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1 Introduction

Concentration of measure is a well-studied phenomenon, and in the past 30 years or so it has been
explored through a wide array of tools and techniques; [14][11][12] offer broad introductions. Results
in this area are equally well motivated by theoretical questions (in areas such as geometry, functional
analysis and probability), as by numerous applications in different fields including the analysis of
algorithms, mathematical physics and empirical processes in statistics.

From the probabilistic point of view, measure concentration describes situations where a random
variable is strongly concentrated around a particular value. This is typically quantified by the rate
of decay of the probability that the random variable deviates from that value (usually its mean or
median) by a certain amount. As a simple concrete example consider a function f(W ) of a Poisson(λ)
random variable W ; if f : Z+ → R is 1-Lipschitz, i.e., |f(k)−f(k+1)| ≤ 1 for all k ∈ Z+ = {0, 1, 2, . . .},
then [2],

Pr
{
f(W )− E[f(W )] > t

}
≤ exp

{
− t

4
log

(
1 +

t

2λ

)}
. (1)

Although the distribution of f(W ) may be quite complex, (1) provides a simple, explicit bound on
the probability that it deviates from its mean by an amount t. This is a general theme: Under
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appropriate conditions, it is possible to derive useful, accurate bounds of this type for a large class of
random variables with complex and often only partially known distributions. We also note that the
consideration of Lipschitz functions is motivated by applications, but it is also related to fundamental
concentration properties captured by isoperimetric inequalities [11].

The bound (1) was established in [2] using the so-called “entropy method,” pioneered by Ledoux
[9][10][11]. The entropy method consists of two steps. First, a (possibly modified) logarithmic-Sobolev
inequality is established for the distribution of interest. Recall that, for an arbitrary probability
measure µ and any nonnegative function f on the same space, the entropy functional Entµ(f) is
defined by

Entµ(f) = ∫ f log fdµ− (∫ fdµ) log(∫ fdµ),

whenever all the above integrals exist. In the case of the Poisson, Bobkov and Ledoux [2] proved the
following modified log-Sobolev inequality: Writing Pλ for the Poisson(λ) measure, for any function
f : Z+ → R with positive values,

EntPλ
(f) ≤ λEPλ

[ 1
f
|Df |2

]
,

where Df(k) = f(k + 1) − f(k), k ≥ 0, is the discrete gradient, and Eµ denotes the expectation
operator with respect to a measure µ. In fact, they also established the following sharper bound
which we will use below; for any function f on Z+,

EntPλ

(
ef

)
≤ λEPλ

[
ef

{
|Df |e|Df | − e|Df | + 1

}]
. (2)

The second step in the entropy method is the so-called Herbst argument: Starting from some
Lipschitz function f , the idea is to use the modified log-Sobolev inequality to obtain an upper bound
on the entropy of eτf , and from that to deduce a differential inequality for the moment-generating
function G(τ) = E[eτf ] of f . Then, solving the differential inequality yields an upper bound on G(τ),
and this leads to a concentration bound via Markov’s inequality.

Our main goal in this work is to carry out a similar program for an arbitrary compound Poisson
measure on Z+. Recall that for any λ > 0 and any probability measure Q on the natural numbers
N = {1, 2, . . .}, the compound Poisson distribution CP(λ, Q) is the distribution of the random sum

Z
D=

W∑
i=1

Xi,

where W ∼ Poisson(λ) and the Xi are independent random variables with distribution Q on N,
also independent of W ; we denote the CP(λ, Q) measure by CPλ,Q. The class of compound Poisson
distributions is much richer than the one-dimensional Poisson family. In particular, the CP(λ, Q)
law inherits its tail behavior from Q: CP(λ, Q) has finite variance iff Q does, it has exponentially
decaying tails iff Q does, and so on [13]. It is in part from this versatility of tail behavior that the
compound Poisson distribution draws its importance in many applications. Alternatively, CP(λ, Q) is
characterized as the infinite divisible law without a Gaussian component and with Lévy measure λQ.

