Efficient Sphere-Covering and Converse Measure Concentration

Via Generalized Source Coding Theorems

[. Kontoyiannis

Technical Report TR-99-26, Department of Statistics, Purdue University.
October 1999; revised May 2000.

Abstract

Suppose A is a finite set, let P be a discrete probability distribution on A, and let M be
an arbitrary “mass” function on A. We give a precise characterization of the most efficient
way in which A™ can be almost-covered using spheres of a fixed radius. An almost-covering
is a subset C),, of A", such that the union of the spheres centered at the points of C,, has
probability close to one with respect to the product distribution P™. Spheres are defined
in terms of a single-letter distortion measure on A™, an efficient covering is one with small
mass M™(Cy,), and n is typically large. In information-theoretic terms, the sets C,, are
rate-distortion codebooks, but instead of minimizing their size we seek to minimize their
mass. With different choices for M and the distortion measure on A our results give various
corollaries as special cases, including Shannon’s classical rate-distortion theorem, a version
of Stein’s lemma (in hypothesis testing), and a new converse to some measure-concentration
inequalities on discrete spaces. Under mild conditions, we generalize our results to abstract

spaces and non-product measures.
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1 Introduction

Suppose A is a finite set and let P a discrete probability mass function on A (more general
probability spaces are considered later). Assume that the distortion (or distance) p(z,y) between
two symbols (or points) z and y from A is measured by a fixed p: Ax A — [0,00), and for each

n > 1 define a single-letter distortion measure (or coordinate-wise distance function) p,, by
(2, y1) Zp iy i), (1)

for 2 = (x1,29,...,2y) and y7 = (y1,Y2,...,Ypn) in A™.
Given a D > 0, we want to “almost” cover the product space A™ using a finite number of
balls (or “spheres”) B(y}, D), where

B(yt', D) = {af € A" : pn(a7,y7) < D} (2)

is the (closed) ball of distortion-radius D centered at yi' € A™. For our purposes, an “almost
covering” is a subset C' C A", such that the union of the balls of radius D centered at the points
of C have large P™-probability, that is,

P"([C],) is close to 1, (3)

where [C],, is the D-blowup of C

[Cl, = | B.D)={a} : pa(al,y!) < D for some yf € C}.
yred
More specifically, given a “mass function” M : A — (0,00), we are interested in covering A"

efficiently, namely, finding sets C' that satisfy (3) and also have small mass

=D M) =) [[M)
yre’

yreC i=1
One way to state our main question of interest is as follows:

If the sets {Cy, ; n > 1} asymptotically D-cover A™, that is,
(%) P ([Cr]l,) =1 asn— oo,

how small can their masses M™(Cy,) be?

Question (x) is partly motivated by the fact that several interesting questions can be easily
restated in this form. Three such examples are presented below, and in the remainder of the
paper (x) is addressed and answered in detail. In particular, it is shown that M™(C),) typically
grows (or decays) exponentially in n, and an explicit lower bound, valid for all finite n, is given

for the exponent (1/n)log M"™(C),) of the mass of an arbitrary C,,. [Throughout the paper, ‘log’



denotes the natural logarithm.] Moreover, a sequence of sets C,, asymptotically achieving this
lower bound is exhibited, showing that it is best possible. The outline of the proofs follows,
to some extent, along similar lines as the proof of Shannon’s rate-distortion theorem [15]. In
particular, the “extremal” sets C), achieving the lower bound are constructed probabilistically;
each C), consists of a collection of points yi' generated by taking independent and identically
distributed (IID) samples from a suitable distribution on A", but (unlike Shannon) here we need
to condition on seeing typical realizations, making the individual elements of the random C),
non-I1D.

EXAMPLE 1. (MEASURE CONCENTRATION ON THE BINARY CUBE) Take A = {0,1} so
that A™ is the n-dimensional binary cube consisting of all binary strings of length n, and let
P" be a product probability distribution on A™. Write p,(z,y}) for the normalized Hamming
distortion between x7 and yi, so that p,(z7,y}) is the proportion of mismatches between the

two strings; formally:

1 n
pn(@t y) = = Ly ofouf €A™ (4)
i=1
Geometrically, if A™ is given the usual nearest-neighbor graph structure (two points are con-
nected if and only if they differ in exactly one coordinate), then p,(z},y7) is the graph distance
between =] and y7', normalized by n.
A well-known measure-concentration inequality for subsets C),, of A" states that, for any
D >0,

ean2/2
PY([Cnlp) 21 = 5= (5)

- P (Cy)
[See Proposition 2.1.1 in the comprehensive account by Talagrand [17], or Theorem 3.5 in the
review paper by McDiarmid [12], and the references therein.] Roughly speaking, (5) says that “if
C, is not too small, [C),], is almost everything.” In particular, it implies that for any sequence
of sets C,, C A™ and any D > 0,

if 1iminfllogP"(Cn)>—D2/2, then  P"([Cy],) — 1. (6)

n—oo 1,

A natural question to ask is whether there is a converse to the above statement: If P"([C,],) —
1, how small can the probabilities of the C,, be? Taking M = P, this reduces to question
(%) above. In this context, (x) can be thought of as the opposite of the usual isoperimetric
problem. We are looking for sets with the “largest possible boundary”; sets C),, whose D-
blowups (asymptotically) cover the entire space, but whose volumes P"(C,,) are as small as
possible. A precise answer for this problem is given in Corollary 3 and the discussion following

it, in the next section.



ExXAMPLE 2. (Lossy DATA COMPRESSION) Let A be a finite alphabet so that A™ consists
of all possible messages of length n from A, and assume that messages are generated by a mem-
oryless source, with distribution P™ on A™. A code for these messages consists of a codebook
C,, C A" and an encoder ¢, : A" — Cyp. If we think of p,(z],y]) as the distortion between
a message =] and its reproduction y}, then for any given codebook C}, the best choice for the
encoder is clearly the map ¢, taking each z} to the y{ in C,, which minimizes the distortion
pn(zt,yT). Hence, at least conceptually, finding good codes is the same as finding good code-
books. More specifically, if D > 0 is the maximum amount of distortion we are willing to

tolerate, then a sequence of good codebooks {C),} is one with the following properties:

(a) The probability of encoding a message with distortion exceeding D is asymptotically neg-
ligible:
Pn([CH]D) — 1

(b) Good compression is achieved, that is, the sizes |Cy,| of the codebooks are small.

