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Summary. A general methodology is introduced for the construction and effective application
of control variates to estimation problems involving data from reversible Markov chain Monte
Carlo samplers. We propose the use of a specific class of functions as control variates, and
we introduce a new consistent estimator for the values of the coefficients of the optimal linear
combination of these functions. For a specific Markov chain Monte Carlo scenario, the form
and proposed construction of the control variates is shown to provide an exact solution of
the associated Poisson equation. This implies that the estimation variance in this case (in the
central limit theorem regime) is exactly zero. The new estimator is derived from a novel, finite
dimensional, explicit representation for the optimal coefficients. The resulting variance reduction
methodology is primarily (though certainly not exclusively) applicable when the simulated data
are generated by a random-scan Gibbs sampler. Markov chain Monte Carlo examples of Bayes-
ian inference problems demonstrate that the corresponding reduction in the estimation variance
is significant, and that in some cases it can be quite dramatic. Extensions of this methodology
are discussed and simulation examples are presented illustrating the utility of the methods pro-
posed. All methodological and asymptotic arguments are rigorously justified under essentially
minimal conditions.
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1. Introduction

Markov chain Monte Carlo (MCMC) methods provide the facility to draw, in an asymptotic
sense, a sequence of dependent samples from a very wide class of probability measures in any
dimension. This facility, together with the tremendous increase of computer power in recent
years, makes MCMC methods perhaps the main reason for the widespread use of Bayesian
statistical modelling and inference across the spectrum of quantitative scientific disciplines.
This work provides a methodological foundation for the construction and use of control vari-
ates in conjunction with reversible MCMC samplers. Although popular in the standard Monte
Carlo setting, control variates have received much less attention in the MCMC literature. The
methodology proposed will be shown, both via theoretical results and simulation examples, to
reduce the variance of the resulting estimators significantly, and sometimes quite dramatically.
In the simplest Monte Carlo setting, when the goal is to compute the expected value of

some function F evaluated on independent and identically distributed samples X1, X», ..., the
variance of the standard ergodic averages of the F(X;) can be reduced by exploiting available
zero-mean statistics. If there are one or more functions Uy, Uy, . . ., Uy—the control variates—for
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which it is known that the expected value of each U;(X1) is equal to 0, then subtracting any
linear combination 0 Uy (X;) + 60, Ua(X;) + ... + 0 Ux(X;) from the F(X;) does not change the
asymptotic mean of the corresponding ergodic averages. Moreover, if the best constant coeffi-
cients {07} are used, then the variance of the estimates is no larger than before and often it
is much smaller. The standard practice in this setting is to estimate the optimal {0;‘.‘} based
on the same sequence of samples; see, for example, Liu (2001), Robert and Casella (2004) or
Givens and Hoerting (2005). Because of the demonstrated effectiveness of this technique, in
many important areas of application, e.g. in computational finance where Monte Carlo meth-
ods are a basic tool for the approximate computation of expectations (see Glasserman (2004)), a
major research effort has been devoted to the construction of effective control variates in specific
applied problems.

The main difficulty in extending the above methodology to estimators based on MCMC sam-
ples is probably due to the intrinsic complexities that are presented by the Markovian structure.
However, it is difficult to find non-trivial useful functions with known expectation with respect
to the stationary distribution of the chain (for example, Mengersen et al. (1999) commented that
‘control variates have been advertised early in the MCMC literature (see, for example, Green
and Han (1992)), but they are difficult to work with because the models are always different
and their complexity is such that it is extremely challenging to derive a function with known
expectation’), and, even in cases where such functions are available, there has been no effective
way to obtain consistent estimates of the corresponding optimal coefficients {6;"} An impor-
tant underlying reason for both of these difficulties is the basic fact that the MCMC variance of
ergodic averages is intrinsically an infinite dimensional object: it cannot be expressed in closed
form as a function of the transition kernel and the stationary distribution of the chain.

An early reference for variance reduction for Markov chain samplers is Green and Han (1992),
who exploited an idea of Barone and Frigessi (1989) and constructed antithetic variables that
may achieve variance reduction in simple settings but do not appear to be widely applicable.
Andradottir et al. (1993) focused on finite state space chains, they observeed that optimum
variance reduction can be achieved via the solution of the associated Poisson equation (see
equation (3) below and Section 2.1 for details) and they proposed numerical algorithms for
its solution. Rao—Blackwellization has been suggested by Gelfand and Smith (1990) and by
Robert and Casella (2004) as a way to reduce the variance of MCMC estimators. Also, Phi-
lippe and Robert (2001) investigated the use of Riemann sums as a variance reduction tool in
MCMC algorithms. An interesting as well as natural control variate that has been used, mainly
as a convergence diagnostic, by Fan et al. (2006), is the score statistic. Although Philippe and
Robert (2001) mentioned that it can be used as a control variate, its practical utility has not
been investigated. Atchadé and Perron (2005) restricted attention to independent Metropolis
samplers and provided an explicit formula for the construction of control variates. Hammer
and Tjelmeland (2008) constructed control variates for general Metropolis—Hastings samplers
by expanding the state space.

In a different context, and partly motivated by considerations from statistical mechanics,
Assaraf and Caffarel (1999) introduced a family of control variates that they called ‘zero-vari-
ance estimators’. The Assaraf-Cafarel estimators have been adapted and applied to problems
in statistics by Mira et al. (2003, 2010) and Dalla Valle and Leisen (2010).

In most of the works cited above, the method that was used for the estimation of the opti-
mal coefficients {9;"} is either based on the same formula as that obtained for control vari-
ates in independent identically distributed Monte Carlo sampling, or on the method of batch
means, but such estimators are strictly suboptimal and generally ineffective; see Section 6 for
details.
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For our purposes, a more relevant line of work is that initiated by Henderson (1997), who
observed that, for any real-valued function G defined on the state space of a Markov chain { X, },
the function U(x) := G (x) — E[G(X,+1)|X,, = x] has zero mean with respect to the stationary
distribution of the chain. Henderson (1997), like some of the other researchers mentioned above,
also noted that the best choice for the function G would be the solution of the associated Poisson
equation and proceeded to compute approximations of this solution for specific Markov chains,
with particular emphasis on models arising in stochastic network theory.

The gist of our approach is to adapt Henderson’s idea and to use the resulting control variates
in conjunction with a new, efficiently implementable and provably optimal estimator for the
coefficients {0 }. The ability to estimate the {07} effectively makes these control variates prac-
tically relevant in the statistical MCMC context and avoids the need to compute analytical
approximations to the solution of the underlying Poisson equation.

1.1.  Outline of the proposed basic methodology
Section 2.1 introduces the general setting within which all the subsequent results are devel-
oped. A sample of size n from an ergodic Markov chain {X,} is used to estimate the mean
E;[F]= | Fdr of a function F, under the unique invariant measure m of the chain. The asso-
ciated Poisson equation is introduced, and it is shown that its solution can be used to quantify,
in an essential way, the rate at which the chain converges to equilibrium.

In Section 2.2 we examine the variance of the standard ergodic averages,

1 n=1
pn(F):=— 3" F(X;), (1)
ni—o
and we compare it with the variance of the modified estimators,
1 n=1
- > AFX) = 01UN(X) = 6 Un(Xi) — ... — Ok Ur(X) ) 2)
1=
Here and throughout the subsequent discussion, the control variates Uj, U, ..., Uy, are con-

structed as above via U;(x) := G j(x) — PG j(x), where P G(x) denotes the one-step expectation
E[G(X,41)|X, =x], for particular choices of the functions G}, j=1,2,... k.
The two central methodological issues that are addressed in this work are

(a) the problem of estimating the optimal coefficient vector {0;‘} that minimizes the variance
of the modified estimators (2) and

(b) the choice of the functions {G ;}, so that the corresponding functions {U;} will be effec-
tive as control variates in specific MCMC scenarios that arise from common families of
Bayesian inference problems.

For the first issue, in Section 3, we derive new representations for the optimal coefficient
vector {07}, under the assumption that the chain {X,} is reversible; see proposition 2 there.
These representations lead to our first main result, namely a new estimator for {9;’.‘}; see equa-
tions (25) and (26) in Section 3. This estimator is based on the same MCMC output and it can
be used after the sample has been obtained, making its computation independent of the MCMC
algorithm that is used.

The second problem, that of selecting an effective collection of functions {G ;} for the con-
struction of the control variates {U;}, is more complex and it is dealt with in stages. First, in
Section 2 we recall that there is always a single choice of a function G that actually makes the
estimation variance equal to 0: if G satisfies
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U:=G— PG=F — E.[F], 3)
then with this control variate and with § =1 the modified estimates in expression (2) are equal
to the required expectation E;[F] for all n. A function G satisfying condition (3) is often called
a solution to the Poisson equation for F (or Green’s function). But solving the Poisson equation
even for simple functions F is a highly non-trivial task, and for chains arising in typical appli-
cations it is, for all practical purposes, impossible; see, for example the relevant comments in
Henderson (1997) and Meyn (2007). Therefore, as a first rule of thumb, we propose that a class
of functions { G ;} be chosen such that the solution to the Poisson equation (3) can be accurately
approximated by a linear combination X;60;G; of the {G;}. For this reason we call the {G}
basis functions.

Clearly there are many possible choices for the basis functions {G ;}, and the effectiveness
of the resulting control variates depends on the particular choice. In Section 4 we propose a
specific and immediately applicable class of {G ;}, leading to the following proposal, which is
the basic methodological contribution of this work.

Suppose that 7(x) =7{(xD, xP ..., x®)T} is a multivariate posterior distribution for which
MCMC samples are obtained by a reversible Markov chain {X,}. To estimate the posterior
mean ;) of the ith co-ordinate x, let F(x)=x®, define basis functions G as the co-ordinate
functions G ;(x) =x for all components j for which PG;(x)= E[X;ﬁ)rl | X, = x] is explicitly
computable and form the control variates U; = G ; — PG ;.