From the above discussion we observe that the Herbst argument is heavily dependent on the use of
moment-generating functions, a fact which implicitly assumes the existence of exponential moments.
Our main contribution is a modification of the Herbst argument for the case when the random variables
of interest do not satisfy such exponential integrability conditions. We derive what appear to be
perhaps the first concentration inequalities for a class of infinitely divisible random variables that
have finite variance but do not have finite exponential moments. Apart from the derivation of the
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present results, the modified Herbst argument is applicable in a variety of other cases and may be of
independent interest. In particular, this approach can be applied to prove dimension-free inequalities
for compound Poisson vectors, as well as power-law concentration bounds for more general infinitely
divisible laws.

Our starting point is the following modified log-Sobolev inequality for the compound Poisson
measure CPλ,Q.

Theorem 1. [Modified Log-Sobolev Inequality for Compound Poisson Measures] For
any λ > 0, any probability measure Q on N and any bounded f : Z+ → R,

EntCPλ,Q

(
ef

)
≤ λ

∑
j≥1

QjECPλ,Q

[
ef

{
|Djf |e|Djf | − e|D

jf | + 1
}]

, (3)

where Djf(k) = f(k + j)− f(k), for j, k ∈ Z+.

This can be derived easily from [15, Cor 4.2] of Wu, which was established using elaborate stochastic
calculus techniques. In Section 3 we also give an alternative, elementary proof, by tensorizing the
Bobkov-Ledoux result (2). Note the elegant similarity between the bounds in (2) and (3).

We then apply our modified Herbst argument to establish concentration bounds for CP(λ, Q)
measures under various assumptions on the tail behavior of Q. These are stated in Section 2 and
proved in Section 4. For example, we establish the following polynomial concentration result. Recall
that a function f : Z+ → R is K-Lipschitz if |f(j + 1)− f(j)| ≤ K for all j ∈ Z+.

Corollary 2. [Polynomial Concentration] Suppose that Z has CP(λ, Q) distribution where Q
has finite moments up to order L,

L = sup
{
τ ≥ 1 :

∑
j≥1j

τ Qj < ∞
}

> 1,

and write qr for its integer moments,

qr =
∑

j≥1j
r Qj , r ∈ N.

If f : Z+ → R is K-Lipschitz, then for any positive integer n < L and any t > 0 we have,

Pr
{
|f(Z)− E[f(Z)]| > t

}
≤ A ·Bn · t−n,

where for the constants A,B we can take,

A = exp
{

λ
n∑

r=1

(
n

r

)
qrK

r − λn log K
}

B = 2|f(0)|+ 2Kλq1 + 1.

Various stronger and more general results are given in Section 2. There, at the price of more
complex constants, we get bounds which, for large t, are of (the optimal) order t−L+δ for any δ > 0.
Moreover, since the only property of the compound Poisson distribution used in the proof is that it
satisfies the functional inequality of Theorem 1, similar bounds are immediately seen to hold for any
measure that satisfies such an inequality. Note that although the bound of Corollary 2 is not useful
for small t, it is in general impossible to obtain meaningful results for arbitrary t > 0. For example, if
f is the identity function and Z ∼ Poisson(λ) where λ is of the form m + 1/2 for an integer m, then
|Z − E(Z)| ≥ 1/2 with probability 1; a more detailed discussion is given in Section 2.
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As noted above, these appear to be some of the first non-exponential concentration bounds that
have been derived, with the few recent exceptions discussed next. Of the extensive current literature
on concentration, our results are most closely related to the work of Houdré and his co-authors. Using
sophisticated technical tools derived from the “covariance representations” developed in [7][8], Houdré
[5] obtained concentration bounds for Lipschitz functions of infinitely divisible random vectors with
finite exponential moments. In [6], truncation and explicit computations were used to extend these
results to the class of stable laws on Rd, and the preprint [4] extends them further to a large class
of functionals on Poisson space. To our knowledge, the results in [6][4] are the only concentration
bounds with power-law decay to date. But when specialized to scalar random variables they only
apply to distributions with infinite variance, whereas our results hold for compound Poisson random
variables with a finite Lth moment for any L > 1. Although the methods of [6][4] as well as the form
of the results themselves are very different from those derived here, some more detailed comparisons
are possible as outlined in Section 2. Finally, the recent paper [3] contains a different extension of the
Herbst argument to certain situations where exponential moments do not exist. The focus there is on
moment inequalities for functions of independent random variables, primarily motivated by statistical
applications.