What is the best achievable compression performance? That is, if the codebooks {C,} satisfy
(a), how small can their sizes be? Shannon’s classical source coding theorem (cf. [15][2]) answers
this question. In our notation, taking M = 1 reduces the question to a special case of (x), and
in Corollary 2 in the next section we recover Shannon’s theorem as a special case of Theorems 1
and 2.

ExaMpPLE 3. (HypoTHESIS TESTING) Let A be a finite set and P;, P> be two probability
distributions on A. Suppose that the null hypothesis that a sample X7 = (X1, Xs,...,X,,) of n
independent observations comes from P; is to be tested against the simple alternative hypothesis
that X7 comes from P». A test between these two hypotheses can be thought of as a decision
region C,, C A™: If X7 € C), we declare that X' ~ P[', otherwise we declare X' ~ P}'. The

two probabilities of error associated with this test are
an = P(Cy) and B, = Py (Cp). (7)

A good test has these two probabilities vanishing as fast as possible, and we may ask, if a;,, — 0,
how fast can [, decay to zero? Taking p to be Hamming distortion, D = 0, P = P;, and
M = P, this reduces to our original question (x). In Corollary 1 in the next section we answer
this question by deducing a version of Stein’s lemma from Theorems 1 and 2. It is worth noting
that the connection between questions in hypothesis testing and information theory goes at least
as far back as Strassen’s 1964 paper [16] (see also Blahut’s paper [3] in 1974, and Csiszar and

Korner’s book [7] for a detailed discussion).

The rest of the paper is organized as follows. In Section 2, Theorems 1 and 2 provide an

answer to question (x). In the remarks and corollaries following Theorem 2 we discuss and



interpret this answer, and we present various applications along the lines of the three examples
above. Theorem 1 is proved in Section 2 and Theorem 2 is proved in Section 3. In Section 4
we consider the same problem in a much more general setting. We let A be an abstract space,
and instead of product measures P" we consider the n-dimensional marginals P, of a stationary
measure P on AN. In Theorems 3 and 4 we give analogs of Theorems 1 and 2, which hold
essentially as long as the spaces (A", P,,) can be almost-covered by countably many p,-balls.
Although the results of Section 2 are essentially subsumed by Theorems 3 and 4, it is possible
to give simple, elementary proofs for the special case treated in Theorems 1 and 2, so we give
separate proofs for these results first. The more general Theorems 3 and 4 are proved in Section 5,

and the Appendix contains the proofs of various technical steps needed along the way.

2 The Discrete Memoryless Case

Let A be a finite set and P be a discrete probability mass function on A. Fixa p: AxA — [0, 00),
and for each n > 1 let p,, be the corresponding single-letter distortion measure (or coordinate-
wise distance function) on A" defined as in (1). Also let M : A — (0, 00) be an arbitrary positive
mass function on A. We assume, without loss of generality, that P(a) > 0 for all a € A, and
also that for each a € A there exists a b € A with p(a,b) = 0 (otherwise we may consider
o' (z,y) = [p(x,y) — min,eq p(z, 2)] instead of p). Let {X,,} denote a sequence of IID random
variables with distribution P, and write P = PN for the product measure on AN equipped with
the usual o-algebra generated by finite-dimensional cylinders. We write X f for vectors of random
variables (X;, X;11,...,X;), 1 <i < j < oo, and similarly :z:f = (T4, Tig1,-..,25) € AI7HL for
realizations of these random variables.
Next we define the rate function R(D) that will provide the lower bound on the exponent of
the mass of an arbitrary C,, C A™. For D > 0 and @ a probability measure on A, let
P.Q.D)= _inf  H(W[PxQ) ®
where H(p||v) denotes the relative entropy between two discrete probability mass functions p

and v on a finite set S,
H(ullv) = Y~ n(s)log &
seS

and where M(P,Q, D) consists of all probability measures W on A x A such that Wx, the
first marginal of W, is equal to P, Wy, the second marginal, is @, and Ew[p(X,Y)] < D; if
M(P,Q, D) is empty, we let I(P,Q, D) = oo. The rate function R(D) is defined by

R(D) = R(D; P, M) = inf {1(P,Q, D) + Egllog M(Y)]} (9)



where the infimum is over all probability distributions @ on A. Recalling the definition of
the mutual information between two random variables, R(D) can equivalently be written in a
more information-theoretic way. If (X,Y’) are random variables (or random vectors) with joint
distribution W and corresponding marginals Wx and Wy, then the mutual information between
X and Y is defined as

I(X; Y) = H(W”WX XWY).

Combining the two infima in (8) and (9) we can write

R(D) = inf I(X;Y)+ EllogM(Y 10

(D) (Xy):XN;;}Ep(X’Y)SD{ (X;Y) + Ellog M(Y)]} (10)

where the infimum is taken over all jointly distributed random variables (X, Y") such that X has
distribution P and Ep(X,Y) < D. For any 2} € A" and C,, C A", write

pn(x?,Cn) = min pn(x?,y{”).
yreln

In the following two Theorems we answer question (x) stated in the Introduction. Theorem 1
contains a lower bound (valid for all finite n) on the mass of an arbitrary C,, C A", and Theorem 2
shows that this bound is asymptotically tight. In information-theoretic terms, Theorems 1 and 2
can be thought of as generalized direct and converse coding theorems, for minimal-mass (rather

than minimal-size) codebooks.

THEOREM 1. Let C,, C A™ be arbitrary and write D = Epn[p, (X7, Cy)]. Then

1
log M"(Cy) 2 R(D).

THEOREM 2. Assume that p(x,y) = 0 if and only if x = y. For any D > 0 and any € > 0

there is a sequence of sets {Cy} such that:

(1) %log M™(C,) <R(D)+e  foralln>1
)

(17) pn(X1,Cn) <D eventually, P — a.s.

REMARK 1. Part (i7) of Theorem 2 says that H[Cn]D (X7) — 1 with probability one, so by
Fatou’s lemma, P" ([Cy],) — 1. From this and (7) it is easy to deduce the following alternative
version of Theorem 2 (see the Appendix for a proof): For any D > 0 there is a sequence of sets
{Cr} such that:

(") lim sup %log M"(Cy) < R(D)

n—oo

(i1") P*([C}],) — 1, and
(i3i") limsup Epn[pn (X7, CH)] < D

n—oo



REMARK 2. As will become evident from the proof of Theorem 2, the additional assumption
on p is only made for the sake of simplicity, and it is not necessary for the validity of the result.

