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Critical Behavior in Lossy Source Coding

Amir Dembo, [oannis Kontoyiannis

Abstract— The following critical phenomenon was recently
discovered. When a memoryless source is compressed using
a variable-length fixed-distortion code, the fastest conver-
gence rate of the (pointwise) compression ratio to R(D) is
either O(y/n) or O(logn). We show it is always O(y/n), except
for discrete, uniformly distributed sources.

Keywords— Redundancy, rate-distortion theory, lossy data
compression

I. INTRODUCTION

UPPOSE that data is produced by a stationary mem-

oryless source {X, ; n > 1}, so that the X; are inde-
pendent and identically distributed (IID) random variables
with common distribution P. We will assume throughout
that the X; take values in the source alphabet A, where A
is a subset of R, and that the reproduction alphabet Aisa
finite subset of R, say A = {ai,az2,...,ar}.

The main objective of data compression is to find efficient
approximate representations for data x = (v1,22,...,%n)
generated from the source X' = (X1, Xo, ..., X,). Specif-
ically, we wish to represent each source string z}" by a cor-
responding string y} = (y1,¥2,- . .,yn) taking values in the
reproduction alphabet 1217 so that the distortion between
each 27" and its representation lies within some fixed allow-
able range. For our purposes, distortion is measured by a
family of single-letter distortion measures,

Zp i, Yi)

pu(@t, Yl at € A", ype An, (1)

where p: Ax A — [0,00) is a fixed nonnegative function.
We consider wvariable-length block codes operating at a
fized distortion level, that is, codes C), defined by triplets

(Bn, ¢n, ¥n) where:

(a) B, is a subset of A™ called the codebook;

(b) ¢n : A™ — By, is a map called the encoder;

(¢) ¥pn : Bp — {0,1}* is a prefix-free representa-
tion of the elements of B, by finite-length binary
strings.

For a fixed distortion level D > 0, the code C,, =
(Bn, On, V) is said to operate at distortion level D [8] if
it encodes each source string with distortion D or less:

pn (@], on(2])) < D forall 2 € A™.
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Our main quantity of interest here is the description length
of a block code C,, expressed by its length function
by : A" - N

n(xt) = length of [V (én(z7))]

Broadly speaking, the smaller the description length, the
better the code.

Shannon’s celebrated source coding theorem states
that, for an arbitrary sequence of block codes {C, =
(Bn, ¢n,¥n) ; n > 1} operating at distortion level D, the
expected compression ratio E[(,(X")]/n is asymptotically
bounded below by the rate-distortion function R(D):

lim inf
n—oo

LICICSHINS R(D) bits per symbol.
n

Moreover, Shannon showed that there exist codes achieving
the above lower bound with equality; see Shannon’s 1959
paper [11] or Berger’s classic text [4]. A stronger version of
Shannon’s theorem was proved by Kieffer in 1991 [8], where
it is shown that the rate-distortion function is a pointwise
asymptotic lower bound for ¢,,(X7*):

lim inf fn (Xl)

n—00 n

> R(D) with prob. 1. (2)

In [8] it is also demonstrated that the bound in (2) can be
achieved with equality.

The following refinement to Kieffer’s result was recently
given in [10]:

(POINTWISE REDUNDANCY): For any sequence of
block codes {Cy} with associated length functions {(,},
operating at distortion level D,

+Zf

eventually, with prob. 1, (3)

(X)) > nR(D ;) — 2logn

where f : A — R is a bounded function depending
on P and D but not on the codes {C,}, such that
Ep[f(X1)] = 0. Moreover, there exist codes {Ch,(,}
that achieve

tn(XT1)

< nR(D ;) + 5logn

+Zf

eventually, with prob. 1. (4)

[cf. Theorems 4 and 5 and eq. (18) in [10]; above and
throughout the paper, ‘log’ denotes the logarithm taken
to base 2 and ‘log,” denotes the natural logarithm.] The
function f is defined precisely in Section III; here we just
mention the following interpretation: If we write f (z) =



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. Y, MONTH 2000 101

f(z) + R(D), then f can be expressed in a natural way in
terms of familiar information theoretic quantities. In par-
ticular, E(f(X)) = R(D), its variance 02 = Var(f(X1))
is the “minimal coding variance” of the source with distri-
bution P [10], and in the case of lossless compression (as
D 1 0), f(z) reduces to —log P(x).

