information” throughout science. In particular, in probability theory,
the process by which more and more information is revealed via a sequence of
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observations, is modeled via filtrations, namely, either increasing or decreasing
sequences {F𝑛} of 𝜎-algebras.

In 1991 [10], Barron used the chain rule for relative entropy to give a new
proof of the following basic fact, connecting information-theoretic thinking with the
probabilistic concept of filtrations: If {F𝑛} is an increasing family of 𝜎-algebras, and
𝜇𝑛, 𝜈𝑛 are the restrictions of 𝜇, 𝜈, respectively, toF𝑛, 𝑛 ≥ 1, where 𝜇, 𝜈 are probability
measures on 𝜎(∪𝑛F𝑛), then 𝐷 (𝜇𝑛∥𝜈𝑛) → 𝐷 (𝜇∥𝜈) as 𝑛 → ∞, where 𝐷 is the usual
relative entropy. Moreover, he utilized this result to give a new, information-theoretic
proof of both the almost sure and 𝐿1 versions of the martingale convergence theorem
for nonnegative martingales.

Some years later, in 2000 [13], Barron showed that, if 𝐷 (𝜇𝑛∥𝜈𝑛) is eventually
finite, then the same “limit of information” result 𝐷 (𝜇𝑛∥𝜈𝑛) → 𝐷 (𝜇∥𝜈) holds in
the case when the underlying family of 𝜎-algebras {F𝑛} is decreasing. Then he
used this to give a new characterization of reverse information projections. If 𝐸 is
a convex set of probability measures on a measurable space (𝐴,A), and 𝜇 ∉ 𝐸

is a probability measure on the same space then, roughly speaking, the reverse
information projection 𝜈∗ of 𝜇 onto 𝐸 is the probability measure that achieves
𝐷 (𝜇∥𝜈∗) = inf𝜈∈𝐸 𝐷 (𝜇∥𝜈). Reverse information projections play a central role in
the analysis of maximum likelihood estimation and in the construction of so-called
𝑒-variables [30] in statistics. Interestingly, he noted that similar arguments could be
used to examine the convergence of a Markov chain to equilibrium, which brings us
to our last topic.

Markov chains. One of the first probabilistic limit theorems after the CLT to be con-
sidered from an information-theoretic point of view, was the convergence of Markov
chains to equilibrium. Early work in this area was done by Rényi [31], Kendall [25],
and Fritz [21]. In 1997 [11], in part building on ideas in these earlier works, Barron
outlined ways in which one could obtain information-theoretic bounds on the rate
of convergence of the random-walk Metropolis sampler and the Metropolis-adjusted
Langevin algorithm for Markov chain Monte Carlo (MCMC) simulation. First, he
had a proof outline for establishing bounds on the convergence to zero of the relative
Fisher information between the time-𝑛 distribution 𝑝𝑛 of the chain and the target
density 𝑝. Then he employed de Bruijn-style arguments similar to those in his earlier
work [8, 5], to deduce corresponding results for the relative entropy 𝐷 (𝑝𝑛∥𝑝).

In 2000 [13], Barron returned to Markov chains and, using techniques similar to
the “limits of information” theorems described above, he gave a new information-
theoretic proof of the following elegant convergence theorem for reversible Markov
chains: If a reversible Markov chain has unique unique invariant measure 𝜋 then the
relative entropy 𝐷 (𝜇𝑛∥𝜋) between its law 𝜇𝑛 and 𝜋 converges to zero, if and only if
it is eventually finite.
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2 Statistical theory and methodology

Foundational results on the minimum description length principle. Starting with
his 1985 Ph.D. thesis [6] and continuing throughout his career, Barron has made a
number of profound and foundational contributions to the theory and applications
of the Minimum Description Length (MDL) principle – a principle of statistical
inference and information theory that formalizes Occam’s Razor: Among all ex-
planations of the observations at hand, select the simplest one. The MDL principle
was introduced by Rissanen in 1978 [32] and much of the core MDL theory was
developed in the 1980s and 90s by, among others, Jorma Rissanen, Andrew Barron,
and Bin Yu, leading to their 1998 review paper [17].