In particular, it allows us to give a unified argument for the cases D =0 and D > 0.

Theorem 1 is proved at the end of this section, and Theorem 2 is proved in Section 3.
Although the proof of Theorem 2 is somewhat technical, the idea behind the construction of the
extremal sets C,, is simple: Suppose Q* is a probability measure on A achieving the infimum in
the definition of R(D), so that

R(D) = I(P,Q*, D) + Eq[log M(Y)] 2 I* + L*.

Write Q7 for the product measure (Q*)", and let @n be the measure obtained by conditioning

Q@ to the set of points y}" € A™ whose empirical measures (“types”) are uniformly close to Q*.

Then let C, consist of approximately e™!

nL*

" points yi drawn IID from @n Each point in the

support of Q,, has mass M "(y}) =~ ™" and O, contains about ™" of them, so M™(C,,) is close

to e™"enl” — ¢nR(D) The main technical content of the proof is therefore to prove (i), namely,
that e™” points indeed suffice to almost D-cover A™.

The above construction also provides a nice interpretation for R(D). If we had started
with a different measure ) in place of @Q*, we would have ended up with sets C), of size
~ exp(nl(P,Q, D)), consisting of points y}" of mass M"(y}) ~ exp(nEg(log M(Y))), and the

total mass of C/, would be
M™(Cy) = exp{n[I(P,Q, D) + Eq(log M(Y))]}.

By optimizing over the choice of @ in (9) we are balancing the tradeoff between the size and the
weight of the set C,,, between a few heavy points and many light ones.

It is also worth noting that the extremal sets C,, above were constructed by taking samples
yi from the non-product measure @n Unlike in Shannon’s proof of the data compression
theorem, here we cannot get away by simply using the product measure (). This is because
we are not just interested in how many points y}' are needed to almost cover A", but also we
need control their masses M™(y}"). Since exponentially many y}'’s are required to cover A", if
they are generated from @)}, then there are bound to be some atypically heavy ones, and this
drastically increases the total mass M"(C,,). Therefore, by restricting @} to be supported on
the set of yI' € A™ whose empirical measures are uniformly close to Q*, we are ensuring that
the masses of the y' will be essentially constant, and all approximately equal to el

Next we derive corollaries from Theorems 1 and 2, along the lines of the examples in the
Introduction. First, in the context of hypothesis testing, let Py, P» be two probability distribu-
tions on A with all positive probabilities. Suppose that the null hypothesis that X{* ~ P/ is

to be tested against the alternative X' ~ PJ. Given a test with an associated decision region



C, C A", its two probabilities of error «, and [, are defined as in (7). In the notation of this

section, let p, be Hamming distortion as in (4), P = P; and M = P,. Observe that, here,
Epp[pul( X}, C)] < Eppllcs (X1)] = PR(CS),
and define, in the notation of (9), the error exponent
e(a) = —R(a; Py, P2), «a€]0,1].
Noting that £(0) = H(P1||P2), from Theorems 1 and 2 and Remark 1 we obtain the following

version of Stein’s lemma (see Lemma 6.1 in Bahadur’s monograph [1], or Theorem 12.8.1 in [6]).

COROLLARY 1. (HYPOTHESIS TESTING) Let @ = o, = PJ*(CE) and 5 = (B, = P3(C,) be

the two types of error probabilities associated with an arbitrary sequence of tests {Cy}.
(i) Foralln>1, B> e (@),

(13) If oy — 0, then

1

lim inf — log ﬂn > —H(P1 ||P2)
n—oo N

(1it) There exists a sequence of decision regions Cy, with associated tests whose error probabilities

achieve a, — 0 and (1/n)log B, — —H(Py||P2), as n — oo.

Note that, although the decision regions C,, in (iii) above achieve the best exponent in the
error probability, they are not the overall optimal decision regions in the Neyman-Pearson sense.

In the case of data compression, we have random data X7 generated by some product
distribution P™. Given a single-letter distortion measure p,, and a maximum allowable distortion
level D > 0, our objective is to find good codebooks C,,. As discussed in Example 2 above, good
codebooks are those that asymptotically cover A", ie., P"([Cy],) — 1, and whose sizes |C),|
are relatively small. In our notation, if we take M(-) = 1, then M"(C,,) = |C,| and the rate
function R(D) (from (9) or (10)) reduces to Shannon’s rate-distortion function

Rs(D) = inf We/\/lt?lg,Q,D) H(W|PxQ)
= inf I(X;Y).
(X,Y): X~P, Ep(X,Y)<D

From Theorems 1 and 2 and Remark 1 we recover Shannon’s source coding theorem (see [15][2]).

COROLLARY 2. (DATA COMPRESSION) For any n > 1, if the average distortion achieved by
a codebook C, is D = Epn|pn (X7, Cy)], then

1
Elog\Cn| > Rg(D).

7



Moreover, for any D > 0, there is a sequence of codebooks {Cy,} such that Epn|p,(XT],Cy)] — D,
the codebooks Cy, asymptotically cover A™, P"(|Cy],) — 1, and

1
lim —log|Cy| = Rs(D).
n—oo N

Finally, in the context of measure-concentration, taking M = P and writing Rc(D) for the

concentration exponent R(D; P, P), we get:

COROLLARY 3. (CONVERSE MEASURE CONCENTRATION) Let {Cy,} be arbitrary sets.
(i) For anyn > 1, if D = Epn[pn(X},Cp)], then P"(Cy) > e™fo(D),

(i) If P"([Cul,) — 1, then
liminf - log P™(Cy) > Re/(D).

n—oo n

(t3i) There is a sequence of sets {Cy} such that P"([Cy],) — 1 and (1/n)log P"(Cy) — Rc(D),

as n — oQ.

In particular, in the case of the binary cube, part (i7) of the corollary provides a precise
converse to the measure-concentration statement in (6). Although the concentration exponent
Rc(D) = R(D; P, P) is not as explicit as the exponent —D?/2 in (6), Rc(D) is a well-behaved
function and it is easy to evaluate it numerically. For example, Figure 1 shows the graph of
Rc(D) in the case of the binary cube, with P being the Bernoulli measure with P(1) = 0.4.
Various easily checked properties of R(D) = R(D; P, M) are stated in Lemma 1, below; proof
outlines are given in the Appendix.