The above result says that, for any source distribution
P and any sequence of codes {C),} operating at distor-
tion level D, the “pointwise redundancy” in the descrip-
tion lengths of the codes C),, namely, the difference be-
tween (,(X{") and the optimum nR(D) bits, is essentially
bounded below by the sum of the IID, bounded, zero-
mean random variables f(X;). So there are two possibili-

ties:

e Either the random variables f(X;) are non-
constant, in which case the best achievable point-
wise redundancy rate will be of order O(y/n) (by
the central limit theorem and the upper and lower
bounds in (3) and (4));

e or the random variables f(X;) are equal to zero
with probability one, in which case the best
achievable pointwise redundancy is no more than
(5logn) bits, eventually (by (4)).

To be more precise, in the first case when the random vari-
ables f(X;) are not constant, the central limit theorem
implies that the term > 1 | f(X;) is of order O(y/n) in
probability, and therefore, by (3) and (4), the best achiev-
able pointwise redundancy will also be of order O(y/n)
in probability. [In a similar fashion, the law of the iter-
ated logarithm implies that the pointwise fluctuations of
the best achievable pointwise redundancy will be of order
O(y/nlog, log, n); see [10, Section I] for a more detailed
discussion. Also the contrast between the pointwise and the
expected redundancy rate is interpreted and commented on
in [10, Remark 3, p.139].]

Our purpose in this paper is to characterize exactly when
each one of the above two cases occurs, namely, when the
minimal pointwise redundancy is O(y/n) and when it is
O(logn). In the next section we show that it is almost
never the case that f(X;) = 0 with probability one, so the
minimal pointwise redundancy is typically of order \/n. In
particular, in the common case when the X; take values in
a finite alphabet A = A, then (under mild conditions) we
show that f(X;) = 0 with probability one if and only if the
X are uniformly distributed.

Before stating our main results (Theorems 1, 2 and 3 in
the next section) in detail, we recall the following represen-
tative examples from [9] and [10].

Ezample 1 (Lossless Compression) For a source {X,}
with distribution P on the finite alphabet A, a lossless
code Cy, is a prefix-free map ¢, : A® — {0,1}*. [Or, to
be pedantic, in our setting a lossless code is a code oper-
ating at distortion level D = 0 with respect to Hamming
distortion.] In this case the function f has the simple form

f(x) = —log P(x) — H(P) (5)

where H(P) = Ep[—log P(X1)] is the entropy of P, and
the lower bound (3) is simply
n
(u(XT) > nH(P)+ Y f(X;)—2logn
i=1
= —logP(X{") —2logn (6)
eventually, with prob. 1.

The lower bound (6) is a well-known information-theoretic
fact called Barron’s lemma (see [2][3] and the discussion
in [10]). It says that the description lengths ¢, (X*) of an
arbitrary sequence of codes are (eventually with probability
1) bounded below by the idealized Shannon code lengths
—log P(X{"), up to terms of order logn. From (5) it is
obvious that f(X;) = 0 with probability one if and only if
P is the uniform distribution on A.

Ezample 2 (Binary Source, Hamming Distortion)
This is the simplest non-trivial lossy example. Suppose
{X,} is a binary source with Bernoulli(p) distribution for
some p € (0,1/2]. Let A=A = {0,1} and take p to be the
Hamming distortion measure, p(z,y) = 0 when =y, and
equal to 1 otherwise. For each fixed D € (0, p) it is shown
in [10] that

f@) = —log (f_("””l))) ;S [—bg (f(f(D))] ,

from which it is again obvious that f(X;) = 0 with proba-
bility one if and only if p = 1/2, i.e., if and only if P is the
uniform distribution on A = {0,1}.

In a third example presented in [10] it is also found that
f(X1) = 0 with probability one if and only if P is the
uniform distribution, and the natural question is raised as
to whether this pattern persists in general. In the next
section we answer this question by showing (in Theorem 1
and Corollary 1) that for a source distribution P on a finite
alphabet, f(X) can be equal to zero with probability one
for at most finitely many distortion levels D, unless P is the
uniform distribution and p is a “permutation” distortion
measure. In Theorems 2 and 3 and in Corollary 2 the
continuous case is considered, and it is shown that when
P is a continuous distribution it essentially never happens
that f(X;) = 0 with probability one. Section III contains
the proofs of Theorems 1, 2 and 3 and Corollaries 1 and 2.