In words, MDL is a collection of ideas and methods for model selection and
statistical inference, based on the principle that the best model for any given dataset
is the one that compresses it the most — that is, the one that leads to the shortest
total code-length for both the model and the data. Formally, among all models 𝑀 in
a model class M,

best model = arg min
𝑀∈M

{
𝐿 (𝑀)︸︷︷︸

model complexity

+ 𝐿 (𝑥𝑛 |𝑀)︸    ︷︷    ︸
data fit

}
,

where 𝑥𝑛 is the observed data, 𝐿 (𝑀) is the number of bits needed to describe the
model 𝑀 , and 𝐿 (𝑥𝑛 |𝑀) is the number of bits needed to describe the data based
on 𝑀 . Guided by information-theoretic principles and using tools from probability
and statistics, Barron’s work in the area – of which some important contributions are
summarized below – clarified and formalized connections between MDL, Bayesian
statistics, and universal data compression.

For example, the 1991 paper [16], co-written by Barron and his (by then, former)
Ph.D. advisor, Tom Cover, contains some of Barron’s seminal MDL results, including
derivations of important convergence properties of MDL estimators based on two-
part codes. Also, it is where Barron first introduces the key notion of the index of
resolvability, which quantifies the best achievable trade-off between approximation
error and model complexity when fitting data using a class of models.

In the same spirit, in the late 1990s, Xie and Barron [36, 35] obtained optimal
asymptotic results for the minimax regret in universal prediction, data compression,
and in sequential betting strategies. And around the same time, Yang and Barron [37],
in what is by now widely regarded as a landmark paper for its generality, depth, and
its unified approach, developed a general information-theoretic method for deriving
minimax convergence rates in nonparametric estimation problems, showing how
covering numbers, metric entropy, and relative entropy can be used to determine the
optimal rates of convergence under the log-loss criterion.

Bayesian asymptotics. Bayesian statistics is a way of doing statistical inference
that treats unknown quantities (like parameters or functions) as random variables
with their own probability distributions, often referred to as prior beliefs. Bayesian
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estimation and inference are based on the Bayesian posterior distribution, which
describes the statistician’s updated, ‘posterior’ beliefs after observing the data.

In two papers in the early 1990s [20, 19] with his first Ph.D. student, Bertrand
Clarke, Barron helped to establish a Bayesian justification of MDL. These works
provided an information-theoretic analysis of Bayesian statistical estimation, and
they derived convergence rates for Bayesian posterior distributions. Specifically, [19]
develops a precise asymptotic analysis of Bayesian inference using information-
theoretic tools, and [20] shows that, in regular parametric models, Jeffreys’ prior
minimizes the maximum asymptotic entropy risk, making it least favorable in the
information-theoretic sense.

Then, in 1999, Barron, Schervish, and Wasserman [18] provided general condi-
tions under which Bayesian posterior distributions are consistent in nonparametric
settings, meaning that the posterior asymptotically concentrates on the true data-
generating distribution, as the number of observations increases. Foundational in
Bayesian nonparametrics, this work offers a clean, general, and elegant framework for
establishing posterior consistency without requiring restrictive assumptions. More-
over, it shows how to construct Bayesian priors that satisfy the assumptions needed
for consistency. Tools and ideas build on Barron’s early work in the area [9, 12].

In the same year, Barron, Birgé and Massart produced a very influential paper [14],
in which they developed novel and powerful minimax bounds for model selection, for
MLD-inspired, penalized-maximum-likelihood model selection criteria. In a very
broad setting that includes nonparametric regression and density estimation, they
introduced an “accuracy index” that quantifies the fundamental trade-off between
the approximation error and the parameter dimension relative to sample size. In
particular, this work provided minimax rate optimal – that is, adaptive – estimators
in a variety of contexts.