As mentioned in the Introduction, the question considered in Corollary 3 can be thought of
as the opposite of the usual isoperimetric problem. Instead of large sets with small boundaries,
we are looking for small sets with the largest possible boundary. It is therefore not surprising
that the extremal sets in (6) and in Corollary 3 are very different. In the classical isoperimetric
problem, the extremal sets typically look like Hamming balls around 0™ = (0,0,...,0) € A",
B, = {z} : pn(2},0™) < r/n} (see the discussions in Section 2.3 of [17], p. 174 in [11], or the
original paper by Harper [10]), while the extremal sets in our case are collections of vectors y'

~

drawn IID from the measure @,, on A™.



Figure 1: Graph of the function Rc(D) = R(D; P, P) for 0 < D < 1, in the case of the binary
cube A" = {0,1}", with P(1) = 0.4.

LEMMA 1.(i) The infima in the definitions of R(D) and I[(P,Q, D) in (9) and (8) are in fact
minima.

(ii) R(D) is finite for all D > 0, it is nonincreasing and convex in D, and therefore also
continuous.

(tit) For fized P and Q, I(P,Q, D) is nonincreasing and convex in D, and therefore it is
continuous except possibly at the point D = inf{D >0 : I(P,Q,D) < co}.

(tv) If the random variables X' = (X1,...,Xy) are IID, then for any random vector Y{"
jointly distributed with X7':

I(XP5Y) > ) (X Y).
i=1
(v) If we let Rmin = min{log M (y) : y € A} and
Dinax = Dimax(P) = min{Ep[p(X,y)] : y such that log M(y) = Rumin},

then

. = Rmin fOT‘ D 2 Dmax
R(D) is
> Ruin for 0 < D < Dpax.

Next we prove Theorem 1. It is perhaps somewhat surprising that the proof is very short

and completely elementary, relying only on Jensen’s inequality and the convexity of R(D).



Proof of Theorem 1. Given an arbitrary C,, let ¢, : A" — C,, be a function that maps
each 21 € A" to the closest yf' in C, ie., pp(z], ¢(2])) = pn(zt,Cy). For X7 ~ P" let
V" = ¢n(XT), write @y, for the distribution of Y7", and Wy (27, y7) = P"(27)s, @)y (1) for
the joint distribution of (X7, Y7"). Then

Ew, [pn(X1,Y{")] = D (11)

and by Jensen’s inequality,

n oy M (Y1)
log M"(Cy) = log (Qn(y) 7 )
y%;n Y Q)
n n)
> Qn(y?)log !
yIEE; ! Qn(y )
( 17y?) n ni,n
= W Y 1 ol N 1 n 1 M .
2 T 08 B A, QA Is A 0)

By the definition of mutual information this equals
I(XT5Y) + Eq, [log M™(Y/")],

which, by Lemma 1 (iv), is bounded below by

n

> (X3 Y:) + Eq, [log M(Y:)]].
i=1

Finally, by the definition of R(D) and its convexity this is bounded below by

ZR (Bw, [p(Xi,Y3)] >nR< ZEWn Xl,YZ]>:nR(D)

where the last equality follows from (11). O

3 Proof of Theorem 2.

Let P, D > 0 be fixed, and € > 0 be given. By Lemma 1 (i) we can pick @* and W* in the
definition of R(D) and I(P,Q*, D), respectively, such that

R(D) = HW*||Px Q") + Eg-[log M(Y)] 2 I" + L*.

For n > 1, write @)}, for the product measure (Q*)", and for y' € A" let



denote the empirical measure of yJ'. Pick 6 > 0 (to be chosen later) and define, for each n > 1,

the set of “good” strings
Gn ={yr € A" : Ppn(b) <Q*(b)+6, Vbe A}

(if G,, as defined above is empty — this may only happen for finitely many n — simply let G,
consist of a single vector (a,a,...,a), with a € A chosen so that log M (a) = Rpyin). Also, let
@n be the measure (), conditioned on G,:
~ (FNG
Qn(F) = Qn(* n);
For n > 1, let {Y' (i) = (Y1(4), Ya2(4),...,Y,(4)) ; ¢ > 1} be an IID sequence of random vectors
Y (i) ~ Qn, and define C, as the collection of the first (" +€/2) of them:

Fc A™

Cp,={Y() : 1<i< e”(l*+€/2)}.

By the definition of G, any yi € G,, has

1ogM” (Y1) = Pyp(b)log M(b) < L* + 6 <ZlogM(b)> < L*+¢/2,
beA beA

by choosing § > 0 appropriately small. Therefore,

M™(Cy) < (1" +€/2) gn(L*+¢/2) _ n(R(D)+e)

and (i) of the Theorem is satisfied. Let X}* be IID random variables with distribution P. To

verify (i7) we will show that
i, < eI +e/2) eventually, PxQ — a.s. (12)
where i, is the index of the first Y (¢) that matches X7 within p,-distortion D,
in=1nf{i > 1 : p,(X7,Y(:)) < D},

and Q = Hn21(@n)N. Recall the notation B(z}, D) = {y} € A" : pu(27,y}) < D}. For (12) it

suffices to prove the following two statements

1 .
lim sup — log |iy, Qn(B(X{‘,D))} <0 PxQ-as. (13)
n—oo N
1 .
liminf —log Q,(B(X{",D)) > —I" P — as. (14)
n—oo n

Proving (14) is the main technical part of the proof and it will be done last. Assuming it holds,
we will first establish (13). For m > 1let Gy, = {25° € A® : Qn(B(#7,D)) >0 Vn > m}, and

11



note that by (14), P (Up>1Gp) = 1. Pick m > 1; for any n > m, and any z5° € G, conditional
on X7 = z¥, i, is a Geometric(p,) random variable with p, = @n(B(x”f,D)) So for € >0

arbitrary
efln

1 ~ e
Pr { ~log [in Qu(B(XT, D))| > ¢'| X7' = x’;} < (1—py) 7!

and for all n large enough (independent of z7) this is bounded above by

e'n—1

[(1 _pn)l/pn:|e S e_ee/n—l’

uniformly over z{° € G,,. Since the above right-hand side is summable over n, by the Borel-
Cantelli lemma and the fact that ¢ > 0 was arbitrary we get (13) for P-almost all 23° € G,,.
But since P (Uy;,>1Gy,) = 1, this proves (13).