II. REsuLTS

Suppose that the source alphabet A is an arbitrary
(Borel) subset of R, and let P be a (Borel) probability
measure on R, supported on A (the special cases when P
is purely discrete or purely continuous are considered sepa-
rately below). Let A= {a1,as,...,ax} be the finite repro-
duction alphabet of size k. Given an arbitrary, bounded,
nonnegative function p : Ax A — [0, M] (for some finite
constant M), define a sequence of single-letter distortion
measures p, : A" x A" — [0, M] as in (1). Throughout the
paper, we make the usual assumption:

sup min p(z,y) = 0. (7)
z€A yEA



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. Y, MONTH 2000 102

[See, e.g., [4, p-26] or [5, Ch.13, ex.4]; if (7) is not satis-
fied, for example when A is an interval of real numbers,
A is a finite set, and p(z,y) = (r — y)?, we may consider
the distortion measure p'(z,y) = p(z,y) — min__ ; p(z, 2)
instead.] For D > 0, the rate-distortion function of a mem-
oryless source with distribution P is

R(D) = ()1({1{/) I(X;Y) (8)
where the infimum is over all jointly distributed random
variables (X, Y) with values in AxA such that X has distri-
bution P and E[p(X,Y)] < D; I(X;Y") denotes the mutual
information (in bits) between X and Y (see [4] for more de-
tails). Under our assumptions, the rate-distortion function
R(D) is a convex, nonincreasing function of D > 0, and it
is finite for all D.

For a fixed distribution P on A, let

Dusx = Duax(P) = min Bp[p(X.y)]
yeA

and recall that R(D) = 0 for D > Dpax (see, e.g., Propo-
sition 1 in Section IIT). In order to avoid the trivial case
when R(D) is identically zero we assume that Dpax > 0,
and from now on we restrict our attention to the interesting
range of distortion levels D € (0, Dimax)-

A. The Discrete Case: A= A

We first consider the most common case where the
source {X,} takes values in a finite alphabet 4 = A =
{ay,as,...,ax}. Suppose that {X,,} are IID with common
distribution P on A, and assume, without loss of generality,
that P; = P(a;) > 0foralli=1,...,k Given a distortion
measure p, write p;; for p(a;,a;). We assume throughout
this section that p is symmetric, i.e., that p;; = p;; for all
i,7, and also that p;; = 0 if and only if i = j. We call
p a permutation distortion measure, if all rows of the ma-
trix (pij)i,j=1,...,k are permutations of one another (which,
by symmetry, is equivalent to saying that all columns are
permutations of one another).

Recall that the minimal pointwise redundancy is of order
O(logn) if and only if f(X;) = 0 with probability one;
otherwise it is O(y/n). Our first result says that the rate
cannot be O(logn) for many distortion levels D, unless the
distribution P is uniform in which case the rate is O(logn)
for all distortion levels D.

Theorem 1:

(a) If P is the uniform distribution on A and p is a per-
mutation distortion measure, then f(X;) = 0 with proba-
bility one for all D € (0, Dpax)-

(b) If f(X1) = 0 with probability one for a sequence of
distortion values D, € (0, Dmax) such that D,, | 0, then
P is the uniform distribution and p is a permutation dis-
tortion measure, and therefore f(X;) = 0 with probability
one for all D € (0, Diax)-

As we mentioned above, the rate-distortion function
R(D) is convex for D € (0, Dpax). If it is strictly con-
vex (as it is usually the case — see the discussion in [4,

Chapter 2]), then Theorem 1 can be strengthened to the
following.

Corollary 1: Suppose R(D) is strictly convex over the
range D € (0,Dpax). If f(X1) = 0 with probability
one for infinitely many D € (0, Diax) then P is the uni-
form distribution and p is a permutation distortion mea-
sure, and therefore f(X;) = 0 with probability one for all
D € (0, Diax)-

Remark. In the examples presented in the previous sec-
tion it turned out that either f(X;) = 0 with probability
one for all D, or it was never the case. But it may happen
that f(X;) = 0 with probability one only for a few isolated
values of D, while P is not the uniform distribution. Such
an example is given after Lemma 3 in Section III-B.