Capacity-achieving sparse superposition codes. One of the key challenges in
modern communication systems in general and in wireless communications in par-
ticular, is to devise coding schemes for transmitting information reliably from a
sender to a receiver through a noisy channel [33]. Such coding schemes need to
be computationally efficient, have low probability of decoding error, and allow for
data rates close to the information-theoretically optimal limit, Shannon’s channel
capacity. A practical model of real world communication and one of the most widely
studied and used, is the additive white Gaussian noise (AWGN) channel.

Based on ideas from high-dimensional, sparse linear regression, in 2012 [23],
Barron and his Ph.D. student Anthony Joseph introduced and analyzed a class of
practical codes for coding over the AWGN channel. These codes, referred to as sparse
regression codes (SPARCs) [34], were initially shown to achieve capacity when
maximum likelihood decoding is used. Then, in subsequent work by Barron, Cho
and Joseph [24, 15], computationally efficient decoding schemes were developed for
SPARCs. Therefore, SPARCs are the first provably efficient and capacity-achieving
family of codes for the AWGN channel, and they are used for many modern practical
communications tasks.
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3 Statistical learning and neural networks

Barron’s contributions to statistical learning and neural networks reflect a cohesive
and far-reaching research program that integrates ideas from information theory,
approximation theory, and statistical estimation. His work has helped establish a rig-
orous mathematical foundation for methods that are now central to modern machine
learning, particularly in understanding how adaptive estimators and neural networks
can achieve favorable performance in high-dimensional and nonparametric settings.

Information-theoretic foundations for statistical learning. In early work with his
student Chyong-Hwa Sheu [4], Barron developed a framework for approximating
the log-density of a distribution using sequences of regular exponential families
constructed from polynomial, spline, and trigonometric basis functions. The central
theoretical result demonstrated that maximum likelihood estimators within these
families achieve the minimax-optimal rate of 𝑂 (𝑛−2𝑟/(2𝑟+1) ) in relative entropy,
under the assumption that the true log-density has 𝑟 square-integrable derivatives.

A distinctive feature of this analysis was its decomposition of the relative entropy
into approximation and estimation error terms –essentially a bias-variance trade-off
in the language of information theory. Increasing the number of basis functions
reduces approximation error but increases estimation error, and balancing the two
yields the minimax rate. More broadly, the work revealed that exponential families,
interpreted through information projections (as relative entropy minimizers), offer a
unified framework for nonparametric density estimation.

Over a decade later, Barron explored information-theoretic methods for com-
bining statistical models. In joint work with his student Gilbert Leung [26], he
investigated mixtures of least-squares projections and introduced unbiased risk esti-
mators to analyze their performance. The paper established sharp oracle inequalities
of the form:

Risk(mixture) ≤ min
𝑀∈M

{
Risk(model 𝑀) +𝑂

(
log |M|

𝑛

)}
, (1)

where M denotes the model class considered.
This work extended Barron’s broader agenda of using information-theoretic prin-

ciples to structure and analyze adaptive statistical methods. Like many of his earlier
results, the model averaging framework shared the same underlying emphasis on bal-
ancing approximation and estimation. The estimated risk of the mixture decomposes
into three interpretable components: a weighted average of the risks of individual
models, a variance reduction term capturing the stabilizing effect of combining di-
verse estimators, and a complexity penalty reflecting the cost of adaptively assigning
weights. This work helped catalyze a large body of subsequent work on statistical
aggregation and exponential weighting.

Universal approximation and complexity bounds for neural networks. Among
Barron’s most foundational contributions are his theoretical results on the approxi-
mation capabilities and statistical complexity of neural networks. His seminal 1993
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paper [2] demonstrated that single-hidden-layer neural networks with sigmoidal acti-
vation functions can achieve an integrated squared error of order 𝑂 (1/𝑛), where 𝑛 is
the number of hidden units. This rate holds for a class of functions satisfying a novel
smoothness condition—marking one of the first rigorous demonstrations that neural
networks could mitigate the curse of dimensionality under appropriate assumptions.