2 Concentration Bounds

The following result is the main motivation for this paper. It illustrates the potential for using the
Herbst argument even in cases where the existence of exponential moments fails or cannot be assumed.

Theorem 3. [Power-law Concentration] Suppose that Z has CP(λ, Q) distribution where Q
has finite moments up to order L,

L = sup
{
τ ≥ 1 :

∑
j≥1j

τ Qj < ∞
}

> 1,

and write q1 =
∑

j≥1j Qj for its first moment.

(i) If f : Z+ → R is K-Lipschitz, then for any t > 0 and ε > 0 we have,

Pr
{
|f(Z)− Ef(Z)| > t

}
≤ exp

{
inf

0<α<L

[
Iε(α) + α log

(2|f(0)|+ 2Kλq1 + ε

t

)]}
, (4)

where

Iε(α) = λ
∑
j≥1

Qj

{
Cα

j,ε − 1− α log Cj,ε

}
Cj,ε = 1 +

jK

ε
.

(ii) The upper bound (4) is meaningful (less than 1) iff t > T := 2|f(0)|+ 2Kλq1 + ε, and then,

Pr
{
|f(Z)− Ef(Z)| > t

}
≤ exp

{
−

∫ log(t/T )

0
i−1
ε (s)ds

}
where iε(α) := I ′ε(α) = λ

∑
j≥1 Qj [Cα

j,ε − 1] log Cj,ε.
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Remarks.
1. Taking α = L− δ for any δ > 0 in the exponent of (4), we get a bound on the tails of f(Z) of

order t−(L−δ) for large t. By considering the case where f is the identity function f(k) = k, k ∈ Z+,
we see that this power-law behavior is in fact optimal. In particular, this shows that the tail of the
CP(λ, Q) law decays like the tail of Q, giving a quantitative version of a classical result from [13].

2. As will become evident from the proof, Theorem 3 holds for any random variable Z with law µ
instead of CPλ,Q, as long as µ satisfies the log-Sobolev inequality of Theorem 1 with respect to some
probability measure Q on N and some λ > 0, and assuming that µ has finite moments up to order L.
The bound (4) remains exactly the same, except that the first moment M1 = E[Z] of µ replaces λq1.

3. Integrability properties follow immediately from the theorem: For any K-Lipschitz function f ,
ECPλ,Q

[|f |τ ] < ∞ for all τ < L, and the same holds for any law µ as in the previous remark.

Since the support of CP(λ, Q) is Z+, we would naturally expect the range of f to be highly dis-
connected. Therefore, to somewhat simplify the expression in the exponent of (4) next we concentrate
on the (typical) class of functions f : Z+ → R whose mean under CPλ,Q is not in the range of f :

Corollary 4. [Power-law Concentration for Nice f ] Suppose that Z has CP(λ, Q) distribution
where Q has finite moments up to order L > 1, and write q1 for its first moment. If f : Z+ → R is
K-Lipschitz and there exists ε > 0 such that

|f(j)− E[f(Z)]| ≥ ε, for all j ∈ Z+,

then for any t > 0 we have,

Pr
{
|f(Z)− Ef(Z)| > t

}
≤ exp

{
inf

0<α<L

[
Iε(α) + α log(D/t)

]}
, (5)

where Iε(α) is defined as in Theorem 3, and D := E|f(Z)− E[f(Z)]|.