B. The Continuous Case: A =R

Here we take A = R and we assume that the distribution
P of the source has a positive density g (with respect to
Lebesgue measure), or, more generally, that there exists
a (nonempty) open interval I C R on which P has an
absolutely continuous component with density g such that
g(z) > 0 for & € I. Since the reproduction alphabet A=
{ai,as,...,a;} is finite, given a distortion measure p we
can write rj(2) = p(x,a;) for all 1 < j < k and all z € A.
We assume that for all j the functions r; are continuous on
I. For convenience we also define, for j =0, r;j(z) =0 on
I.

Our next result gives a sufficient condition on the distor-
tion measures r;, under which the best redundancy rate in
(2) can never be O(logn).

Theorem 2: If for every A < 0 the functions
A =01,.. .k

are linearly independent on I, then f(X7) cannot be equal
to zero with probability one for any distortion level D €
(0, Dppax)-

Next we provide a somewhat simpler set of conditions,
under which we get a weaker conclusion. Theorem 3 says
that the best redundancy rate in (2) cannot be O(logn) for
many distortion levels D.

Theorem 3: Under either one of the following two condi-
tions, f(X1) cannot be equal to zero with probability one
for distortion levels D > 0 arbitrarily close to zero.

(a) There exist (distinct) points {zg,21,...,2r} in I
such that, for all 0 < i # j < k, with j # 0, we have
’I“j(l’j) > ’I“j(l'i).

(b) There exist (distinct) points {zg, 1, . .
that, for every permutation 7 of the indices {0,1,..
with 7 not equal to the identity, we have

., x }in I such
Lk}

k k

> i) # D i)

=0 =0

Although the conditions of Theorems 2 and 3 may seem
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unusual, they are natural and generally easy to verify. To
illustrate this, we present below two simple examples.

Ezample 8 (Mean-Squared Error) Suppose P has a pos-
itive density on the interval I = [—2,2], let A consist of the
two reproduction points +1, and let p be the mean-squared
error distortion measure. Recall that, to satisfy (7), p(z,y)
is actually defined by

p(z,y) = (z —y)* = min{(z - 1), (z + 1)*}.

The corresponding distortion functions ri(z) = p(x, —1)
and r2(x) = p(x,+1) are shown in Figure 1. Here, condi-
tion (a) of Theorem 3 is easily seen to hold with 29 = 0,
1 =2 and a2 = —2.

 r
)

| ; |
-2 -1 0 1 2

Fig. 1. Distortion measure in Example 3. Reproduction points are
shown as x’s.

Ezample 4 (L' Distance) Suppose P has a positive den-
sity on the interval I = [0, 6], let A= {1,3,5}, and take p to
be the normalized L! distance |z —y| adjusted so that (7) is
satisfied; the resulting functions r;(-) are shown in Figure 2.
Here it is easy to verify that the condition of Theorem 2
is satisfied, i.e., that the functions {e*() ; 0 < j < 3}
are linearly independent on I. For this it suffices to ob-
serve that e*™ and e are linearly independent on [2, 4]
(essentially because the functions e* and e~ ** are linearly
independent on [0,2]), and that " is not constant outside
[2,4].

Like in the discrete case, under some additional assump-
tions on the rate-distortion function R(D), it is possible to
get a stronger version of Theorem 3:

Corollary 2. Suppose R(D) is differentiable and strictly
convex on (0, Dpyax). Under either one of the assumptions
(a) and (b) in Theorem 3, there can be at most finitely
many D € (0, Dyax) such that f(X;) = 0 with probability
one.

Remark. Under somewhat more restrictive assumptions
on the distortion measure p, it is possible to prove that,
for any P with a continuous component as above, there
can be at most k(k + 1)/2 distortion levels D for which
f(X1) = 0 with probability one. Since the proof of this

N

0 1 2 3 4 5 6

Fig. 2. Distortion measure in Example 4. Reproduction points are
shown as x’s.

slightly stronger result relies on an argument different from
the ones used to prove Theorems 2 and 3, we omit it here.

III. PrOOFS
A. Preliminaries

Before giving the proofs of Theorems 1, 2 and 3, we recall
some definitions and notation from [10] and give the precise
form of the function f (see equation (12) below).