Next we turn to the proof of (14). Since, by the law of large numbers, QF(G,) — 1, as
n — 00, (14) is equivalent to

1
liminf — log Q% (B(XT,D)NGy) > —I* P — as. (15)

n—oo N,

Choose and fix one of the (almost all) realizations z3° of P for which

Pyn(a) — P(a), foralla € A.

Let €1 € (0,0) arbitrary, and choose and fix N large enough so that

|Pyr(a) — P(a)] < e1P(a) foralla€ A, n> N. (16)
Let ay,as,...,a, denote the elements of A, write ng = 0,
n; = n]f’xvf(az), 1= 1,2, oo,

and N; = Zi:onk? j=0,1,...,m. For n > N, writing Y;" = (¥1,Y2,...,Y},) for a vector of
random variables with distribution Q%, we have that Q¥ (B(z}, D) N G,) equals

Qn{ﬁgp(%lﬁ;)éD and EZH{Yi:b} < Q¥(b) + 6, VbeA}

=1
| Vi | i
* 1 3 *
AP > plaiY;) <D and ] i > Ly Q) +4, Vbe A
=1 ]:Ni_l-f—l =1 j:Ni—1+1

where we have used the fact that the Y; are IID (and hence exchangeable) to rewrite z7 as

consisting of n1 a;’s followed ny as’s, and so on. Let v = P(a;) ) e 4 W*(blas)p(as,b) for
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i=1,2,...,m. Recalling that, by the choice of W*, > .v; = Ew+«p(X,Y) < D, and that Q* is
the Y-marginal of W*, the above probability is bounded below by

g

T o ni 1 W
I | Qn, — pla;,Y;) <7 and P E H{Yj:b} < P(a;)[W*(bla;) +6], Vbe A
i=1 j=1 b=l

Writing I'; = 7, /[P(a;)(1 +€1)], i = 1,2,...,m and using (16), this is in turn bounded below by

T )1 W*(bla;) + &
< -
1”1 Qr, E pla;,Y;) <T; and E Liy,=py < Tt e Vbe A

ﬁ@ {Py € R}, (17)

=1
where F; is the collection of probability mass functions @) on A,

W*(b]ai) +9

Fi= () ={Q ¢ Bolplan¥)] < Ty and Q) < 7
€1

, VbeA}.

We will apply Sanov’s theorem to each one of the terms in (17). Consider two cases: If I'; > 0

then Fj is the closure of its interior (in the Euclidean topology), so by Sanov’s theorem

lim inf - log Q7 { o € F} > — inf H(QQ") (18)

n;—00 Ny

(see Theorem 2.1.10 and Exercise 2.1.18 in [8]). If I'; = 0 then ~; = 0 and this can only happen
if W*(+|a;) = I{q,3(:), in which case F; = {d,,} and

L1og Qs {Byn € B} = 108 Q" (a) = ~H(3,1Q")

n;

o (18) still holds in this case. Combining the above steps (note that each n; — co as n — 00),

n—oo n—oo nN

lim inf — logQ*( (7, D)NG,) > hmlnf log [HQ* { v EF}

1=
m

> —;Pmi) Jnf H(QIIQ),

and this holds for P-almost any x{°. Rewriting the ¢th infimum above as the infimum over

conditional measures W (-|a;) € F;, yields

1
liminf = log Q% (B(X™,DYNG,) > — inf H(W|PxQ*) P—as.
iminf ~log @y, (B(XT, D) NGn) = wark | (W][PxQ) a.s

13



where F(e1) ={W : Wx =P and W(-|a;) € Fi(e1), Vi=1,2,...,m}. Finally, since ¢; was
arbitrary we can let it decrease to 0 to obtain

1
liminf —log @, (B(XT',D)NG,) > limsup[— inf H(WI[PxQ")]
n—oo N €110 WeF(e1)

Y _ inf H(W|PxQ*
wido (W] PxQ")]

—I* P-—as.

This gives (15) and completes the proof, once we justify steps (a) and (b). Step (b) follows upon
noticing that W* € F(0) and recalling that H(W*||PxQ*) = I'*. Step (a) follows from the fact
that H(W||Px Q") is continuous over those W that are absolutely continuous with respect to

Px@Q*, and from the observation in Lemma 2 below (verified in the Appendix). O

LEMMA 2. For all €; > 0 small enough there exist Q; € F;(e1) such that H(Q;]|Q*) < oo, for
1 < i <m. Therefore, for all e, > 0 small enough the exists W € F(e1) with H(W||PxQ*) < oo.

Note that, in the above proof, a somewhat stronger result than the one given in Theorem 2
is established: It is not just demonstrated that there exist sets C), achieving (i) and (i7), but
that (almost) any sequence of sets C, generated by taking approximately ¢”/" IID samples from
Q,, will satisfy (i) and (ii).

We also mention that Bucklew [4] used Sanov’s theorem to prove the direct part of Shannon’s
data compression theorem. The proof of Theorem 2 is similar, except that it involves a less
direct application of Sanov’s theorem to the sequence of non-product measures @n, and the
conclusions obtained are somewhat stronger (pointwise rather than L! bounds). Similarly, in
the proof of Theorem 4, the Gartner-Ellis theorem from large deviations is applied in a manner

which parallels the approach of [5].

4 The General Case

Let A be a Polish space (namely, a complete, separable metric space) equipped with its associated
Borel o-algebra A, and let P be a probability measure on (AN, AN). Also let (A, ./Zl) be a (possibly
different) Polish space. Given a nonnegative measurable function p : Ax A — [0,00), define
pn @ A" x A" — [0,00) as in (1). [The reason for considering A as possibly different from A
is motivated by the common data compression scenario, where, in practice, it is often the case
that original data take values in a large alphabet A (for example, Gaussian data have A = R),
whereas compressed data take values in a much smaller alphabet (for example, Gaussian data
on a computer are typically quantized to the finite alphabet A consisting of all double precision

reals).]