Remarks.
4. Similarly to Theorem 3, this corollary gives quantitative bounds on the tail of f(Z) of the order

of t−(L−δ) for any δ > 0. Also, the same result holds for any law µ as in Remark 2.
5. The exponent in (5) becomes negative exactly when t > D, for the same reasons as in Theorem 2.

On the other hand, it is obvious that any bound can only be useful for t > D0 := mink∈Z+ |f(k) −
E[f(Z)]|, since the probability that |f(Z) − E[f(Z)]| ≥ D0 is equal to one. Moreover, D and D0

coincide in many special cases, as, e.g., when the range of f is a lattice in R and its mean E[f(Z)] is
on the midpoint between two lattice points. In this sense, the restriction t > D is quite natural.

6. The expression 2|f(0)| + 2Kλq1 in Theorem 3 is simply an upper bound to the constant
D = E|f(Z)− E[f(Z)]| appearing in Corollary 4. In both cases, when L > 2 it is possible to obtain
potentially sharper results by bounding D above using Jensen’s inequality by,[

{K2λq2 + {|f(0)|+ Kλq1}2
] 1

2 ,

where q2 is the second moment of Q. Similar expressions can be derived in the case of higher moments.
7. The most closely related results to our power-law concentration bounds appear to be in the

recent preprint [4].1 The relevant bounds in [4] specialized to Lipschitz functions of CP(λ, Q) random
variables require that the probability measure Q be non-atomic, which excludes all the cases we

1The results in [4] are stated in the much more general setting of functionals on an abstract Poisson space. Using the
Wiener-Ito decomposition, any infinitely divisible random variable can be represented as a Poisson stochastic integral,
which in turn can be realized as a “nice” functional on Poisson space.
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consider. But shortly after the first writing of this paper C. Houdré in a personal communication
informed us that this assumption can be removed by an appropriate construction. The details have
not been checked by us, but in the following comparison we assume that it does not change the
statements in [4]. The main assumptions in [4] are that the random variable of interest has infinite
variance, and also certain growth conditions. Because of the infinite-variance assumption, the majority
of the results in this paper (corresponding to L > 2) apply to cases that are not covered in [4]. As
for the growth conditions, they are convenient to check in several important special classes, e.g., for
α-stable laws on R, but they can be unwieldy in the compound Poisson case, especially as they depend
on Q in an intricate way. On the other hand, if Q has infinite variance, [4, Cor. 5.3] gives optimal-order
bounds, including the case when Q has infinite mean, for which our results do not apply.

Next we show how the Herbst argument can be used to recover precisely a result of [5] in the case
when we have exponential moments.

Theorem 5. [Exponential Concentration] [5] Suppose that Z has CP(λ, Q) distribution where
Q has finite exponential moments up to order M ,

M = sup
{
τ ≥ 0 :

∑
j≥1e

τj Qj < ∞
}

> 0.

If f : Z+ → R is K-Lipschitz, then for any t > 0 we have,

Pr
{
f(Z)− Ef(Z) > t

}
≤ exp

{
inf

0<α<M/K
[H(α)− αt]

}
= exp

{
−

∫ t

0
h−1(s) ds

}
, (6)

where H(α) := λ
∑

j≥1 Qj [eαKj − 1− αKj], and h−1 is the inverse of h(α) := H ′(α).

Remarks.
8. Theorem 1 of [5] gives concentration bounds for a class of infinitely divisible laws with finite

exponential moments, and in the compound Poisson case it reduces precisely to (6), which also applies
to any random variable Z whose law satisfies the result of Theorem 1. It is also interesting to note
that Theorem 5 can be derived by applying [15, Prop 3.2] to a compound Poisson random variable
(constructed via the Wiener-Ito decomposition), and then using Markov’s inequality.