Let P be a source distribution on A, and let @ be an
arbitrary probability mass function on A. Write X for a
random variable with distribution P on A, and Y for an
independent random variable with distribution @ on A.
Let S = {a e A Q(a) > 0} be the support of @ and

define
DL = Er [minp(X.0)
DEQ = Ep[p(X,Y)].
For A <0, let

Apo(\) = Ep [10ge Eq (6” (X’Y))] 7

and for D > 0 write A} g for the Fenchel-Legendre trans-
form of Apg,

Ap (D) =sup[AD — Apq(A)].
A<0

We also define

R(P.Q.D) = inf [I(X;Z)+H(Qz|Q)

)

where H(R||Q) = ), 4 R(a)log[R(a)/Q(a)] denotes the
relative entropy (in bits) between R and @, Q7 denotes
the distribution of Z, and the infimum is over all jointly
distributed random variables (X, Z) with values in A x A
such that X has distribution P and E[p(X,Z)] < D. In
view of (8), we clearly have

R(D) = inf R(P,Q,D). (9)

all Q
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In Lemma 1 and Proposition 1 below we summarize
some useful properties of Apg, Ap g and R(P,Q, D) (see
Lemma 1 and Propositions 1 and 2 in [10]).

Lemma 1:

(i) Apo is infinitely differentiable on (—o0,0),
P.o(A) >0 for all X <0.

(ii) If D € (DP@ DEQ) then there exists a unique A < 0

such that A%o(A) = D and A o(D) = AD — Ap ().

and

Proposition 1:
(i) For all D >0,

R(P,Q,D) = inf Ep [H(W

C1NQENI,
where the infimum is over all probability measures W
on A x A such that the A-marginal of W equals P and
Ew[p(X,)] < D.

(i4) For all D >0, R(P,Q,D) = (loge)Ap o (D).

(131) For 0 < D < Dpax we have 0 < R(D) < oo, whereas
for D > Dpax, R(D) = 0.

(iv) For every D € (0, Dpax) there exists a ) = Q* on
A achieving the infimum in (9), and D € (DPQ DE@™,

min max

For any distribution P on A and any distortion level D €
(0, Dimax(P)), by Proposition 1 we can pick a @* achieving
the infimum in (9) so that R(D) = R(P,Q*, D) and also

D e (DX DPQ™) 50 by Lemma 1 we can pick a \* < 0

with o
XD —Apo-(A\") = }S’Q*(D)
(log. 2)R(P,Q", D)
= (log.2)R(D). (10)
Note also that
A— -0 as D—0 (11)

(see the Appendix for a short proof). Finally we can define
the function f, for x € A,

F(z) & (loge) [)\*D — log, Eq- (e**f)(W))] — R(D). (12)

Since Ep[f(X1)]
and only if

k
2. Q'

Jj=1

= 0, f(X1) = 0 with probability one if

)\ p(z,a;)

= Constant, for P-almost all . (13)

Next we give an useful interpretation for the constant \* in
the representation of R(D) in (10): If R(D) is differentiable
at D, then \* is proportional to its slope at D; Lemma 2
is proved in the Appendix.

Lemma 2: For any D € (0, Diax):

(i) We have (log, 2)R(D) = supy<q [AD — T'(\)], where
P(\) = supo Apo(A).

(i7) Let A\* be chosen as in (10). If R(-) is differentiable
at D, then \* = (log, 2)R'(D).

B. Proofs in the Discrete Case

For the proof of Theorem 1 we will need the following
lemma. It easily follows from Theorem 3.7 in Chapter 2
of [6] (see the Appendix). Recall the notation P, = P(a;)
and pi; = p(a;, a;).

Lemma 3: A probability mass function @Q* on A achieves
the infimum in (9) if and only if there exists a A* < 0 such
that the following all hold:

(a) Apg-(\")=D.

(b) If we define, for a;,a; € A,

eA*pij
X Q(ay)eX P

then the second marginal of W is @*.
(c) If Q*(a;) =0 for some j, then

W(a;,aj) = P;Q*(a;)

>\ Pij

2 Gt

Ezxample 5: Here we present a simple example illustrat-
ing the fact that it may happen that f(X;) = 0 for a
few isolated values D even when P is not uniform. Take
A=A=1{0,1,2}, let a = log,[3e/(4 — e)], and consider
the distortion measure

(pij) =

O = O
O O =
o Q9

Then with P = Q* = (4/13,4/13,5/13) and \* = —1, it
is straightforward to check that condition (b) of Lemma 3
holds (condition (c) is irrelevant here), and also (13) is sat-
isfied. Therefore, at D = A 5. (\") ~ 0.43, we must have
f(X1) = 0 with probability one. [Note, also, that the dis-
tortion measure used here is not a permutation distortion
measure.]