The key innovation was Barron’s introduction of a smoothness class defined via
the decay of the Fourier transform, rather than traditional Sobolev norms, together
with a clever application of the probabilistic method. Specifically, functions 𝑓 satis-
fying ∫

|𝜔 | | 𝑓 (𝜔) | 𝑑𝜔 < 𝐶 𝑓 ,

can be approximated with dimension-independent accuracy by neural networks. This
condition ensures a form of “spectral smoothness,” controlling high-frequency con-
tent in a way that permits effective approximation. The class of such functions—now
known as the Barron class—has become a cornerstone in neural network approxi-
mation theory and continues to shape modern research.

Barron showed that, while classical 𝑛-term basis expansions typically yield ap-
proximation rates of order 𝑂 (𝑛−2/𝑑) for input dimension 𝑑, neural networks can
attain rates of order 𝑂 (𝐶2

𝑓
/𝑛), independent of 𝑑. This striking contrast helps explain

the empirical success of neural networks in high-dimensional settings and provided
an early theoretical framework for understanding it.

In a 1994 follow-up [3], Barron extended these approximation results to the
statistical learning setting. He analyzed both the approximation error due to finite
network size and the estimation error arising from finite data. He showed that the
integrated mean squared error for estimating a function 𝑓 using a neural network
trained on 𝑁 samples in 𝑑-dimensional input space could be bounded as

𝑂

(
𝐶2

𝑓

𝑛

)
+𝑂

(
𝑛𝑑

𝑁
log 𝑁

)
,

reflecting goodness-of-fit and model complexity relative to sample size. Balancing
these terms by choosing

𝑛 ∼ 𝐶 𝑓

(
𝑁

𝑑 log 𝑁

)1/2
,

yields an overall risk of order

𝑂

(
𝐶 𝑓

(
𝑑

𝑁
log 𝑁

)1/2
)
.

This result provided one of the earliest and clearest demonstrations that neural
networks can achieve statistically efficient learning in moderately high-dimensional
regimes.
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Academia, Prague, 1973.

22. O. Johnson and A.R. Barron. Fisher information inequalities and the central limit theorem.
Probab. Theory Related Fields, 129(3):391–409, July 2004.



Title Suppressed Due to Excessive Length 9

23. A. Joseph and A.R. Barron. Least squares superposition codes of moderate dictionary size are
reliable at rates up to capacity. IEEE Trans. Inform. Theory, 58(5):2541–2557, May 2012.

24. A. Joseph and A.R. Barron. Fast sparse superposition codes have near exponential error
probability for 𝑅 < C. IEEE Trans. Inform. Theory, 60(2):919–942, 2013.

25. D.G. Kendall. Information theory and the limit-theorem for Markov chains and processes with
a countable infinity of states. Ann. Inst. Statist. Math., 15(1):137–143, May 1963.

26. G. Leung and A. R. Barron. Information theory and mixing least-squares regressions. IEEE
Trans. Inform. Theory, 52(8):3396–3410, 2006.

27. Ju.V. Linnik. An information-theoretic proof of the central limit theorem with Lindeberg
conditions. Theory Probab. Appl., 4:288–299, 1959.

28. Ju.V. Linnik. On certain connections of the information theory of C. Shannon and R. Fisher with
the theory of symmetrization of random vectors. In Trans. Second Prague Conf. Information
Theory, Statist. Decision Functions, Random Processes, pages 313–327, New York, NY, 1960.
Academic Press.

29. M. Madiman and A.R. Barron. Generalized entropy power inequalities and monotonicity
properties of information. IEEE Trans. Inform. Theory, 53(7):2317–2329, July 2007.

30. A. Ramdas, P. Grünwald, V. Vovk, and G. Shafer. Game-theoretic statistics and safe anytime-
valid inference. Statist. Sci., 38(4):576–601, 2023.
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