9. Theorems 3 and 5 easily generalize to Hölder continuous functions. In the discrete setting of
Z+, f is K-Lipschitz iff it is Hölder continuous for every exponent β ≥ 1 with the same constant K.
But if f is Hölder continuous with exponent β < 1, this more stringent requirement makes it possible
to strengthen Theorem 3 and Theorem 5, by respectively redefining, Cj,ε = 1 + jβK

ε , and

H(α) = λ
∑
j≥1

Qj

[
eαKjβ − 1− αKjβ

]
.

10. While all our power-law results dealt with two-sided deviations, the bound in Theorem 5 is one-
sided. The reason for this discrepancy is that the last step in all the relevant proofs is an application
of Markov’s inequality, which leads us to restrict attention to nonnegative random variables. When
exponential moments exist, the natural consideration of the exponential of the random variable takes
care of this issue, but in the case of regular moments we are forced to take absolute values.

3 Proof of Theorem 1

An alternative representation for the law of a CP(λ, Q) random variable Z is in terms of the series

Z
D=

∞∑
j=1

j Yj , Yj ∼ Poisson(λQj), (7)
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where the Yj are independent.
For each n, let µn denote the joint (product) distribution of (Y1, . . . , Yn). In this instance, the

tensorization property of the entropy [1][10][11] can be expressed as

Entµn(G) ≤
n∑

j=1

E
[
EntPλQj

(
Gj(Y1, . . . , Yj−1, ·, Yj+1, . . . , Yn)

)]
, (8)

where G : Zn
+ → R+ is an arbitrary function, and the entropy on the right-hand side is applied to the

restriction Gj of G to its jth co-ordinate. Now given an f as in the statement of the theorem, define
the functions G : Zn

+ → R+ and H : Zn
+ → R+ by

H(y1, . . . , yn) = f
( n∑

k=1

kyk

)
, yn

1 ∈ Zn
+,

and G = eH . Let µ̄n denote the distribution of the sum Sn :=
∑n

k=1 kYk and write Hj : Z+ → R for
the restriction of H to the variable yj with the remaining yi’s fixed. Applying (8) to G we obtain,

Entµ̄n(ef ) = Entµn(G) ≤
n∑

j=1

E
[
EntPλQj

(
Gj(Y1, . . . , Yj−1, ·, Yj+1, . . . , Yn)

)]
=

n∑
j=1

E
[
EntPλQj

(
eHj(Y1,...,Yj−1,·,Yj+1,...,Yn)

)]
.

Using the Bobkov-Ledoux inequality (2) to bound each term in the above sum, and noting that,
trivially, DHj(y1, . . . , yn) = Djf(

∑n
k=1 kyk),

Entµ̄n(ef ) ≤
n∑

j=1

λQjEµn

[
eH

{
|DHj |e|DHj | − e|DHj | + 1

}]
= λ

n∑
j=1

QjEµ̄n

[
ef

{
|Djf |e|Djf | − e|D

jf | + 1
}]

,

≤ λ

∞∑
j=1

QjEµ̄n

[
ef

{
|Djf |e|Djf | − e|D

jf | + 1
}]

, (9)

where the last inequality follows from the fact that xex − ex + 1 ≥ 0 for x ≥ 0.
Finally, we want to take the limit as n →∞ in (9). Since µ̄n ⇒ CPλ,Q as n →∞ by (7), and since

f is bounded, by bounded convergence

Entµ̄n(ef ) → EntCPλ,Q
(ef ), n →∞. (10)

Similarly, changing the order of summation and expectation in the right-hand side of (9) by Fubini,
taking n →∞ by bounded convergence, and interchanging the order again, it converges to

λ
∑
j≥1

QjECPλ,Q

[
ef

{
|Djf |e|Djf | − e|D

jf | + 1
}]

.