14



Let {X,,} be a sequence of random variables distributed according to P, and for each n > 1

write P, for the n-dimensional marginal distribution of X7'. We say that PP is a stationary mea-

n+k
1+k >

“mass” function on A. To avoid uninteresting technicalities, we will assume throughout that

sure if X{* has the same distribution as X for any n, k. Let M : A — (0, 00) be a measurable

M is bounded away from zero, M(y) > M, for some constant M, > 0 and all y € A. Next we
define the natural analogs of the rate functions I(P,Q, D) and R(D). Forn > 1, D > 0 and @,
a probability measure on (A", A"), let

I,(Pn,Qn, D) = inf H(Wy || Pax Qn 19
(P, Qn, D) e o b (Wl Pox Qn) (19)

where H (p||v) denotes the relative entropy between two probability measures p and v

[ dulog Z—ff, whenj—’; exists

o0, otherwise

H(pllv) = {

and where M,,(P,,Q,, D) consists of all probability measures W,, on (A" x A", A" x A") such
that W, x, the first marginal of W, is equal to P,, the second marginal W,y is @, and
[ pn dW,, < D; if My(P,,Qn, D) is empty, let I,,( Py, Qn, D) = co. Then R, (D) is defined by

Rn(D) = Bn(D; Py, M) = inf {In(Pn, @n, D) + Eq, [log M" (Y{")]}, (20)

where the infimum is over all probability measures @, on (A", A"). Note that since I,,( Py, Qn, D)
is nonnegative and M is bounded away from zero, R, (D) is always well-defined. Recall also that
the mutual information between two random vectors X' and Y{" with joint distribution W,, and
corresponding marginals P,, and Q,, is defined by I(X71;Y{") = H(W,||P,xQy), so that R, (D)
can alternatively be written in a form analogous to (10) in the discrete case:

finlD) = inf I(XT;Y?) + Ellog M™(Y{")]}.
( ) (X{LvylnyXfLNPn,Epn(X{l7yln)§D{ ( 1 1) [ g ( 1 )]}

Finally, the rate function R(D) is defined by

R(D) = lim ~Ry(D)

n—oo n

whenever the limit exists. Next we state some simple properties of R, (D) and R(D), proved in

the Appendix.

LEMMA 3.(i) For each n > 1, R,(D) is nonincreasing and convex in D > 0, and therefore

also continuous at all D except possibly at the point

D™ = inf{D >0 : Ry(D) < +oo}.

min
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(ii) If R(D) exists then it is nonincreasing and convex in D > 0, and therefore also contin-

wous at all D except possibly at the point
Dpin = inf{D >0 : R(D) < 4o0}.
(7i7) If P is a stationary measure, then

1 1
R(D) = lim —R,(D) = inf —R, (D) euxisits,
and Dy = inf,, DI
(tv) The mutual information I(X7;Y{") is convex in the marginal distribution P, of X7, for

a fized conditional distribution of Y{* given X7'.

Next we state analogs of Theorems 1 and 2 in the general case. As before, we are interested
in sets C), that have large blowups but small masses; since M is bounded away from zero we

may restrict our attention to finite sets C),.

THEOREM 3. Let C,, C A™ be an arbitrary finite set and write D = Ep, [p (X1, Cy)]. Then
log M"(C,) > Rn(D). (21)
If P is a stationary measure, then for alln > 1
log M"(C,) > nR(D).

As will become apparent from its proof (at the end of this section), Theorem 3 remains
true in great generality. The exact same proof works for arbitrary (non-product) positive mass
functions M, in place of M™, and more general distortion measures p,, not necessarily of the
form in (1). Moreover, as long as R, (D) is well-defined, the assumption that M is bounded
away from zero is unnecessary. In that case we can also consider countably infinite sets C,,, and
(21) remains valid as long as R, (D) is continuous in D (see Lemma 3).

In the special case when P is a product measure it is not hard to check that R, (D) = nR(D)
for all n > 1, so we can recover Theorem 1 from Theorem 3.

For Theorem 4 some additional assumptions are needed. We will assume that the functions
p and log M are bounded, i.e., that there exist constants pmax > 0 and Lpax < oo such that
p(x,y) < pmax and |[log M (y)| < Lmax, for all x € A, y € A. For k > 1, we say that P is
stationary (respectively, ergodic) in k-blocks if the process {)?T(Lk) ;>0 ={X f;i?k ;m >0}
is stationary (resp. ergodic). If P is stationary then it is stationary in k-blocks for every k. But
an ergodic measure P may not be ergodic in k-blocks. For the second part of the Theorem we
will assume that P is ergodic in blocks, that is, that it is ergodic in k-blocks for all £ > 1. Also,
since R(D) = oo for D below Dy, we restrict our attention to the case D > Dyi,. Theorem 4

is proved in the next section.
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THEOREM 4. Assume that the functions p and log M are bounded, and that P is a stationary

ergodic measure. For any D > Dy, and any € > 0, there is a sequence of sets {Cy} such that:
(7) %log M"(Cp) < R(D)+¢ foralln >1
(14) P.([Cyh],) — 1 asn — oo.

If, moreover, P is ergodic in blocks, there are sets {Cy} that satisfy (i) and

(144) pn(X1,Cn) <D eventually, P — a.s.

REMARK 3. A corresponding version of the asymptotic form of Theorems 1 and 2 given
in Remark 1 of the previous section can also be derived here, and it holds for every stationary

ergodic P.

REMARK 4. The assumptions on the boundedness of p and log M are made for the purpose of
technical convenience, and can probably be relaxed to appropriate moment conditions. Similarly,
the assumption that M™ is a product measure can be relaxed to include sequences of measures
M, that have rapid mixing properties. Finally, the assumption that P is ergodic in blocks is not
as severe as it may sound. For example, it is easy to see that any weakly mixing measure (in

the ergodic-theoretic sense — see [13]) is ergodic in blocks.

Proof of Theorem 3. Given an arbitrary C,,, let ¢, : A™ — (), be defined as in the proof
of Theorem 1. For X7 ~ P, define Y" = ¢,(X]), write @, for the (discrete) distribution
of V1", and Wy, (dz?,dyy) = Pn(dz})dg,on)(dyy) for the joint distribution of (X7, Yy"). Then
Ew, [pn(XT,Y")] = D, and by Jensen’s inequality applied as in the discrete case

n n fun(y?)
log M™(C,,) > E Qn |
e = yrecy, (v) log Qn(y7)

de n? T n n n
_ /de(x?,y?)logﬁ+ > Qu(yl) log M™(y})

= I(X{5YT") + Eq, [log M™(Y{")].