Then estimate the optimal coefficient vector 6* = {6*} by the estimator § =8, g given in
equation (25), and estimate the posterior mean of interest ;") by the modified estimators given
in equation (27) in Section 3:

n—1

1 A A o
pon,k (F) := o %{F(Xi) —01UI(X) — 0, Un(Xi) — ... — 6 Un(Xi) }. 4)

As shown by the results at the end of Section 2, except in degenerate cases (when the resulting
control variates U;(X) are perfectly uncorrelated with F(X) when X ~ ), this methodology
will always lead to estimates with a smaller variance (in the central limit theorem regime) than
the standard ergodic averages u, (F) as in expression (1). Moreover, as we discuss next, in a
particular MCMC scenario, the estimates y,, x (F) have asymptotic variance equal to 0.

There are two basic requirements for the immediate applicability of the methodology de-
scribed so far; the underlying chain needs to be reversible for the estimates of the coefficient
vector {07} that is introduced in Section 3 to be consistent and, also, the one-step expectations
PG j(x):=E[G;(X,+1)|X, =x] that are necessary for the construction of the control variates
U; need to be explicitly computable.

Since the most commonly used class of MCMC algorithms satisfying both of these require-
ments is that of conditionally conjugate random-scan Gibbs samplers (following standard par-
lance, we call a Gibbs sampler ‘conditionally conjugate’ if the full conditionals of the target
distribution are all known and of standard form; this, of course, is unrelated to the notion of a
conjugate prior structure in the underlying Bayesian formulation), and since the most commonly
used general approximation of the target distribution 7 arising in Bayesian inference problems
is a general multivariate Gaussian, in Section 4 we examine this MCMC problem in detail and
obtain our second main result: suppose that we wish to estimate the mean of one of the co-ordi-
nates of a k-dimensional Gaussian distribution 7, based on samples X; = (X 1(1), X }2), X ;k))T
generated by the random-scan Gibbs algorithm. In theorem 1 in Section 4 we show that the
solution of the associated Poisson equation can always be expressed as a linear combination of
the k co-ordinate functions G j(x) :=x, x=(xD, x?, ..., x®)T € R, Equivalently, the estim-
ator u, x (F) that is proposed in the basic methodology has zero variance in the central limit



Control Variates for Estimation 137

theorem regime. This is perhaps the single most interesting case of a Markov chain arising in
applications for which an explicit solution to the Poisson equation has ever been obtained.

Section 5 contains three MCMC examples using this methodology. Example 1 is a brief illus-
tration of the result of theorem 1 in the case of a bivariate Gaussian distribution. As expected,
the modified estimators (4) are seen to be much more effective than the standard ergodic aver-
ages (1), in that their variance is smaller by a factor ranging approximately between 4 and 1000,
depending on the sample size. Example 2 contains an analysis of a realistic Bayesian inference
problem via MCMC sampling, for a 66-parameter hierarchical normal linear model. There, we
consider all 66 problems of estimating the posterior means of all the parameters, and we find
that in most cases the reduction in variance resulting from the use of control variates as above
is typically by a factor ranging between 5 and 30. The third example illustrates the use of the
basic methodology in the case of Metropolis-within-Gibbs sampling. Even though the one-step
expectation PG can be computed for only one of the two model parameters, we still find that
the variance is reduced by a factor ranging approximately between 7 and 10.

1.1.1.  Domain of applicability

The present development not only generalizes the classical method of control variates to the
MCMC setting, but it also offers an important advantage. In the case of independent sam-
pling, the control variates for each specific application need to be identified from scratch, often
in an ad hoc fashion. In fact, for most Monte Carlo estimation problems there are no known
functions that can be used as effective control variates. In contrast, the basic methodology
that was described above provides a way of constructing a family of control variates that are
immediately applicable to a wide range of MCMC problems, as long as the sampling algorithm
produces a reversible chain for which the one-step expectations PG (x) := E[G(X,,+1)| X, = x]
can be explicitly computed for some simple linear functions G. MCMC algorithms with these
properties form a large collection of samplers that are commonly used in Bayesian inference,
including, among others, all conditionally conjugate random-scan Gibbs samplers (the main
MCMC class that is considered in this work), certain versions of hybrid Metropolis-within-
Gibbs algorithms (following the terminology of, for example, Robert and Casella (2004)), and
certain types of Metropolis—Hastings samplers on discrete state spaces.

1.1.2. Extensions
In further work, we shall discuss extensions of the basic methodology along two directions that,
in some cases, go beyond the above class of samplers, including examples of

(a) MCMC scenarios where it is more effective to use a set of basis functions that is different
from those proposed in the basic methodology,

(b) non-conditionally conjugate samplers, where the conditional expectations P G (x) for the
class of linear basis functions cannot be computed in closed form, and

(c) certain classes of Metropolis—Hastings sampler when the basic methodology can be
applied.

1.1.3.  Further results

In Section 6 we first briefly discuss two other consistent estimators for the optimal coefficient
vector {07}. One is a modified version of our earlier estimator 0,k that is derived in Sec-
tion 3, and the other was recently developed by Meyn (2007) on the basis of the so-called
‘temporal difference learning’ algorithm. Then in Section 6.2 we examine the most common
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estimator for the optimal coefficient vector {0*} that has been used in the literature, which as
mentioned earlier is based on the method of batch means. In proposition 3 in Section 6.2 we
show that the resulting estimator for 7 (F) is typically strictly suboptimal, and that the amount
by which its variance is /arger than the variance of our modified estimators p, g (F) is poten-
tially unbounded. Moreover, the batch means estimator is computationally more expensive and
generally rather ineffective, often severely so. This is illustrated by revisiting the most interest-
ing of the MCMC examples of Section 5, and comparing the performance of the batch means
estimator with that of the simple ergodic averages (1) and of the modified estimator s, x (F) in
expression (4).

Section 7 provides the theoretical justifications of the asymptotic arguments in Sections 2, 3
and 6. Finally we conclude with a short summary of our results and a brief discussion of possible
further extensions in Section 8, with particular emphasis on implementational issues and on the
difficulties of applying the present methodology to general Metropolis—Hastings samplers.

1.1.4. Related work

We close this introduction with a few more remarks on previous related work. As mentioned
earlier, Henderson (1997) took a different path towards optimizing the use of control variates
for Markov chain samplers. Considering primarily continuous time processes, an approxima-
tion for the solution to the associated Poisson equation is derived from the so-called ‘heavy
traffic’ or ‘fluid model’ approximations of the original process. The motivation and application
of this method is mostly related to examples from stochastic network theory and queuing theory.
Closely related approaches have been presented by Henderson and Glynn (2002) and Hender-
son et al. (2003), where the effectiveness of multiclass network control policies is evaluated via
Markovian simulation. Control variates are used for variance reduction, and the optimal coeffi-
cients {9;"} are estimated via an adaptive, stochastic gradient algorithm. General convergence
properties of ergodic estimators using control variates were derived by Henderson and Simon
(2004), in the case when the solution to the Poisson equation (either for the original chain or for
an approximating chain) is known explicitly. Kim and Henderson (2007) introduced two related
adaptive methods for tuning non-linear versions of the coefficients {6}, when using families of
control variates that naturally admit a non-linear parameterization. They derived asymptotic
properties for these estimators and presented numerical simulation results.

When the control variate U =G — PG is defined in terms of a function G that can be taken as
a Lyapunov function for the chain {X,}, Meyn (2006) derived precise exponential asymptotics
for the associated modified estimators. Also, Meyn (2007), chapter 11, gave a development of
the general control variates methodology for Markov chain data that parallels certain parts of
our presentation in Section 2 and discussed numerous related asymptotic results and implemen-
tational issues.

In a different direction, Stein ez al. (2004) drew a connection between the use of control vari-
ates in MCMC methods and the ‘exchangeable pairs’ construction that is used in Stein’s method
for distribution approximation. They considered a natural class of functions as their control
variates, and they estimated the associated coefficients {#;} by a simple version of the batch
means method that is described in Section 6.2. Finally, the recent work by Delmas and Jourdain
(2009) examines a particular case of Henderson’s construction of a control variate in the context
of Metropolis—Hastings sampling. Like Hammer and Tjelmeland (2008), Delmas and Jourdain
expanded the state space to include the proposals and they first took G = F and § =1 (which,
in part, explains why their waste recycling algorithm is sometimes worse than plain Metropolis
sampling). They identified the solution of the Poisson equation as the optimal choice for a basis
function and they sought analytical approximations. Then a general linear coefficient 6 was
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introduced, and for a particular version of the Metropolis algorithm the optimal value 6* was
identified analytically.

2. Control variates for Markov chains

2.1. The setting

Suppose that {X,} is a discrete time Markov chain with initial state X = x, taking values in
the state space X, equipped with a o-algebra B. In typical applications, X will often be a (Borel
measurable) subset of RY together with the collection B of all its (Borel) measurable subsets.
(Precise definitions and detailed assumptions are given in Section 7.) The distribution of {X,, }
is described by its transition kernel P(x,dy)

P(x, A) :=Pr(Xis) € A| Xy =), xeX,AeB. )

As is well known, in many applications where it is desirable to compute the expectation
E[F]:=m(F):= [ F dr of some function F:X — R with respect to some probability measure 7
on (X, B), although the direct computation of 7(F) is impossible and we cannot even produce
samples from 7, it is possible to construct an easy-to-simulate Markov chain { X, } which has =
as its unique invariant measure. Under appropriate conditions (see Section 7), the distribution
of X, converges to 7, a fact which can be made precise in several ways. For example, writing
PF for the function

P F(x):= E{[F(X)]:= E[F(X1)| Xo = x], xeX,
then, for any initial state x,
P"F(x):= E[F(X,)|Xo=x]— 7(F), asn— 0o,

for an appropriate class of functions F: X — R (see Section 7). Furthermore, the rate of this
convergence can be quantified by the function

Fw= 3 [P"F&) - n(P), (©)

n=0
where F is easily seen to satisfy the Poisson equation for F, namely
PF—F=—F+n(F). (7)

(To see this, at least formally, apply P to both sides of equation (6) and note that the resulting
series for PF — F becomes telescoping. Also note the usual convention that P? = I, the identity
kernel.)