This together with (10) implies that (9) yields the required result upon taking n →∞. 2
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4 Concentration Proofs

For notational convenience we define the function η(x) := xex − ex + 1, x ∈ R, and note that it is
non-negative; it achieves its minimum at 0; it is strictly convex on (−1,∞) and strictly concave on
(−∞,−1); it decreases from 1 to 0 as x increases to zero, and it is increasing to infinity for x > 0.

The main technical ingredient of the paper is the following proposition, which is based on a
modification of the Herbst argument.

Proposition 7. Suppose that Z has CP(λ, Q) distribution where Q has finite moments up to order
L > 1. If f : Z+ → R is bounded and K-Lipschitz, then for t > 0, ε > 0 and α ∈ (0, L), we have,

Pr{|f(Z)− Ef(Z)| > t} ≤ exp
{

Iε(α) + αE[log gε(Z)]− α log t
}

,

where Iε(α) is defined as in Theorem 3 and

gε(x) := |f(x)− E[f(Z)]| I{ |f(x)−E[f(Z)]|≥ε } + ε I{ |f(x)−E[f(Z)]|<ε }.

Proof of Proposition 7. Since f is bounded, by its definition gε is also bounded above by
2‖f‖∞ + ε and below by ε. Therefore, the moment generating function G(τ) := E[gε(Z)τ ] is well-
defined for all τ > 0. Moreover, since both gε and log gε are bounded, dominated convergence justifies
the following differentiation under the integral,

G′(τ) = E

[
∂

∂τ
eτ log gε(Z)

]
= E

[
gε(Z)τ log gε(Z)

]
so we can relate G(τ) to the entropy of gτ

ε ,

EntCPλ,Q
(gτ

ε ) = τG′(τ)−G(τ) log G(τ) = τ2G(τ)
d

dτ

[
log G(τ)

τ

]
. (11)

In order to bound this entropy we will apply Theorem 1 to the function φ(x) := τ log gε(x). First
we observe that gε can be written as the composition gε = h ◦ (f − E[f(Z)]), where it is easy to
verify that the function h(x) := |x|I{|x|≥ε} + εI{|x|<ε} is 1-Lipschitz. And since f is K-Lipschitz by
assumption, gε is itself K-Lipschitz. Hence we can bound Djφ as

Djφ(x) = τ log
∣∣∣∣gε(x + j)

gε(x)

∣∣∣∣ ≤ τ log
(

1 +
∣∣∣∣Djgε(x)

gε(x)

∣∣∣∣) ≤ τ log
(

1 +
jK

ε

)
= τ log Cj,ε.

The same argument also yields a corresponding lower bound, so that |Djφ(x)| ≤ τ log Cj,ε. Applying
Theorem 1 to φ gives,

EntCPλ,Q
(gτ

ε ) = EntCPλ,Q
(eφ) ≤ λ

∑
j≥1

QjECPλ,Q
[eφη(|Djφ|)] ≤ λG(τ)

∑
j≥1

Qjη(τ log Cj,ε),

since η(x) is increasing for x ≥ 0. Combining this with (11) we obtain the following differential
inequality valid for all τ > 0:

d

dτ

[
log G(τ)

τ

]
≤ λ

∑
j≥1

Qj
η(τ log Cj,ε)

τ2
.
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To solve, we integrate with respect to τ on (0, α] to obtain, for any α < L,

log G(α)
α

− E[log gε(Z)] ≤ λ
∑
j≥1

Qj

∫ α

0

η(τ log Cj,ε)
τ2

dτ

= λ
∑
j≥1

Qj log Cj,ε

∫ α log Cj,ε

0

η(s)
s2

ds

= λ
∑
j≥1

Qj log Cj,ε

[
es − 1− s

s

]α log Cj,ε

0

= Iε(α)/α,

or, equivalently,

G(α) ≤ exp
{
αE[log gε(Z)] + Iε(α)

}
, (12)

where the exchange of sum and integral is justified by Fubini’s theorem since all the quantities involved
are nonnegative. To complete the proof we observe that gε ≥ |f − E[f(Z)]|, so that by (12) and an
application of Markov’s inequality,

Pr
{
|f(Z)− E[f(Z)]| > t

}
≤ Pr

{
gε(Z) > t

}
= Pr

{
gε(Z)α > tα

}
≤ t−α ·G(α)

≤ exp
{

Iε(α) + αE[log gε(Z)]− α log t

}
. 2

Using Proposition 7 we can prove our main results, Theorem 3 and Corollaries 2 and 4.