Proof of Theorem 1, (a): Suppose p is a permutation
distortion measure and P is the uniform distribution on A,
= 1/k for all i = 1,...,k. First we claim that for any
€ (0, Dmax) we can take @Q* to also be uniform. With
(aj) = 1/k for all j, it suffices to find A* < 0 satisfying
We

P =
D
Q*

(a) and ( ) of Lemma 3 (part (c) is irrelevant here).
have Dmln =0 and

Dpber —

max

Zkkp”__

where ¥ 2 >~; Pij,» which is independent of j (since p is a
permutation). Also by the permutation property, Dmax =
min; Ep[p(X,a;)] = min; >, (1/k)p;; = (1/k)E. Choose
and fix a D € (0, Dpax), and pick A* < 0 as in (10) so that
Lemma 3 (a) holds. With this A* and Q* being uniform
let W* be as in Lemma 3 (b); then

eN pii eNpij

2 W (e aj) Zkkw kZ

7 e Pijr



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. Y, MONTH 2000 105

But the sum in the denominator above

Z e*Pii' s independent of i (14)
j/

because p is a permutation, so ), W*(a;,a;) = 1/k =
Q*(a;), and (b) is satisfied. This proves that we can take
Q* to be uniform. Now simply multiplying (14) by 1/k we
obtain (13), and this implies that f(z) = 0 for all z € A.
Since D € (0, Dimax) was arbitrary, we are done. O

Proof of Theorem 1, (b): Let D,, n > 1, be a sequence
of of distortion values in (0, Dmax) for which f(X;) = 0
with probability one, and such that D, | 0. For each
D,,, we can pick @, and a A, < 0 as in (10) such that
R(Dy) = (loge)Ap o, (An) and D,y = Ao (An). Let

D= (minpi)(f.rglﬂﬂij) > 0.
i i#£j

Then for all n large enough so that D, < ﬁ, we must
have @ (a;) > 0 for all ¢ (otherwise it is trivial to check
that Ao (A) > D for any X < 0, contradicting the choice
of \,). From now on we restrict attention to these large
enough n’s. As discussed above, f(X;) = 0 with probabil-
ity one if and only if condition (13) holds, which, in this
case, becomes

k
Z Qn(aj)e i is independent of 7.

Jj=1

(15)

By Lemma 3 (b) we have that for all j

An pij

e
Pi * = ]-7
zi: > Qulag)er P
but by (15) the denominator is independent of i so

ZPieA"‘”J' =c¢,, independent of j.

(3

(16)

By (11), A, = —o0 as n — 00, so letting n — oo yields
P; = limyc, for all j, so P is the uniform distribution
(recall our assumption that p;; = 0 if and only if ¢ = j).
Moreover, from (16) it follows that

ZeA"’”f = ke, independent of j. (17)

(3

To show that p is a permutation, fix two arbitrary in-
dices j # j' and reorder the vectors (pij,...,pr;) and
(p1jry- s prj) so that their elements are nondecreasing.

Let (01,...,04) and (of,...,0}) be the corresponding or-
dered vectors. Then oy = o] = 0 and (17) implies that
k k
S Mot 2 37 Mnolah),
=2 =2

Next we show that if oo # o}, say o2 > oh, we get a
contradiction. Since o; — o4 > 0 for all ¢ > 2, the left-
hand-side above tends to 0 as n — oo, but the right-hand-
side is > 1. Therefore 02 = o). Continuing inductively,

o; = o} for all 4, so (p1j,...,pk;) and (p1jr,-..,prj) are
permutations of one another. Since j and j' were arbitrary,
this completes the proof. O

Proof of Corollary 1: As before, let D,, n > 1, be
a sequence of of distortion values in (0, Dyax) for which
f(X1) = 0 with probability one, and let @,, and A,, < 0 be
chosen such that R(D,) = (loge)Ap g (Ay). Since R(D)
is differentiable on (0, Dmax) (see [4, Theorem 2.5.1]), from
Lemma 2 we get that A, = (log, 2)R'(D,,). Moreover, since
we assume that R(D) is strictly convex on (0, Dpax), the
A are all distinct.