The above results describe how the distribution of X, converges to 7. In terms of estimation,
the quantities of interest are the ergodic averages,

1 n=1
pn(F):=~ Y F(X)). ®)
n =0

Again, under appropriate conditions the ergodic theorem holds,
o (F) —> 7 (F), almost surely, as n — oo, ©)

for an appropriate class of functions F. Moreover, the rate of this convergence is quantified by
an associated central limit theorem, which states that
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1 n=l1 D )
{Mn(F)_T"(F)}\/n:% Y AFX) —m(F)} = NO,0%), as n— oo,
i=0

where a%, the asymptotic variance ofAF , is given by a% =1imy oo Var, { pu, (F)/n}. Alterna-
tively, it can be expressed in terms of F' as

o2 =n{F* —(PF)2). (10)

The results in equations (6) and (10) clearly indicate that it is useful to be able to compute the
solution F to the Poisson equation for F. In general this is a highly non-trivial task, and, for
chains arising in typical applications, it is impossible for all practical purposes; see, for example,
the relevant comments in Henderson (1997) and Meyn (2007). Nevertheless, the function F will
play a central role throughout our subsequent development.

2.2. Control variates

Suppose that, for some Markov chain {X, } with transition kernel P and invariant measure T,
the ergodic averages p, (F) as in expression (8) are used to estimate the mean 7(F) = [ F dr of
some function F under 7. In many applications, although the estimates p, (F) converge to 7w (F)
as n — 00, the associated asymptotic variance o% is large and the convergence is very slow.

To reduce the variance, we employ the idea of using control variates, as in the case of simple
Monte Carlo sampling with independent and identically distributed samples; see, for exam-
ple, the standard texts of Robert and Casella (2004), Liu (2001) and Givens and Hoeting
(2005) or Glynn and Szechtman (2002) for extensive discussions. Given one or more functions
Uy, U, ..., Uy, the control variates, such that U;: X — Rand n(U;)=0forall j=1,2,...,k, let

6=(01,65,...,6;)T be an arbitrary, constant vector in R¥, and define
k
Fo:=F—(0,U)=F—>3 0;Uj, (1D
j=1

where U : X — R¥ denotes the column vector, U = (U;, Ua, ..., Up) 7. (Here and throughout the
paper all vectors are column vectors unless explicitly stated otherwise, and (-, -) denotes the
usual Euclidean inner product.)

We consider the modified estimators

k
,un(FG):/Jn(F)_<65MH(U)):MVL(F)_ Zl ej/fbn(Uj)a (12)
j=
for w(F). The ergodic theorem (9) guarantees that the estimators {u, (Fp)} are consistent with
probability 1, and it is natural to seek particular choices for U and 6 so that the asymptotic vari-
ance 0%0 of the modified estimators is significantly smaller than the variance 0% of the standard
ergodic averages i, (F).
Throughout this work, we shall concentrate exclusively on the following class of control
variates U proposed by Henderson (1997). For arbitrary (7-integrable) functions G;: X — R
define

UjZ=Gj—PGj, j=1,2,...,k.

Then the invariance of 7 under P and the integrability of G ; guarantee that 7(U;) =0.

In the remainder of this section we derive some simple, general guidelines for choosing func-
tions {G ;} that produce effective control variates {U;}. This issue is revisited in more detail in
the Bayesian MCMC context in Section 4.
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Suppose, at first, that we have complete freedom in the choice of the functions {G }, so that
we may take k=1, a single U =G — PG and 0 =1 without loss of generality. Then the goal is to
make the asymptotic variance of F — U = F — G + PG as small as possible. But, in view of the
Poisson equation (7), we see that the choice G = F yields

F—-U=F—F+ PF=n(F),
which has zero variance. Therefore, the general principle for selecting a single function G is
choose a control variate U =G — PG with G~ F.

As mentioned above, it is typically impossible to compute F for realistic models that are used
in applications. But it is often possible to come up with a guess G that approximates F, or at least
with a collection of functions {G ;} such that ¥ can be approximated as a linear combination
of the {G}. Thus, our first concrete rule of thumb for choosing {G ;} states

choose control variates U;j=G; — PG, j=1,2,...,k, with respect to a collection
of basis functions {G ;}, such that F can be approximately expressed as a linear
combination of the {G}.

The terminology basis functions for the {G;} is meant to emphasize the fact that, although F
is not known, it is expected that it can be approximately expressed in terms of the {G} via a
linear expansion of the form F & E’;zl 0;G;.

Once the basis functions {G ;} have been selected, we form the modified estimators 11, (Fy)
with respect to the function Fy as in expression (11):

Fyp=F—(0,U)=F — (0, G) + (0, PG),
where, for a vector of functions G = (G1,G»,...,Gy)T, we write PG for the corresponding
vector (PG1, PGa, ..., PGy)T. The next task is to choose 6 so that the resulting variance
05 :=J%~€ Iﬂ{ﬁé — (P13'9)2}
is minimized. From the definition of U and the statement of the Poisson equation, it is immediate
that

Uj=G;j for each j
and
Fo=F—(0,G).
Therefore, by equation (10) and linearity,
o2 =0%—2n{F(0,G)— PF(0, PG)} +7{(0, G)*> — (0, PG)*}. (13)

To find the optimal 8* which minimizes the variance 05, differentiating the quadratic 05 with
respect to each ¢; and setting the derivative equal to 0, yields, in matrix notation,

I'(G)0* =n{FG — (PF)(PG)},
where the k x k matrix I'(G) has entries I'(G);j =7{G;G ; — (PG;)(PG ;) }. Therefore,
0* =1(G)~ ' n{FG — (PF)(PG)}, (14)

as long as I'(G) is invertible. Once again, this expression depends on F, so it is not immedi-
ately clear how to estimate 6* directly from the data {X,}. The issue of estimating the optimal
coefficient vector 6* is addressed in detail in Section 3; but first let us interpret 0*.
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For simplicity, consider again the case of a single control variate U =G — PG based on a
single function G. Then the value of 0* in equation (14) simplifies to

_m{FG—(PF)(PG)} w{FG—(PF)(PG)}

0* = =
G2 (PG)?} o2, ’

15)

where the second equality follows from the earlier observation that U = G. Alternatively, starting
from the expression 05 =1im,,_, oo var{ p, (Fp)+/n}, simple calculations lead to

oo
of=0%4+6%05,—20 > cov. {F(X0),U(X)}, (16)

n=—oo

s0 6* can also be expressed as

1 o0
9*:07 S covy {F(X0),U(X,)}, a7
U ==

where cov,. denotes the covariance for the stationary version of the chain, i.e., since 7(U) =0,
we have cov,{ F(X¢), U(X,) } = Ez[F(Xo) U(X,)], where X~ 7. Then equation (17) leads to the
optimal asymptotic variance,
[ R = ?
op=0r——| > cov {F(X0),UX)}| . (18)

O'%] n=—00

Therefore, to reduce the variance, it is desirable that the correlation between F and U be as
large as possible. This leads to our second rule of thumb for selecting basis functions:

choose control variates U =G — PG so that each U; is highly correlated with F.

Incidentally, note that comparing the expressions for 6* in equations (15) and (17) implies that

S cova{ F(X0), UX,)} = 7{FG — (PF)(PG)}. (19)

n=—oo

3. Estimating the optimal coefficient vector 6*

Consider, as before, the problem of estimating the mean 7(F) of a function F: X — R based on
samples from an ergodic Markov chain {X,} with unique invariant measure 7 and transition
kernel P. Instead of using the ergodic averages u, (F) as in expression (8), we select a collec-
tion of basis functions {G;} and form the control variates U;=G; — PG, j=1,2,... k. The
mean 7 (F) is then estimated by the modified estimators 1, (Fy) as in equation (12), for a given
coefficient vector 6 € R¥.

Under the additional assumption of reversibility, in this section we introduce a consistent pro-
cedure for estimating the optimal coefficient vector 8* on the basis of the same sample {X,, }.
Then in Section 4 we give more detailed guidelines for choosing the {G}.

Recall that, once the basis functions {G;} have been selected, the optimal coefficient vec-
tor 6* was expressed in equation (14) as 0* =T(G)~! 7{FG — (PF)(PG)}, where T'(G);; =
m{GiG;— (PG))(PG))}, 1<i, j<k. But, in view of equation (19) derived above, the entries
I'(G);; can also be written

F(G)ijZZW{GiGj—(PG,')(PG]‘)} (20)

=m{UiG;— (PU)PG)}= > covr{Ui(X0),G j(Xn)}.

n=—0o
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This indicates that I'(G) has the structure of a covariance matrix and, in particular, it suggests
that I'(G) should be positive semidefinite. Indeed we have the following proposition.

Proposition 1. Let K(G) denote the covariance matrix of the random variables
Yj:=G (X)) — PG j(Xo), j=1,2,.. .k,
where Xo~ 7. Then I'(G) = K(G), i.e., for all 1 <i, j <k,
1{GiG;— (PG))(PG))}=K(G);j = E:[{Gi(X1) — PG{(X0) }{G j(X1) — PG j(X0)}]. (1)
Proof. Expanding the right-hand side of equation (21) yields
m(GiGj) — Ex[Gi(X1) P G j(X0)] = Ex[G j(X1) P Gi(X0)]+ 7{(PG{)(PG )},

and the result follows on noting that the second and third terms above are both equal to the
fourth. To see this, observe that the second term can be rewritten as

EZ[E[Gi(X1) PG j(X0)|Xoll= Ex[E[Gi(X1)|Xo]P G j(X0)]=m{(PG))(PG ) },
and similarly for the third term. O
Therefore, using proposition 1 the optimal coefficient vector §* can also be expressed as
0* = K(G) "7 {FG — (PF)(PG)}. (22)

Now assume that the chain {X,} is reversible. Writing A = P — I for the generator of {X,},
reversibility is equivalent to the statement that A is self-adjoint as a linear operator on the space
Lo (). In other words,

m(F AG) =m(AFG),

for any two functions F, G € L, (x). Our first main theoretical result is that the optimal coeffi-
cient vector 6* admits a representation that does not involve the solution F of the associated
Poisson equation for F, as follows.