Proof of Theorem 3. The first step is to bring the upper bound in Proposition 7 into a more
tractable form. Observe that by its definition, gε(x) ≤ |f(x) − E[f(Z)]| + ε, so that, by Jensen’s
inequality, for a function f satisfying the hypotheses of Proposition 7,

E[log gε(Z)] ≤ log E[gε(Z)] ≤ log
[
E

{
|f(Z)− E[f(Z)]|

}
+ ε

]
. (13)

Thus the upper bound in Proposition 7 can be weakened to

Pr
{
|f(Z)− E[f(Z)]| > t

}
≤ exp

{
Iε(α) + α log

(
D + ε

)
− α log t

}
, (14)

where D := E
{
|f(Z)−E[f(Z)]|

}
. Next we use the Lipschitz property of f to obtain an upper bound

for the above exponent which is uniform over all f with f(0) fixed. Since f(j) ∈ [f(0)−Kj, f(0)+Kj],
we have |f(j)| ≤ |f(0)|+ Kj, and hence

D ≤ 2E|f(Z)| ≤ 2|f(0)|+ 2Kλq1,

where we used the fact that the mean of the CP(λ, Q) law is λq1. Substituting in (14) and taking
the infimum over α yields the required result (4), and it only remains to remove the boundedness
assumption on f . But since the bound itself only depends on f via f(0) and K, truncating f at level
±n and passing to the limit n →∞ proves part (a).
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With T = 2|f(0)|+ 2Kλq1 + ε, in order to evaluate the exponent

inf
0<α<L

[
Iε(α) + α log

(
T/t

)]
(15)

in (4), we calculate the first two derivatives of Iε(α) with respect to α as,

I ′ε(α) = λ
∑
j≥1

Qj [Cα
j,ε − 1] log Cj,ε and I ′′ε (α) = λ

∑
j≥1

QjC
α
j,ε(log Cj,ε)2,

where the exchange of differentiation and expectation is justified by dominated convergence; observe
that, since Cj,ε > 1, both are positive for all α > 0. In particular, since Iε(α) > 0, the exponent (15)
can only be negative (equivalently, the bound in (4) can only be less than 1) if the second term in (15)
is negative, i.e., if t > T . On the other hand, since I ′ε(0) = 0 and I ′′ε (α) > 0 for all α, we see that Iε(α)
is locally quadratic around α = 0. This means that, as long as t > T , choosing α sufficiently small we
can make (15) negative, therefore the bound of the theorem is meaningful precisely when t > T .

To obtain the alternative representation, fix any ε > 0 and set iε(α) = I ′ε(α). Since I ′′ε (α) is strictly
positive, for t > T the expression Iε(α) + α log(T/t) is uniquely minimized at α∗ > 0 which solves
iε(α) = log(t/T ) > 0. Hence, for all t > T , integrating by parts,

min
0<α<L

[
Iε(α) + α log(T/t)

]
= Iε(α∗) + α∗ log(T/t)

=
∫ α∗

0
iε(s)ds + α∗ log(T/t)

=
∫ iε(α∗)

0
x di−1

ε (x) + α∗ log(T/t)

= iε(α∗)i−1
ε

(
iε(α∗)

)
−

∫ iε(α∗)

0
i−1
ε (x)dx + α∗ log(T/t)

= −
∫ log(t/T )