If the sequence {\,} is unbounded, i.e., it has a subse-
quence that tends to —oo, then we can proceed exactly as in
the proof of Theorem 1. So assume that the sequence {\,}
is bounded. Since for each n, R(P,Q,, D,) = R(D,) > 0,
there must be a subset S of {1,2,...,k} of size N, say,
with N = |S| > 2, such that infinitely many of the @, are
supported on {a; : j € S}. Without loss of generality we
can relabel the elements of A so that S = {1,2,...,N}. If
N = k then we can again repeat the argument in the proof
of Theorem 1.

Agsuming N < k — 1, we proceed to get a contradiction.
Since f(x) = 0 with probability one, condition (13) implies
that

k

> Qn

N
(aj)e)‘"p” = ZQn(aj)eA"p“ = ¢y, for alli.
Jj=1 j=1

Defining p;o = 0 for all ¢, and letting T'(\) denote the
(N + 1) x (N + 1) matrix with entries exp(Ap;;) for i =

1,2,...,N+1land 7 =0,1,...,N, the above conditions
imply that
—cn
Qn(al)
T(An) : = 0 RVt
Qn(aN)

Therefore det(T'(\,)) = 0 for all A,. The sequence {\,}
is bounded so it must have an accumulation point, and
since det(7'(\)) is an analytic function of A it can only
have isolated zeroes unless it is identically zero (see, e.g.,
the discussion in [1, Section 4.3.2]). So here we must have
that det(T(A)) = 0 for all A < 0. But as A — —oo, T'(X)
converges to the matrix

which has determinant equal to 1 or —1 (Iy denotes the
N x N identity matrix), and this provides the desired con-
tradiction. i
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C. Proofs in the Continuous Case

Proof of Theorem 2: We argue by contradiction. Suppose
f(X1) = 0 with probability one for some D € (0, Dpax)-
Choose a Q* and a A* < 0 as in (10). Then (13) implies
that

k
Z Q*(aj)e* @ = Constant, for P-almost all z,
j=1

but since P has an absolutely continuous component with
positive density on I, and since the functions r;(-) are
assumed to be continuous, this holds for all z € I, and
therefore contradicts the linear independence assumption
of Theorem 2. a

Proof of Theorem 3: First we observe that condition (a)
immediately implies condition (b). Therefore it suffices to
show that if condition (b) holds, f(X;) cannot be equal
to zero with probability one for distortion levels D > 0
arbitrarily close to zero. We proceed as in the proof of
Corollary 1. Assuming that there is a sequence D,,, n > 1,
of distortion values in (0, Dmax) for which f(X;) =0 with
probability one, and such that D, | 0, we will derive a
contradiction. Pick @, and A\, < 0 such that R(D,) =

(loge)Ap g, (An). By (13),
k
Z Qn(aj)e? i@ = ¢, for P-almost all z € I. (18)
j=1

Since P has an absolutely continuous component with pos-
itive density on I, and since the functions r;(-) are assumed
to be continuous, (18) holds for all € I. In particular, for
the points zo, . .., 2 in condition (b), (18) becomes

T(n) (=cny Quar), - ..

where T(A) is the (k + 1) x (k + 1) matrix with en-
tries exp(Ar;j(x;)), 0 < 4,5 < k, and v’ denotes the
transpose of a vector v. Therefore, since the entries of
the vector (@Qn(a1),...,Qn(ar)) sum to 1, it follows that

det(T'(\,)) = 0 for all n, or, equivalently,
Z(_l)sign(ﬂ') e)\n Z?:o ri(Zx(s))

™

— z:(_l)sign(ﬁ)e)\ns,r — 07

™

,Qn(ay))" =0 € R¥1,

det(T(\n)) =
(19)

where the sums are taken over all permutations 7 of
the set {0,1,...,k}, and the constants s, are given by

Z;":O 7j(2x(j)). Therefore, for any real number s > 0, we
must have that

Z (_l)sign(n) =0.

T:8x=8§

(20)

To see this, let {s(1),s(2),...} be the (finite) increasing
sequence of all possible values for the constants s,. Then
(19) implies that

Z (_l)sign(ﬂ)e)\ns(l) +

m:sy=5(1)

Z (_l)sign(ﬁ)e)\ns,r =0.

m:sy>s(1)

By (11), A\, = —00 as n — 00, so multiplying both sides
by e~*5(1) and letting n — oo yields (20) with s = s(1).
Continuing this way with s(2), then s(3) and so on, proves
(20) for all s.