Proposition 2. If the chain {X,} is reversible, then the optimal coefficient vector 6* for the
control variates U; = G; — PG;,i=1,2,...,k, can be expressed as

0% =05, =T(G)™ n[{F —7(M}(G + PG)], 23)
or, alternatively,
Oy =K(G) ™' 7[{F = 7(D}(G + PG)), 24)
where the matrices I'(G) and K(G) are defined in expressions (20) and (21) respectively.

Proof. Let F=F — m(F) denote the centred version of F, and recall that F solves Pois-
son’s equation for F, so PF = F — F. Therefore, using the fact that A is self-adjoint on each
component of G,

{FG — (PF)(PG)}=7{FG — (F — F)(PG)}
=m(F PG — F AG)
=m(FPG — AFG)
=m(FPG + FG)
=7m{F(G+ PG)}.
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Combining this with equations (14) and (22) respectively proves the two claims (23) and (24) of
the proposition. |

Expression (24) suggests estimating 6* via
On, k = Kn(G) " [1n{ F(G + PG)} = 11 (F) 1 (G + PG)], (25)
where the empirical k x k matrix K, (G) is defined by

1

(Kn(G))ij—n_l

Z{G (X)) = PGi(X—)HGj(X) — PG j(X;—D)} (26)

The resulting estimator y, (Fj ) for w(F) based on the vector of control variates U =G —
PG and the estimated coefﬁc1ents Hn k 18 defined as

Mn,K(F) ::Mn(Fg )—Mn(F) ( nKnMn(U)) 27

This will be the main estimator that is used in the remainder of the paper.

4. Choice of basis functions and the basic methodology

Let { X, } be an ergodic, reversible Markov chain with invariant measure 7, and let F be a function
whose mean 7 (F) is to be estimated on the basis of samples from the chain. In the previous section
we showed that, for any vector of control variates U = G — PG, the variance of the modified
estimates u, (Fp) = i1, (F) — (0, U) will be smaller than that of the simple ergodic averages p,, (F).
This is always so, except for the degenerate case where all the control variates U are perfectly
uncorrelated with F, in the sense that the infinite series in equation (18) is identically zero.

In Table 1 we make a concrete proposal for the choice of the basis functions {G} that are
used to define the control variates {U}.

It is perhaps somewhat surprising that, unlike in Monte Carlo estimation based on inde-
pendent identically distributed samples, for MCMC-based estimation the choice of control
variates in Table 1 provides effective variance reduction in a wide range of MCMC scenarios
stemming from Bayesian inference problems—primarily those where inference is performed via
a conditionally conjugate random-scan Gibbs sampler. Examples of the application of this basic

Table 1. Outline of the basic methodology

(a) Given:
(1) a multivariate posterior distribution 7(x) = axD, x@ . x@Dy
(ii) a reversible Markov chain { X, } with stationary distribution 7
(iii) a sample of length n from the chain {X, }
(b) Goal:
estimate the posterior mean p® of x()
(c) Define:
(i) Fx)=x®
(i1) basis functlons as the co-ordinate functions G ;(x) =x) for all j for which
PG j(x):=E| [Xn +11Xn =x] is computable in closed form
(iii) the corresponding control variates Uj =G — PG ;
(d) Estimate:
(i) the optimal coefficient vector 6* by Hn k as in equation (25)
(ii) the quantity of interest @ by the modified estimators 1tn, k (F) as in expression (27)
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methodology are presented in Section 5. These examples give strong empirical evidence for the
effectiveness of the methods proposed. In the remainder of this section we examine an idealized
MCMC estimation scenario, and we show that, in that ‘limiting’ case, the basic methodology
leads to estimators with zero asymptotic variance.

To apply the results developed so far, the MCMC sampler at hand needs to be reversible
so that the estimator én’ k in equation (25) for the optimal coefficient vector 6* can be used,
and also it is necessary that the one-step expectations P G ;(x) = E[G j(X,+1)|X, = x] of the
basis functions G ; should be explicitly computable in closed form. The most natural general
family of MCMC algorithms that satisfy these two requirements is the collection of condi-
tionally conjugate random-scan Gibbs samplers, with a target distribution 7 arising as the
posterior density of the parameters in a Bayesian inference study. As for 7, we focus on the
case where it is multivariate normal. In addition to its mathematical tractability, this choice is
also motivated by the fact that the Gaussian distribution is the distribution that is most com-
monly used as a general approximation of the target distribution 7 arising in Bayesian inference
problems.

According to the discussion in Section 2.2, the main goal in choosing the basis functions
G ={G,} is that it should be possible to approximate effectively the solution F of the Poisson
equation for F as a linear combination of the G, i.e. F~ El;-=1 ;G ;. Inthe case of arandom-scan
Gibbs sampler with a Gaussian target density, the Poisson equation can be solved explicitly,
and its solution is of a particularly simple form.

Theorem 1. Let {X,} denote the Markov chain constructed from the random-scan Gibbs
sampler used to simulate from an arbitrary (non-degenerate) multivariate normal distribu-
tion m~ N(u, X) in RK. If the goal is to estimate the mean of the first component of 7, then,
letting F(x) =xM for x= (M, x@, ..., x®)T e R¥ the solution F of the Poisson equation
for F can be expressed as a linear combination of the co-ordinate basis functions G ;(x) := x,
xeRF, 1< <k,

R k
F=Y0,G;. (28)
j=1

Moreover, writing Q =X, the coefficient vector 6 in equation (28) is given by the first row
of the matrix k(I — A)~!, where A4 has entries Aij=—0ij/Qu, 1<i# j<k, A;;=0 for all i,
and I — A is always invertible.

Proof. Let H denote the candidate solution to the Poisson equation H(x)=13;6;x) and
write X = (X, X@ ..., X®) for a random vector with distribution 7 ~ N(u, ). Since 7 is
non-degenerate, 3. is non-singular and so the precision matrix Q exists and its diagonal entries
are non-zero. Since the conditional expectation of a component X¢) of X given the values of
the remaining X7 := (XM, ..., x0U=D xG+D - x®yis D 4+ 54 5 (XD — p?D), we have

k—1

. 1 .
PH(x):ZQj|: x(])+k{u(j)+ZAjl(x(l)_M(l))}:|a
J l

so that
PH@»Jﬂw=—iZﬁf%ﬂﬁ—u@y—EAﬂu@—M%}
J 1

=—%0W1—Axx—ux
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where we have used the fact that X A j(x) — D) =125 A j(x? — u?), since the diagonal
entries of 4 are all 0. For this to be equal to —F(x) + m(F) = —(x() — D) for all , it suffices
to choose # such that 6T (1 — A) = (k,0,...,0), as claimed. Finally, to see that / — A is non-
singular (and hence invertible), note that its determinant is equal to (I;1/ Q j;) det(Q), which is
non-zero since ¥ is non-singular by assumption. |

In terms of estimation, theorem 1 states that, if samples from a multivariate Gaussian dis-
tribution are simulated via random-scan Gibbs sampling to estimate the mean of one of its
components, then, using the linear basis functions G ;(x) =xU) to construct a vector of control
variates U = G — PG, the modified estimator j,, g (F) not only has smaller variance than the
standard ergodic averages j1,, (F), but also its variance in the central limit theorem is in fact equal
to zero.

Before examining the performance of this methodology in practice, we emphasize that it is
applicable (and, as the examples presented below indicate, generally very effectively so) in a
wide range of MCMC estimation scenarios, certainly not limited to approximately Gaussian
target distributions and to the random-scan Gibbs sampler.

5. Markov chain Monte Carlo examples of the basic methodology

Here we present three examples of the application of the basic methodology that was outlined
in the previous section. The examples below are chosen as representative cases covering a broad
class of real applications of Bayesian inference.

In example 1, a bivariate normal density is simulated by random-scan Gibbs sampling. This
setting is considered primarily as an illustration of the result of theorem 1 and, as expected, the
variance of the modified estimators in this case is dramatically smaller. Example 2 considers a
case of a fairly realistic Bayesian inference study via MCMC sampling, with a large hierarchical
normal linear model, and it is found that the basic methodology of the previous section pro-
vides very significant variance reduction. Example 3 illustrates the use of the basic methodology
in the case of Metropolis-within-Gibbs sampling from the posterior of a model where the use
of heavy-tailed prior densities results in highly variable MCMC samples. (Such densities are
commonly met in, for example, spatial statistics; see Dellaportas and Roberts (2003) for an
illustrative example.) We find that the use of control variates is again quite effective in reducing
the estimation variance. This example illustrates the point that, often, not all basis functions G ;
can be easily used in the construction of control variates.

5.1. Example 1: bivariate Gaussian through the random-scan Gibbs sampler

Let (X,Y)~m(x, y) be an arbitrary bivariate normal distribution, where, without loss of gener-
ality, we take the expected values of both X and Y to be 0 and the variance of X to be equal to
1. Let var(Y) =72 and the covariance E[XY]= p7 for some pe (—1,1).