By the definition of R, (D), this is bounded below by R, (D). The second part follows immedi-
ately from the fact that R, (D) > nR(D), by Lemma 3 (7). O

5 Proof of Theorem 4

The proof of the Theorem is given in 3 steps. First we assume that P is ergodic in blocks, and
for any D > Dgi)n we construct sets C,, satisfying (i) and (¢4i) with R;(D) in place of R(D). In
the second step (still assuming PP is ergodic in blocks), for each D > Dy, we construct sets C,
satisfying () and (7i7). In Step 3 we drop the assumption of the ergodicity in blocks, and for
any D > Dpin we construct sets Cy, satisfying (i) and (ii).
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5.1 Step 1:

Let P and D > D)

a D' € (Dmin, D) such that Ry (D') < Ri(D)+ ¢/8 and a probability measure Q* on (A, A) such
that

be fixed, and let an arbitrary € > 0 be given. By Lemma 3 we can choose

I+ L* = Ii(P1,Q*, D) + Eg-[log M(Y)] < R1(D) + ¢/8 < R1(D) + ¢/4. (22)
Also we can pick a W* € My(Py,Q*, D’) such that
HW*||PrxQ*) < I"+¢€/4. (23)

As in the proof of Theorem 2, for n > 1, write @} for the product measure (Q*)", and define

i=1

. 1 &
n — T A" o — I M i §L* 4 5.
H {yle ~ > log M(y;) +6/}

Let Q, be the measure Q¥ conditioned on H,, Qn(F) = Q*(F N'H,)/Q(H,), for F e A"
For each n > 1, let {Y (i) = (Y1(i),Ya(i),...,Yu(i)) ; i > 1} be IID random vectors Y (i) ~ Qp,
and define

Co={Y(i) : 1<i<endTFe/2)

By the definition of H,, any ¥ € G, has M™(y}) < eE"+¢/9) 50 by (22)
Mn(Cn) < en([*+e/2)en(L*+e/4) < en(Rl(D)Jre)
and (i) of the Theorem is satisfied with R;(D) in place of R(D). Let X}" be a random vector

with distribution P,, and, as in the proof of Theorem 2, let 4,, be the index of the first Y (i) that

matches X{* within p,-distortion D. To verify (iii) we will show that

n(I*+e/2)

in<e eventually, PxQ — a.s.

where Q = Hn>1(@n)N, and this will follow from the following two statements:

1 ~
lim sup - log |in Qn(B(XT, D))} <0 PxQ-—as. (24)
1. ~
liminf —log @, (B(X{,D)) > —(I"+¢€/4) P—as. (25)
n—oo n,

The proof of (24) is exactly the same as the proof of (13) in the proof of Theorem 2. To prove
(25), first note that by the law of large numbers @} (H,) — 1, as n — oo, so (25) is equivalent

to

1
liminf —log @5, (B(X{',D)NHy) > —(I" +€/4) P—as. (26)
n—oo 1
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Let Y1, Ys,... be IID random variables with common distribution @*. For any realization z7°

of P, define the random vectors &; and Z,, by

& = (p(z,Y3), log M(Y3)), i>1
1 n

Zn = - 2 Z]-
n "

Also let A, (M) be the log-moment generating function of Z,,
An(N) = log E [e()"Z")] . A=(A1, ) € R,

where (-,-) denotes the usual inner product in R%2. Then for P-almost any z$°, by the ergodic

theorem,

Lpumd) = LlogB [emi0e)
n

n
1 n
= - Z log EQ* [eAlp(xi7Y)+A2 log M(Y):|
" i=1
— EP1 {log EQ* |:e>\lp(X7Y)+)\2 log M(Y):| } (27)

where X and Y above are independent random variables with distributions P; and Q*, respec-
tively. Next we will need the following lemma. Its proof is a simple application of the dominated

convergence theorem, using the boundedness of p and log M.

LEMMA 4. For k > 1 and probability measures p and v on (A*, A¥) and (A%, AF), respec-
tively, define

1
Ao = [1ox{ [ Joxw (et )+ 2o 0200 )| avish) b dutad),
for A= (A1,X2) € R%. Then A, is conver, finite, and differentiable for all A € R2.

From Lemma 4 we have that the limiting expression in (27), which equals Ap, ¢+, is finite and
differentiable everywhere. Therefore we can apply the Gértner-Ellis theorem (Theorem 2.3.6 in

[8]) to the sequence of random vectors Z,,, along P-almost any x3°, to get

1 1
liminf —log Q) (B(z7, D) NHy) = liminf —logPr(Z, € F) > — inf A"(z) P—as. (28)

n—oo N n—oo N zeF

where F = {z = (21,22) €R? : 21 < D, 25 < L* + ¢/4} and

A};LQ* (Z) = Sup [()‘7 2:) - APl;Q*(/\)]
AeR?

is the Fenchel-Legendre transform of Ap, g+(A). Recall our choice of W* in (23). Then for any

bounded measurable function ¢ : A — R and any fixed = € 4,

HW*(10)]|Q* () = / H(y)dW™ (y]z) — log / W) dQ* ()
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(see, e.g., Lemma 6.2.13 in [8]). Fixing x € A and X\ € R? for a moment, take ¢(y) = A\ p(z,y) +

A2 log M(y), and integrate both sides dP;(z) to get

HWH[Px Q%) = A Ew-(p) + A2 Eq+[log M(Y)] = Ap, g-(A)-

Taking the supremum over all A € R? and recalling (23) this becomes
I"+e/4 > HW*||P1x Q") > Ap, o«(D*, L7)
where D* = [ pdW* < D' < D, so

I +¢/4 > inf A o-(2).
+e/4 2 inf Ap, o-(2)

Combining this with the bound (28) yields (26) as required, and completes the proof of this

step.

5.2 Step 2:

Let P and D > Dpj, be fixed, and an arbitrary € > 0 be given. By Lemma 3 we can pick &k > 1
large enough so that DI(I]fi)n < D and (1/k)Ri(D) < R(D) + ¢/8. This step consists of essentially

repeating the argument of Step 1 along blocks of length k. Choose a D' € (D(k) D

min’?

1 1
Z k(D) < 2Ry (D) +€/16,
and a probability measure ()} on (flk , /lk) achieving
* x A 1 * 1 1 kyvk 1 !
I+ L= E-[k(Pk’QkaD )+ EEQZUOgM ()] < ERk(D ),
so that

I + Lj < R(D) + ¢/4.

Also pick a W} € My(Py, Qx, D’) such that

1 * * *
EH(Wk 1P x Q) < I 4 €/4.