But now notice that condition (b) implies that, if 7*
denotes the identity permutation, then s, # s« for all
other permutations 7. Therefore, taking s = s« in (20)
we get the desired contradiction. a

Proof of Corollary 2: Let D,, n > 1, be a sequence of
distortion values in (0, Dyax) for which f(X;) = 0 with
probability one, and pick @, and A, < 0 as in the proof
of Theorem 3. If the sequence {),} is unbounded, we can
repeat the exact same proof as for Theorem 3. So assume
that {\,} is bounded. Since we also assume that R(D) is
differentiable and strictly convex, it follows from Lemma, 2
that the A, = (log, 2)R'(D,,) are all distinct. Proceeding
as in the proof of Theorem 3, we get that det(f(x\)) = (0 for
all A = A,. The sequence {\,} is bounded so it must have
an accumulation point, and det(T'(\)) is an analytic func-
tion of A. Therefore, arguing as in the proof of Corollary 1,
det(T'(M\)) = 0 for all A < 0. So we can find a sequence
A — —oo for which det(T'(\,)) = 0. With X in place
of A,, the argument proceeds exactly as in the proof of
Theorem 3. o
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APPENDIX

Proof of (11): Suppose (11) is false. Then it is possible to
pick a constant K < oo and a sequence of D,, € (0, Dpax)
with corresponding \; < 0, such that D, — 0 as n — o0
but A;, > —K for all n. Let @} achieve (9) with D = D,,,
so that

@z (A5) = Dy (21)

For each n, recalling that p(z,y) < M for all z,y,

P.o.(An) Ep

Eq, (p(X,Y)ermp(XY))
EQn (6A:LP(X7Y))

Ep [EQn (p(X7Y)e>‘:p(X’Y))}

Eq, [Ep (p(X,Y)e FM)]

—KM
€ Dax,

vV IV IV

which is bounded away from zero. Since the D,, | 0, this
contradicts (21). a

Proof of Lemma 2: Part (i) immediately follows from
the minimax representation in [10, Lemma 2]. For (ii)
note that, since Apg(\) is continuous and convex in A
(Lemma 1), I'(\) is lower semicontinuous and convex. Then
by convex duality (see, e.g., Lemma 4.5.8 in [7]), it follows
that T'(\) = sup, o[ z — (log, 2)R(z)]. For D € (0, Dmax)
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and \* as in (10), we have

I'(A*) =X*D — (log, 2)R(D) = sup[X\*z — (log, 2)R(z)].
x>0
But since R(-) is convex and (by assumption) differentiable

at D, it must be that the derivative of [\"z — (log, 2) R(z)]
vanishes at z = D, i.e., \* = (log, 2)R'(D). O

Proof of Lemma 3: First suppose that for some \* < 0,
(a), (b) and (c) all hold. For i =1,...,k, let

Zj Q*(aj)eA*Pij ’
Then (b) and (c) imply that equations (3.19) and (3.20) in
[6, p- 145] are satisfied with 6 = —\*, so by [6, Theorem 3.7]

equation (3.18) is satisfied by W*. This, together with
Lemma 3.1 in [6, Chapter 2] implies that

B;

R(D) = HW||PxWy)

where W5 is the second marginal of W*. But Wy = Q*,
so R(D) = Ep[HW*(:|X)||Q*(-))], and by the defini-
tion of W* and Proposition 1, Ep[H(W*(-|X)||Q*(-))] =
R(P,Q*, D).

Conversely, suppose Q* achieves the infimum in (9).
Then by Lemma 1 there is a (unique) \* < 0 such that
(a) holds, and letting W* be defined as in (b) we also have

R(D) Y R(P,Q",D)
O g IPx Q)
O HWHPxWE) + HWE|QY)
<§> H(W*||PxW5)
Y R

where (a) follows by assumption; (b) from (10), Proposi-
tion 1 and the definition of W*; (¢) by the chain rule for
relative entropy (see [5, Theorem 2.5.3]); (d) is because rel-
ative entropy is nonnegative; and (e) follows from the defi-
nition of R(D) in (8). Therefore H(W5:||Q*) = 0, implying
(b). Finally note that the above argument shows that W*
achieves R(D). Then by Theorem 3.7 in [6, p. 145] W*
satisfies equation (3.18) of [6, p. 145] with 6 = —\*, and
by the uniqueness of the constants B; and equation (3.19)
of [6, p. 145] we get (c). O
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