Given arbitrary initial values xo =x and yg = y, the random-scan Gibbs sampler selects one of
the two co-ordinates at random and either updates y by sampling from 7 (y|x) ~ N{p7x, (1 —
p?)}, or x from 7(x|y) ~ N{(p/7)y, 1 — p*}. Continuing this way produces a reversible Markov
chain {(X,, ¥,) } with distribution converging to 7. To estimate the expected value of X under =
we set F(x, y) =x and define the basis functions G| (x, y) =x and G, (x, y) = y. The corresponding
functions PG| and PG are easily computed as

PGitxy=5(x+2)

and
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Table 2. Estimated factors by which the variance of 1, (F) is larger than the variance of
.k (F), after n=1000, 10000, 50000, 100000, 200000, 500000 simulation steps

Estimator Variance reduction factors for the following simulation steps:

n=1000 n=10000 n=50000 n=100000 n=200000 n=>500000

tn, k (F) 4.13 27.91 122.4 262.5 445.0 1196.6

PGy (x,y)=1(y+prx).

The parameter values are chosen as p=0.99 and 72 = 10, so that the two components are
highly correlated and the sampler converges slowly, making the variance of the standard esti-
mates pu, (F) large. Using the samples that are produced by the resulting chain with initial values
x0=y0=0.5, we examine the performance of the modified estimator u, x(F) and compare it
with the performance of the standard ergodic averages p,, (F).

The factors by which the variance of 1, (F) is larger than that of p,,, x (F) are shown in Table 2.
In view of theorem 1, it is not surprising that the estimator p,, g (F) is clearly much more effective
than p, (F).

In this and in all subsequent examples, the reduction in the variance was computed from
independent repetitions of the same experiment: here, for p,(F), T =200 different estimates
pW(F), fori=1,2,...,T, were obtained, and the variance of y, (F) was estimated by

| :
71 Zl {1 (F) — fi, (F)}?,

where fi,, (F) is the average of the uff) (F). The same procedure was used to estimate the variance
of pun, k (F).

5.2. Example 2: hierarchical normal linear model

In an early application of MCMC methods in Bayesian statistics, Gelfand et al. (1990) illus-
trated the use of Gibbs sampling for inference in a large hierarchical normal linear model. The
data consist of N =5 weekly weight measurements of / =30 young rats, whose weight is assumed
to increase linearly in time, so that

Yij~ N(i + Bixij, 02), 1<i<l, 1<j<N,

where the Y;; are the measured weights and the x;; denote the corresponding rats’ ages (in
days). The population structure and the conjugate prior specification are assumed to be of the
customary normal-Wishart-inverse gamma form: fori=1,2,...,1,

pi= <g;:> ~ N(pie, X¢),

e
:u’C_ <ﬁc> N(na C))
S ~W{(pR) ! o},

with known values for n, C, vy, p, R and 7.
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The posterior 7 has k: =21+ 2+ 3+ 1 =66 parameters, and MCMC samples from ((¢;), fic,
ZC,O'E) ~ can be generated via conditionally conjugate Gibbs sampling since the full con-
ditional densities of all four parameter blocks (¢;), e, 3¢ and af. are easily identified explic-
itly in terms of standard distributions; see Gelfand ez al. (1990). For example, conditional on
(@), Ze, ag and the observations (Y;;), the means /. have a bivariate normal distribution with
covariance matrix V := (lE;l +C~1H~! and mean

V(E;l > ¢ +C‘1n>. (29)

Suppose, first, that we wish to estimate the posterior mean of .. We use a four-block, random-
scan Gibbs sampler, which at each step selects one of the four blocks at random and replaces
the current values of the parameter(s) in that block with a draw from the corresponding full
conditional density. We set F{(¢:), tic, e, af} =a, and construct control variates according to
the basic methodology by first defining k = 66 basis functions G ; and then computing the one-
step expectations PG ;. For example, numbering each G ; with the corresponding index in the
order in which it appears above, we have Gg1{(¢;), pic, Xc, af} =, and from expression (29)
we obtain

PGei{(é0). pes Bes 02} = e+ §| 057+ HE (S a0 1) }

where the notation [- - -] indicates the first component of the vector [- - -].

Fig. 1 shows a typical realization of the sequence of estimates obtained by the standard
estimators p, (F) and by the modified estimators p,, x (F), for n =50000 simulation steps. The
variance of y, x(F) was found to be approximately a 30t/ of that of 1, (F). The second row
of Table 3 shows the estimated variance reduction factors obtained at various stages of the
MCMC simulation, based on T =100 repetitions of the same experiment, performed as in
example 1.

The initial values of the sampler were chosen as follows. For the (¢;) we used the ordinary
least squares estimates obtained from /=30 independent regressions; their sample mean and
covariance matrix provided starting values for u. and . respectively, and a pooled variance
estimate of the individual regression errors provided the initial value of ag. The observed data
(Y;;) and known parameter values for , C, 1y, p, R and 7y are as in Gelfand et al. (1990).

Table 3. Estimated factors by which the variance of i,(F;) is larger than the variance of u, «(F), after
n=1000, 10000, 20000, 50000,100000, 200000 simulation s{epsT

Parameter Variance reduction factors for the following simulation steps.

n=1000 n=10000 n=20000 n=350000 n=100000 n=200000
(1) 1.59-3.58 9.12-31.02 11.73-61.08 10.04-81.36 12.44-85.99 9.38-109.2
ac 2.99 15.49 32.28 31.14 28.82 36.48
Be 3.05 19.96 34.05 39.22 32.33 36.04
I 1.15-1.38 4.92-5.74 5.36-7.60 3.88-5.12 4.91-5.34 3.65-6.50
o2 2.01 5.06 5.23 5.17 4.75 5.79

c

TA different function F; is defined for each of the k =66 scalar parameters in the vector ((¢;), fic, Xc, (rf), and
the same vector of control variates is used for all of them, as specified by the basic methodology of Section 4.
In the first row, instead of individual variance reduction factors, we state the range of variance reduction factors
obtained on the 60 individual parameters (¢;), and similarly for the three parameters of 3. in the fourth row.
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Fig. 1. Sequence of the standard ergodic averages ( ) and the modified estimates (<): for visual
clarity, the values y, x (F) are plotted onIy every 1000 simulation steps; the ‘true’ value of the posterior mean
of ag ( ) was computed after n =107 Gibbs steps and taken to be approximately 106.6084

More generally, in such a study we would be interested in the posterior mean of all the
k =66 model parameters. The same experiment as above was performed simultaneously for all
the parameters. Specifically, 66 different functions F;, j=1,2,...,66, were defined, one for
each scalar component of the parameter vector ((¢;), fic, Xc» Jf), and the modified estimators
tn, x (Fj) were used for each parameter, with respect to the same collection of control variates
as before. The resulting variance reduction factors (again estimated from 7 = 100 repetitions)
are shown in Table 3.

5.3. Example 3: Metropolis-within-Gibbs sampling

We consider an inference problem motivated by a simplified version of an example in Roberts
and Rosenthal (2009). Suppose that N independent and identically distributed observations
y=1,¥2,...,yn) are drawn from an N(¢, V) distribution, and place independent priors ¢ ~
Cauchy(0, 1) and V ~1G(1, 1) on the parameters ¢ and V respectively. The induced full condi-
tionals of the posterior are easily seen to satisfy

1 1
T(@|V,y) x (1—|—¢2>CXP{_2V Zl: (¢p— )’i)2 },

and
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T(Vig, y)~ IG{H A+ Z(qb Yi) }

Since the distribution 7 (¢|V, y) is not of standard form, direct Gibbs sampling is not possible.
Instead, we use a random-scan Metropolis-within-Gibbs sampler (see Miiller (1993) and Tier-
ney (1994)) and either update V" from its full conditional density (Gibbs step) or update ¢ in a
random-walk Metropolis step with a ¢’ ~ N(¢, 1) proposal, each case chosen with probability
%. Because both the Cauchy and the inverse gamma distributions are heavy tailed, we naturally
expect that the MCMC samples will be highly variable. Indeed, this was found to be so in the
simulation example that was considered, where the above algorithm is applied to a vector y of
N =100 independent and identically distributed N(2,4) observations, and with initial values
¢o=0and Vy=1. As a result of this variability, the standard empirical averages of the values
of the two parameters also converge very slowly. Since V' is the more variable of the two, we let
F(¢, V)=V and consider the problem of estimating its posterior mean.

We compare the performance of the standard empirical averages p, (F) with that of the
modified estimators 1, x (F). As dictated by the basic methodology, we define G1(¢, V) =¢
and G(¢, V) =V, but we note that the one-step expectation P G(¢, V) cannot be obtained
analytically because of the presence of the Metropolis step. Therefore, we use a single control
variate U = G — PG defined in terms of the basis function G(¢, V)=V.

The resulting variance reduction factors, estimated from 7 =100 repetitions of the same
experiment, are 7.89, 7.48, 10.46 and 8.54, after n = 10000, 50000, 100000, 200000 MCMC
steps respectively.