0
i−1
ε (x)dx,

which proves part (b). 2

Proof of Corollary 4. The proof is identical to that of Theorem 3, with the only difference
that, since here we simply have gε(x) = |f(x)− E[f(Z)]| for all x, we can replace the bound (13) by
E[log gε(Z)] ≤ log D, where D = E|f(Z)− E[f(Z)]|. Proceeding as before gives the result. 2

Proof of Corollary 2. This is an application of Theorem 3 for specific values of α and ε:
Bounding the infimum by the value at α = n and taking ε = 1,

Pr
{
|f(Z)− Ef(Z)| > t

}
≤ exp

{
I1(n) + n log

(2|f(0)|+ 2Kλq1 + 1
t

)]}
. (16)

Using the binomial theorem to expand I1(n),

I1(n) = λ
∑
j≥1

Qj

{
Cn

j,1 − 1− n log Cj,1

}
= λ

∑
j≥1

Qj

{
(1 + jK)n − 1

}
− λn

∑
j≥1

Qj log(1 + jK)

≤ λ
∑
j≥1

Qj

n∑
r=1

(
n

r

)
(jK)r − λn

∑
j≥1

Qj [log j + log K]

≤ λ

n∑
r=1

(
n

r

)
Krqr − λn log K.

Substituting this bound into (16) and rearranging yields the result. 2
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Next we go on to prove the exponential concentration result Theorem 5 using the classical Herbst
argument in conjunction with the modified log-Sobolev inequality of Theorem 1.

Proof of Theorem 5. We proceed similarly to the proof of Proposition 7. Assume f is a bounded
and K-Lipschitz, and let F (τ) = E[exp{τf(Z)}], τ > 0 be the moment-generating function of f(Z).
Dominated convergence justifies the differentiation

F ′(τ) = E[f(Z)eτf(Z)],

so we can relate F ′(τ) to the entropy of eτf by

EntCPλ,Q
(eτf ) = τF ′(τ)− F (τ) log F (τ) = τ2F (τ)

d

dτ

[
log F (τ)

τ

]
. (17)

Since f is K-Lipschitz, the function g := τf is τK-Lipschitz, so that |Djg| ≤ τKj. Applying
Theorem 1 to g,

EntCPλ,Q
(eτf ) = EntCPλ,Q

(eg) ≤ λ
∑
j≥1

QjE
[
eg(Z)η(|Djg(Z)|)

]
≤ λF (τ)

∑
j≥1

Qj η(jτK).

Combining this with (17) yields

d

dτ

[
log F (τ)

τ

]
≤ λ

∑
j≥1

Qj

{
η(jτK)

τ2

}
,

and integrating with respect to τ from 0 to α > 0 we obtain

log F (α)
α

− E[f(Z)] ≤ λ

∫ α

0

∑
j≥1

Qj

{
η(jτK)

τ2

}
dτ

= λ
∑
j≥1

jKQj

∫ jαK

0

η(s)
s2

ds

= λ
∑
j≥1

Qj

[
ejKα − 1− jKα

α

]
,

where the exchange of the sum and integral is justified by Fubini’s theorem since the integrand is
nonnegative. Therefore, we have the following a bound on the moment-generating function F ,

F (α) ≤ exp
{
αE[f(Z)] + H(α)

}
, α > 0, (18)

where H(α) = λ
∑

j Qj

[
ejKα − 1− jKα

]
. An application of Markov’s inequality now gives

Pr
{
f(Z)− E[f(Z)] > t

}
≤ e−αtE

[
exp

{
α[f(Z)− E[f(Z)])]

}]
= e−αtF (α)e−αE[f(Z)]

≤ exp
{
H(α)− αt

}
.

The removal of the boundedness assumption is a routine truncation argument as in the proof of
Theorem 3 or in [2][5]. In order to obtain the best bound for the deviation probability, we minimize the
exponent over α ∈ (0,M/K). This yields the first expression in Theorem 5; the second representation
follows from a standard argument as in the last part of the proof of Theorem 3 or [5]. 2
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