6. Further methodological issues

6.1. Alternative consistent estimators for 6*

Recall that the estimator 6, g for the optimal coefficient vector 6* = (6%, 05,.... 0)T that was
defined in Section 3 was motivated by the new representation for 6* derived in equation (24)
of proposition 2. But we also derived an alternative expression for 6* in equation (23), as
0* =T'(G)~' x[{F — 7(F) }(G + PG)], where I'(G);; =7{G;G; — (PG;)(PG )}, 1 <i, j <k. This
suggests that 6* can alternatively be estimated via

Op.r:=T0(G) " [1tn{ F(G + PG)} — 1 (F) 11 (G + PG)],

where the empmcal k x k matrix I',(G) is defined by (I',(G))ij = un{GiG; — (PG;)(PG )},
1<i,j<k. Then 0,, r can in turn be used in conjunction with the vector of control variates
U =G — PG to estimate w(F) via

Hn,F(F)Zzlen(Fg ) = pin (F) — (nF’,Un(U) Z{F(X)_ I‘lF) )} (30)

In theory, the estimators 9,1; and pu, v (F) enjoy the exact same asymptotic consistency and
optimality properties as their earlier counterparts én, x and p,, x (F) respectively; these are estab-
lished in Section 7. Also, the overall empirical performance of én,p and i, 0 (F) was found in
practice to be very similar to that of é,,, x and g, x (F). This was observed in numerous sim-
ulation experiments that we conducted, some of which are reported in the unpublished notes
of Dellaportas and Kontoyiannis (2009). A small difference between the two estimators was
observed in experiments where the initial values of the sampler were quite far from the bulk
of the mass of the target distribution 7. There én,r sometimes appeared to converge faster
than 9,,, x, and the corresponding estimator p, r(F) often gave somewhat better results than
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tn, k (F). The reason for this discrepancy is the existence of a time lag in the definition of é,,, K:
when the initial simulation phase produces samples that approach the area near the mode of
7 approximately monotonically, the entries of the matrix K, (G) accumulate a systematic one-
sided error and consequently K, (G) takes longer to converge than I',,(G). But this is a transient
phenomenon that can be easily eliminated by including a burn-in phase in the simulation.

We systematically observed that the estimator 0,, x was more stable than 6, T, especially so
in more complex MCMC scenarios involving a larger number of control variates. This differ-
ence was particularly pronounced in cases where one or more of the entries on the diagonal
of I'(G) = K(G) were near 0. There, because of the inevitable fluctuations in the estimation
process, the values of some of the entries of én’r fluctuated wildly between large negative and
large positive values, whereas the corresponding entries of 9,1, x were much more reliable since,
by definition, K(G) is positive semidefinite.

In conclusion, we found that, of the two estimators, 1,k (F) was consistently the more reliable
and preferable choice.

We also briefly mention that a different method for consistently estimating 8* was recently
developed in Meyn (2007), based on the ‘temporal difference learning’ algorithm. Although this
method also applies to non-reversible chains, it is computationally significantly more expensive
than the estimates 9,1, x and é,,,p, and its applicability is restricted to discrete state space chains
(or, more generally, to chains containing an atom). It may be possible to extend this idea to
more general classes of chains by a simulated construction that is analogous to Nummelin’s
‘split chain’ technique (see Nummelin (1984)), but we have not pursued this direction further.

6.2. Estimating 6* via batch means

As noted in Section 2.2, the main difficulty in estimating the optimal coefficient vector 6* in
expression (14) was that it involves the solution F to the Poisson equation. Various researchers
have observed in the past (see the references below) that one possible way to overcome this
problem is to note that 6* (like F itself) can alternatively be written in terms of an infinite series.
Restricting attention, for simplicity, to the case of a single control variate U = G — PG based on
a single function G : X — R, from equation (17) we have

1 00
* = EFX)UX)]=—s——> E [F(Xo) UX )] 31
) ,_200 (Xo)U(X))]= HG2= (PG} j;oo [F(Xo) U(X )] 3D

This suggests the following simple strategy: truncate the series in equation (31) to a finite sum,
from j=—M to j= M, say, and estimate an approximation to 6* via

1 M

-M
Mn{Gz—(PG)z} /_ZMn_le %+1F(Xi) U(Xi+j). (32)

en,M
Then, én, Mm converges almost surely to

1 M
=2 Z Ex[F(Xo) U(X )], (33)
oy j=—M

as n — oo (see corollary 2 in Section 7), and one would hope that 0 ~ 6* for ‘sufficiently large’
M. Using the estimated coefficient 6, s in conjunction with the control variate U =G — PG,
m(F) can then be estimated by the corresponding modified averages

fin 1 (F):= i (Fg ) = pin (F) = O v 110 (). (34)
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This methodology has been used extensively in the literature, including, among others, by
Andradottir et al. (1993), Mira et al. (2003), Stein et al. (2004), Meyn (2007) and Hammer
and Tjelmeland (2008). Our main point here is to show that it is strictly suboptimal, and in
certain cases severely so. For this, we next give a precise expression for the amount by which
the asymptotic Varlance of the batch means estimators /i, 5 (F) is larger than the (theoretically
minimal) variance 00* of pn, x (F). Proposition 3 is proved at the end of this section.

Proposition 3. The sequences of estimators {/i,, »,(F)} and {p, k (F)} are both asymptotically
normal: as n — oo,

{fi 11 (F) — m(F) b/ § N0, 72),
{itn. k (F) = w(F) }/n = N(0,03.),

where ‘— P’ denotes convergence in distribution. Moreover, the difference between the variance
of the batch means estimators /i, »,(F) and that of the modified estimators i, g (F) is

1 2
71%4—0'92*=0_2{ S Ex[F(Xo) U(Xj)]} >0. (35)

ljIZM+1

It is evident from equation (35) that the variance 7, of the batch means estimators fi,, s (F)
will often be significantly larger than the minimal variance 09* that is achieved by p, x (F),
especially so if either

(a) the MCMC samples are highly correlated (as is often the case with samplers that tend to
make small local moves), so that the terms of the series X ; Ex[F(X) U(X ;)] decay slowly
with | j|, or

(b) |F| tends to take on large values; for example, note that the difference in expression (35)
can be made arbitrarily large by multiplying F by a big constant.

But these are exactly the two most common situations that call for the use of a variance reduc-
tion technique such as control variates.

Indeed, in numerous simulation experiments (some simple cases of which are reported in the
unpublished notes of Dellaportas and Kontoyiannis (2009)) we observed that, compared with
tn,k (F), the batch means estimators i, (F) require significantly more computation (especially
for large M) and they are typically much less effective. Also, we are unaware of any reasonably
justified (non-ad-hoc) guidelines for the choice of the parameter M, which is critical for any
potentially useful application of fi,, s (F).

Using the obvious extension of the above construction to the case when more than a single
control variate is used, we re-examined the three examples of the basic methodology that were
presented in Section 5. Table 4 shows the results obtained in example 2 by the batch means esti-
mators /i, (F) for various choices of M, together with the earlier results obtained by p,, k (F).
The sampling algorithm and all relevant parameters are as in example 2 in Section 5. For brev-
ity, we display results only for the problem of estimating what is probably the statistically most
significant parameter in this study, namely the mean slope (., which corresponds to taking

F{($i), fics Se, 02} = Be.

6.2.1. Proof of proposition 3

The asymptotic normality statements are established in corollaries 1 and 2 of Section 7. To
simplify the notation we decompose the infinite series in equation (31) into the sum Sy + Ty,
where Sy, is the sum of the terms corresponding to —M < j < M and Ty, is the double-sided tail
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Table 4. Estimated factors by which the variance of p.,(F) is larger than
the variances of fi,, p(F) and i, x (F)t

Estimator Variance reduction factors for example 2 for the
following simulation steps:

n=1000 n=10000 n=>50000 n=200000

fin. 1 (F), M =0 1.00 1.00 1.00 1.00
fin p (F), M =1 0.94 1.00 1.00 1.00
fin.pt (F),M =5 0.24 1.00 1.00 0.99
fin 1 (F), M =10 0.09 1.00 1.00 0.99
fin, 1 (F), M =20 0.45 0.99 1.00 0.98
fin. 1 (F), M =100 10-4 0.84 0.95 0.96
i,k (F) 3.05 19.96 39.22 36.04

TAIl estimators are applied to MCMC data sampled from the posterior
of the hierarchical linear model that was described in example_2, and
the parameter being estimated is 3. so that here F{(¢;), tic, Xc, af,} =0.
Results are shown after n = 1000, 10000, 50000, 200000 simulation steps,
with the batch means parameter M =0, 1, 5, 10, 20, 100. The variance reduc-
tion factors are computed from 7= 100 independent repetitions of the same
experiment.

series corresponding to the same sum over all | j| > M + 1. The variances of the two estimators
are given by

2 ~
Tf,lzalzp—i—QMU% —20m (S + Ty,

1
05 =0% — — (Su+ Tu)*:
9y
see equation (39) in corollary 2 and equation (18) respectively. Taking the difference between
the two and substituting the value of 03, = Sy / 0%] from expression (33) gives

1 1
Tht — e = 0—2{5%4 — 28w (S + Tun) + Sy + Tu)*} = U—ZT,%,,
U U

as claimed in expression (35). O

In view of corollary 1 in Section 7, a simple examination of this proof shows that the result
of proposition 3 also holds with the estimators p, r(F) introduced in Section 6.1 in place of

un,K(F)-

7. Theory

In this section we give precise conditions under which the asymptotics that were developed in
Sections 2, 3 and 6.2 are rigorously justified. The results together with their detailed assumptions
are stated below and the proofs are contained in Appendix A.

First we recall the basic setting from Section 2. We take {X,} to be a Markov chain with
values in a general measurable space X equipped with a o-algebra 5. The distribution of {X,}
is described by its initial state Xo =x € X and its transition kernel P(x,dy) as in expression
(5). The kernel P, as well as any of its powers P", acts linearly on functions F:X — R via
PF(x)=E[F(X1)|Xo=x]
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The first assumption on the chain {X,} is that it is ¢ irreducible and aperiodic. This means
that there is a o-finite measure ¥ on (X, B) such that, for any A € B satisfying ¢)(A) >0 and any
initial condition x,

P'(x,A) >0, for all n sufficiently large.

Without loss of generality, 1 is assumed to be maximal in the sense that any other such ¢’ is
absolutely continuous with respect to 1.

The second, and stronger, assumption, is an ergodicity condition (see Meyn and Tweedie
(2009)): we assume that there are functions V:X — [0,00) and W:X — [1,00), a ‘small’ set
C € B and a finite constant b > 0 such that the Lyapunov drift condition holds:

PV -V <-=W+Dblc. (36)

Recall that a set C € B is small if there are an integer m > 1, a 6 >0 and a probability measure v
on (X, B) such that

P"(x,B)>6v(B) forallxeC, BebB.

Under condition (36), we are assured that the chain is positive recurrent and that it has a unique
invariant (probability) measure 7. Our final assumption on the chain is that the Lyapunov
function ¥ in condition (36) satisfies (V%) < 00.

These assumptions are summarized as follows.

The chain {X, } is ¢ irreducible and aperiodic, with unique invariant

measure 7, and there are functions V: X — [0, 00), W: X —[1, 00),

a small set C € B and a finite constant b > 0, such that condition (36) holds

and 7(V?) < 0. (37)

Although these conditions may seem somewhat involved, their verification is often straight-
forward; see Meyn and Tweedie (2009) and Robert and Casella (2004), as well as the numerous
examples that were developed in Roberts and Tweedie (1996), Hobert and Geyer (1998), Jarner
and Hansen (2000), Fort et al. (2003) and Roberts and Rosenthal (2004). It is often possible
to avoid having to verify condition (36) directly, by appealing to the property of geometric
ergodicity, which is essentially equivalent to the requirement that condition (36) holds with W
being a multiple of the Lyapunov function V. For large classes of MCMC samplers, geomet-
ric ergodicity has been established in these references, among others. Moreover, geometrically
ergodic chains, especially in the reversible case, have many attractive properties, as discussed,
for example, by Roberts and Rosenthal (1998). In the interest of generality, the main results of
this section are stated in terms of the weaker assumptions in result (37).

Apart from conditions on the Markov chain {X,}, the asymptotic results that were stated
earlier also require some assumptions on the function F:X — R whose mean under 7 is to be
estimated, and on the (possibly vector-valued) function G : X — RF which is used for the con-
struction of the control variates U = G — PG. These assumptions are most conveniently stated
within the weighted L., framework of Meyn and Tweedie (2009). Given an arbitrary function
W :X — [1, 00), the weighted Lo, space LY is the Banach space

F
LZVO := < functions F : X — R subject to || F||w :=sup M <00 .
xex | W(x)

With a slight abuse of notation, we say that a vector-valued function G = (G, G»,...,Gy) T is
in LY if Gje LY for each .
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Theorem 2. Suppose that the chain { X, } satisfies conditions (36), and let {6, } be any sequence
of random vectors in R¥ such that 6§, converge to some constant 6 € RF almost surely as n — oo.
Then:

(a) (ergodicity) the chain is positive Harris recurrent, it has a unique invariant (probability)
measure 7 and it converges in distribution to 7, in that, for any xe X and A € B,

P"(x,A) - m(A), as n— 0o

(in fact, there is a finite constant B such that
o0
> [P Fx) —m(F)| < B{V(x)+ 1}, (38)
n=0

uniformly over all initial states x € X and all functions F such that |F| < W);

(b) (law of large numbers) for any F, G € LY and any 9 € R¥, write U =G — PG and Fy:=

— (0, U); then the ergodic averages 1, (F) as well as the modified averages 11, (Fy,) both

converge to 7 (F) almost surely asn— oo;

(o) (P01sson equation) if Fe LY, then there is a solution Fe LVJrl to the Poisson equation
PF — F=—F+4x(F),and F is unique up to an additive constant

(d) (central limit theorem for p1, (F))if F € LY and the variance U’F ﬂ'{F (Pl:")z} isnon-
zero, then the normalized ergodic averages {u, (F) — w(F)}+/n converge in distribution
to N(O, O'F), asn— oo; 5 X

(e) (central limit theorem for un (Fp,)IfF,Ge L , and the variances a%ﬁ =m{Fy— (PF@)Z}
and O’U —’7T{U —(PU )%}, j=1,2,... k,are all non-zero, then the normalized modified
averages {,un(Fg ) — 7T(F)}\/n converge in distribution to N(0, oFH), asn — oo.

Suppose that the chain {X,} satisfies conditions (36) above, and that the functions F and
G=(G1,Gy,...,Gp)T are in LO“;. Theorem 2 states that the ergodic averages p, (F) as well as
the modified averages 1, (Fy) based on the vector of control variates U = G — PG both converge
to m(F), and both are asymptotically normal.

Next We examine the choice of the coefficient vector § = 6* which minimizes the limiting
variance o4 7, of the modified averages, and the asymptotic behaviour of the estimators 0, rand
9n K for 6*.

As in Section 2.2, let T'(G) denote the k x k matrix with entries,A I'G)ij=7{GiG; —
(PG;)(PG j)}, and recall that, according to theorem 2, there is a solution F to the Poisson equa-
tion for F. The simple computation that was outlined in Section 2.2 (and justified in the proof

of theorem 3) leading to equation (14) shows that the variance a%ﬁ is minimized by the choice

0* =T(G)"'n{FG - (PF)(PG)},

as long as the matrix I'(G) is invertible. Our next result establishes the almost sure consistency
of the estimators
On.r =Tn(G) ' [1n{ F(G + PG)} — j1n(F) j1n (G + PG)],

O,k = Kn(G) " [tn { F(G + PG)} — 11y (F) 112 (G + PG)],
where the empirical k x k matrices I',(G) and K, (G) are defined respectively by
(Tn(G))ij=pn(GiGj) — i {(PG) (PG )},

and
n—1

1
(Kn(G))ij= p— Zl{Gi(Xr) —PGi(X,—DHGj(X)—PGj(X;—1}.
=
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Theorem 3. Suppose that the chain {X,} is reversible and satisfies conditions (36). If the
functions F and G are both in LO‘Z and the matrix I'(G) is non-singular, then both of the
estimators for 6* are almost surely consistent:

Opr — 0* almost surely, as n — oo;
On.x — 0* almost surely, as n — oo.

Recall the definitions of the two estimators i, (F) and p,, x (F) in equations (30) and (27),
from Sections 3 and 6.1 respectively. Combining the two theorems yields the desired asymptotic
properties of the two estimators.

Corollary 1. Suppose that the chain {X,} is reversible and satisfies conditions (36). If the
functions F and G are both in LOVZ and the matrix I'(G) is non-singular, then the modified
estimators p, 0 (F) and p,, g (F) for 7(F) satisfy the following conditions:

(a) (law of large numbers) the modified estimators p, r(F) and p,, g (F) both converge to
m(F) almost surely, as n — oo;

(b) (central limit theorem) if 05* = W{I:" ﬁ* —(PF 9+)} is non-zero, then the normalized mod-
ified averages {1 (F) — 7 (F)}/n and {u,, x (F) — w(F)}/n converge in distribution to
N(, O'g*), as n — 0o, where the variance ag* is minimal among all estimators based on
the control variate U = G — PG, in that ag* =min, pe (ag).

Finally we turn to the batch means estimators of Section 6.2. Recall the definitions of the
estimators 67,!, m and i, 5, (F) in equations (32) and (34) respectively. Our next result shows that
9~,,, v converges to 0y defined in expression (33) and gives an almost sure law of large numbers
result and a corresponding central limit theorem for the estimators /i, 5, (F). Its proof follows
along the same line as the proofs of the corresponding statements in theorem 3 and corollary 1.
(In the one-dimensional setting of corollary 2 the assumption that I'(G) is non-singular reduces
to assuming that o7, = 7{G> — (PG)?} is non-zero.)

Corollary 2. Under the assumptions of theorem 3, for any fixed M >0, as n — oo we have the
following results:

(a) (law of large numbers) én’ v — Oy almost surely and by, (F) = w(F) almost surely;
(b) (centrallimit theorem) {/i,, p(F) —7(F)}/n —D N, Tyr)> where the variance 71%4 is given
by

~2 ~ o)
Th =0k 40005 =20y S covi{F(Xo),U(X,)}. (39)
n=—o0
Some additional results on the long-term behaviour of estimators similar to those consid-
ered above can be found in Meyn (2006) and Meyn (2007), chapter 11, and finer asymptotics
(including large deviations bounds and Edgeworth expansions) can be derived under stronger
assumptions from the results in Kontoyiannis and Meyn (2003, 2005).

8. Concluding remarks

8.1. Applicability

One of the strengths of the present approach to the use of control variates in MCMC estima-
tion is that, unlike in the classical case of independent sampling where control variates need
to be identified in an ad hoc fashion for each specific application, this methodology is imme-
diately applicable to a wide range of MCMC estimation problems. The most natural class of
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such problems consists of all Bayesian inference studies where samples from the posterior are
generated by a conditionally conjugate random-scan Gibbs sampler. Recall that conditionally
conjugate Gibbs sampling is the key ingredient in, among others, Bayesian inference for dynamic
linear models, e.g. Reis ef al. (2006), applications of the slice sampler with auxiliary variables,
e.g. Damien et al. (1999), Dirichlet processes, e.g. MacEachern and Muller (1998), and spatial
regression models, e.g. Gamerman et al. (2003).

More generally, the present methodology applies to any MCMC setting satisfying the fol-
lowing two requirements: that the chain be reversible and that the conditional expectations
PG (x)=E[G(X,+1)| X, =x] are explicitly computable for some simple functions G. There is a
large collection of samplers with these properties, including certain versions of hybrid Metropo-
lis-within-Gibbs algorithms (as in example 3), certain Metropolis—Hastings samplers on discrete
states spaces and Markovian models of stochastic networks (as in Meyn (2007)). To ensure that
these two requirements are satisfied, most of the experiments that were reported in Sections 5
and 6 were performed by using the random-scan version of Gibbs sampling. This choice is not
a priori restrictive since the convergence properties of random-scan algorithms are generally
comparable with (and sometimes superior to) those of systematic scan samplers; see, for exam-
ple, Diaconis and Ram (2000) and Roberts and Sahu (1997).

We also observe that, as the present methodology is easily implemented as a post-processing
algorithm and does not interfere in the actual sampling process, any implementation technique
that facilitates or accelerates the MCMC convergence (such as blocking schemes, transforma-
tions and other reversible chains) can be used, as long as reversibility is maintained. Moreover,
we note that the present work addresses mainly the problem of reducing the estimation error,
in cases when the MCMC sampler is designed so that it explores the entire effective support of
the target distribution 7.

8.2. Further extensions

Probably the most interesting class of samplers to be considered next is that of general Metrop-
olis—Hastings algorithms. When the target distribution is discrete or, more generally, when
the proposal distribution is discrete and the number of possible moves is not prohibitively
large, then the present methodology can be used as illustrated in example 6 of Dellaportas and
Kontoyiannis (2010). But, in the case of general, typically continuous or multi-dimensional
proposals, there is a basic obstacle: the presence of the accept-reject step makes it impos-
sible to compute the required conditional expectation P G(x) in closed form, for any G. If
we consider the extended chain {(X,,Y,)} that includes the values of the proposed moves
Y, (as done, for example, by Hammer and Tjelmeland (2008) and Delmas and Jourdain
(2009)), then the computation of PG is straightforward for any G(x,y) that depends only on
x; but the chain {(X,, Y,)} is no longer reversible and there are no clear candidates for good
basis functions G. A possibly more promising point of view is to consider the computation of
PG an issue of numerical integration, and to try to estimate the required values PG(X,) on
the basis of importance sampling or any one of the numerous standard numerical integration
techniques.

In a different direction, an interesting and potentially useful point would be to examine the
effect of the use of control variates in the estimation bias. Although the variance of the stan-
dard ergodic averages u, (F) is a ‘steady state’ object, in that it characterizes their long-term
behaviour and depends neither on the initial condition Xy =x nor on the transient behaviour
of the chain, the bias depends heavily on the initial condition and it vanishes asymptotically.
Preliminary computations (see the unpublished notes of Dellaportas and Kontoyiannis (2009))
indicate that the bias of u,(F) decays to 0 approximately like F(x)/n, and that, using a single
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control variate U = G — PG based on a function G & F can significantly reduce the bias. It would
be interesting in future work to compute the coefficient vector ” which minimizes the bias of
n (Fp) for a given collection of basis functions { G ; }, to study ways in which 6” can be estimated
empirically and to examine the effects that the use of §” in conjunction with the control variates
U =G — PG would have on the variance of the resulting estimator for 7(F).

A final point which may merit further attention is the potential problem of including too many
control variates in the modified estimator y,, g (F). This issue has been studied extensively in the
classical context of estimation based on independent identically distributed samples; see, for
example, Lavenberg and Welch (1981), Law and Kelton (1982), Nelson (2004) and Glasserman
(2004), pages 200-202. Since the optimal coefficient vector 8* is not known a priori, using many
control variates may in fact increase the variance of the modified estimators p,, x (F) relative to
un (F), and care must be taken to ensure that the most effective subset of all available control
variates is chosen. Common sense suggests that the values of all the estimated parameters in the
vector @n, k should be examined, and the control variates corresponding to coefficients that are
near 0 should be discarded. Since the MCMC output consists of simulated data from a known
distribution, it may be possible to do this in a systematic fashion by using a classical hypothesis
testing procedure.
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Appendix A: Proofs of theorems 2 and 3 and corollaries 1 and 2

A.1. Proof of theorem 2

Since any small set is petite (Meyn and Tweedie (2009), section 5.5.2), the f-norm ergodic theorem of Meyn
and Tweedie (2009) implies that {X, } is positive recurrent with a unique invariant measure 7 such that
condition (38) holds, and Meyn and Tweedie (2009), theorem 11.3.4, proves the Harris property, giving
part (a).

From Meyn and Tweedie (2009), theorem 14.0.1, we have that, under conditions (36), (W) < co. Since
Fisin LY, w(|F|) is finite and, since G € LY, Jensen’s inequality guarantees that w(|U|) is finite. The
invariance of 7 then implies that 7(U) = 0; therefore, Meyn and Tweedie (2009), theorem 17.0.1, shows
that p, (F) — 7(F) and p,(U) — 0 almost surely as n — oo and, since 6, — 6 by assumption, u, (Fy) also
converges to 7w (F) almost surely, proving part (b).

The existence of a solution F to the Poisson equation in part (c) follows from Meyn and Tweedie (2009),
theorem 17.4.2, and its uniqueness from Meyn and Tweedie (2009), theorem 17.4.1. The central limit
theorem in part (d) is a consequence of Meyn and Tweedie (2009), theorem 17.4.4.

Finally, since F,G € LY, the functions U and Fy are in LY also, so U; and Fy exist for each j=
1,2,...,k. Asin part (d) the scaled averages {u, (Fy) — TF(F)}\/H and [L,,(U )\/n converge in distribution
toN (0 O'e) and N(0,02,) respectlvely, for each ], where the variances o7 and O'U are as in part (c). Writing
0=(01,04,...,00T and 0, =(0,.1,0,.2, . ..,0,.1)T, we can express

k
{Mn(FG,,) - ﬂ'(F)}\/}’l = {,U’IL(F(?) - W(F)}\/l’l + 2:1{((9}1,]' - ej)l-l‘n(Uj)'\/n}
J=

Each of the terms in the second sum on the right-hand side above converges to 0 in probability, since
tn(Uj)4/n converges to a normal distribution and 6, ; —#; — 0 almost surely. Therefore, the sum con-
verges to 0 in probability, and the central limit theorem in part (e) follows from part (d). |
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Note that the assumption o7, #0 in theorem 2 is not necessary, since the case ofjr_ =0is trivial in view of
Kontoyiannis and Meyn (2003), proposition 2.4, which implies that, then, pn(Uj)4/n— 0 in probability,
as n— oo.

A.2. Proof of theorem 3 5

We begin by justifying the computations in Sections 2.2 and 3. Define o} = n{F, — (PFy)*}, where F
exists by theorem 2. Since F solves the Poisson equation for F, it is easy to check that Fy:=F—(0,G)
solves the Poisson equation for F,. Substituting this in the above expression for aé yields expression (13).
To see that all the functions in expression (13) are indeed integrable recall that F' € LY ! and note that,
since ¥ is non-negative, condition (36) implies that 1 < W < V + bl¢; hence m(W?) is finite since 7(V?)
is finite by assumption. Therefore, since G € LY, F and G are both in L,(r), and Holder’s inequality
implies that 7(F (0, G)) is finite. Finally, Jensen’s inequality implies that PF and PG are also in L (), so
7(PF (0, PG)) < co. And, for the same reasons, all the functions appearing in the computations leading to
the results of propositions 1 and 2 are also integrable.

The expression for the optimal #* in expression (14) is simply the solution for the minimum of the
quadratic in expression (13). Again, note that F, G, PF and PG are all in L, () so 8* is well defined.

The consistency proofs follow from repeated applications of the ergodic theorems that were established
in theorem 2. First note that, since G € LY and m(W?) < oo as remarked above, the product G;G jism
integrable, and by Jensen’s inequality so is any product of the form (PG;)(PG ). Therefore, the ergodic
theorem of Meyn and Tweedie (2009), theorem 17.0.1, implies that I', (G) — I'(G) almost surely. Similarly,
the functions F, G, PG, FG and FPG are all 7 integrable, so the same ergodic theorem implies that 6,
indeed converges to 6* almost surely, as n — co.

To establish the corresponding result for 6, g, it suffices to show that K,(G) — K(G) almost surely,
and for that we consider the bivariate chain Y, = (X,, X,+1) on the state space X x X. Since {X,} is ¢
irreducible and aperiodic, {Y,} is ¢® irreducible and aperiodic with respect to the bivariate measure
@ (dx, dx’) :=1(dx) P(x, dy). Given functions W and V a small set C and a constant b so that con-
dition (36) holds, it is immediate that condition (36) also holds for {¥,} with respect to the functions
V@ (x,x)=V(x') and W® (x, x") = W(x), the small set X x C and the same 5. The unique invariant mea-
sure of {¥,} is then 7@ (dx, dx’) := 7 (dx) P(x, dy), and 7@ {(V®)?} is finite. Therefore, assumptions (36)
hold for {¥,} and for each pair 1 <, j <k we can invoke the ergodic theorem Meyn and Tweedie (2009),
theorem 17.0.1, for the 7®-integrable function,

Hx,x):={G;x)— PG }H{G,;x)—PG;(x)},

to obtain that, indeed, K, (G) — K(G) almost surely.

A.3. Proof of corollary 1

The ergodic theorems in part (a) of corollary 1 are immediate consequences of theorem 2, part (b), com-
bined with theorem 3. The computation in Section 2.2 which shows that 6* in expression (14) indeed
minimizes o (which is justified in the proof of theorem 3) shows that oj. =min,_g«(07). Finally, the
assumption that I'(G) is non-singular combined with proposition 1 imply that all the variances azUj must
be non-zero. Therefore, theorem 3 combined with the central limit theorems in parts (d) and (e) of theorem

2 prove part (b) of corollary 1.

A.4. Proof of corollary 2

The almost sure convergence statements in part (a) of corollary 2 follow the ergodic theorem, as in the
proofs of theorems 2 and 3. The almost sure convergence of the denominator of expression (32), 1, {G* —
(PG)?} — m{G? — (PG)?*}, is a special case (corresponding to k = 1) of the almost sure convergence of
I',(G) to T'(G) that was proved in theorem 3. Considering the (2M + 1)-variate chain instead of the
bivariate chain as in the proof of theorem 3, we can apply the ergodic theorem with the same integra-
bility assumptions, to obtain that the sum in the numerator of expression (32) converges almost surely
to X ;<m E-[F(Xo) U(X})], proving that §, , — 6y almost surely, as n — co. For the modified averages,
note that i, ,,(F) is simply w,(F; ). Then the law of large numbers and central limit theorem results
fozr fi,. 11 (F) follow from parts (b) and (e) of theorem 2 respectively. Finally, the limiting variance 7% equals

a5 which, using the representation in equation (16), can be expressed as claimed in expression (39).
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