For any n > 1 write n = mk + r for integers m > 0 and 0 < r < k, and define
1 n
Hnp = {y? S ﬁz;lOgM(yi) <L +€/4} :
iz
Write Q) . for the measure

[H QZ] x [QR]r,

20
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where [Q}], denotes the restriction of @} to (fl’", A", and let @nk be the measure @}, ; condi-
tioned on H,, . For each n > 1, let {Y'(i) = (Y1(9),Y2(i),...,Yn(i)) ; ¢ > 1} be IID random
vectors Y (i) ~ Qn, and let C,, consist of the first e"ZiT¢/2) of them. As before, by the definitions
of Hy, ;, and Cy,, and using (31), it easily follows that

1

—log M"™(Cy,) < R(D) + ¢

n

so (i) of the Theorem is satisfied. Let Y1, Y5,...,Y, be distributed according to QZ’ > and note
that the random vectors Y%:ll ) are TID with distribution Qj (fori=0,1,...,m—1). Therefore,

as n — 00, by the law of large numbers we have that with probability 1:
1 & 41 k Liax .
=Y log M () < (& ) Zlong (V") + =2 — L, (33)
i=1

Following the same steps as before, to verify (ii7) it suffices to show that

1. ~
lim inf - log Qn x(B(XT,D)) > —(I; +€/4) P—as.

and, in view of (33), this reduces to

1
liminf —log @y, . (B(X{, D) N Hpk) > —(I; +€/4) P—as. (34)
n—oo N ’
For an arbitrary realization z{° from P and with Y|* as above, consider blocks of length k. For
1=0,1,...,m — 1, we write
v (k) _ i1k ~(k) _  (i+1)k
ViU =Yy and 3 =ay iy

so that the probability Q7 . (B(XT, D) N'Hy k) can be written as

1 m—1
Q:,,k { < ) m Z Pk + pT(erLfr+17 xzfr+1) <D

=0

m—1

mk\ 1 1 (k)

e MFE YL 1 M (Y, <L 4
and <n>mi:0 og (z ) og (nr+1) k+€/}

oyl

Since we assume p(z, 1) < pmax and |log M (y)| < Lyay for all z € A, y € A, then for all n large
enough (uniformly in 23°) the above probability is bounded below by

L1
{ Zp Y™ 7™y < D' 4 ¢/8 and

1 '— k)

= ZlogMF(YY) <L +¢/8¢.
m 2k og ) kel }
Now we are in the same situation as in the previous step, with the IID random variables z(k)

place of the Y;, the ergodic process {)N(l(k)} in place of {X;}, and D’+¢/8 in place of D. Repeating

in

the same argument as in Step 1 and invoking Lemma 4 and the Gartner-Ellis theorem,

lim inf = 1 X7 D) H, k) > — inf Ai(z1,2) P—as. 35
iminf —log @y, (B(XT, D) N Hnk) 2 <D e/o s < /8 i (21, 22) a.s (35)
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where, in the notation of Lemma 4, Aj(2) is the Fenchel-Legendre transform of Ap q:(A).
Recall our choice of W} in (32) and write Df = [ ppdW; < D’. Then by an application of
Lemma 6.2.13 from [8] together with (32) we get that

* 1 * * * * *
I +e/4 > EH(WI@ | P x Q) > Ap(D*, Ly),

and this together with (35) proves (34), concluding this step.

5.3 Step 3:

In this part we invoke the ergodic decomposition theorem to remove the assumption that P is
ergodic in blocks. Although somewhat more delicate, the following argument is very similar to
Berger’s proof of the abstract coding theorem; see pp. 278-281 in [2].

As in Step 2, let P and D > Dyn be fixed, and let an € > 0 be given. Pick k > 1 large
enough so that DI(IIfi)n < D and $Ry(D) < R(D) + €¢/8, and pick D' € (DI(IIE)H,D) such that (29)
holds. Also choose @} and W} as in Step 2 so that (30), (31) and (32) all hold.

Let Q = (AM)N) F = (A%)N] and note that there is a natural 1-1 correspondence between

sets in F € AN and sets in F' € (A*)N: Writing 7; = :B’E]Zi‘ill)k’

F={° : a5° e F}. (36)

Let p be the stationary measure on (2, F) describing the distribution of the “blocked” process
{)Z'Z = Xi(;ii)k ; @ > 0}, where, since k is fixed throughout the rest of the proof, we have dropped
(k)

the superscript in X ;. Although ;1 may not be ergodic, from the ergodic decomposition theorem

we get the following information (see pp. 278-279 in [2]).

LEMMA 5.There is an integer k' dividing k, and probability measures p;, i =0,1,..., k' —1
on (2, F) with the following properties:

() w=(1/K) S5

(i) Each u; is stationary and ergodic.

(iii) For each i, let P®) denote the measure on (AN, AN) induced by pu;:

PO(F) = jui(F), FeA"

[recall the notation of (36)]. Then P = (1/k') Zf;)l P@ . and each PY) is stationary in k'-blocks
and ergodic in k'-blocks.

(iv) For each 0 < i < k' and j > 0, the distribution that P induces on the process
{Xj4n; n>1}is [pli+jmodk’)

For each i =0,1,...,k"—1, let u;1 denote the first-order marginal of y; and write R(D|i) =
R1(D; pi1, M) for the first-order rate function of the measure p;, with respect to the distortion
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measure pg, and with mass function M = M*. Since W} chosen as above has its A*-marginal
equal to P, we can write it as W} = V;* o P, where V;*(-|XT") denote the regular conditional
probability distributions. Write Pk(;i) for the k-dimensional marginals of the measures P(), and
define probability measures W,ii) on (A"x An, A”x/l") by W,Ei) =V oP]g). Let D; = [ pg dW,gi)
so that by Lemma 5 (ii7),

k'—1
1 ,
- > Di= /pk dW; < D' (37)
=0
Similarly, writing QS) for the A¥-marginal of W,Ei) and applying Lemma 5 (7i7),
=, 4
53 [1osarthaaf uh = [ 1o M) agith) (39)
=0
and using the convexity of mutual information from Lemma 3 (iv),
1 k-1 . B .
= 3 HWL PO Q) < HOWE | Pox Q). (39)
=0

For N > 1 large enough we can use result of Step 1 to get IN-dimensional sets B; that almost-

cover (Ak)N with respect to u;. Specifically, consider N large enough so that

maX{pmam Lax, 1

kN
For any such N, by the result of Step 1 we can choose sets B; C (flk)N such that, for each i,

b < min{e/s, (D— D')/2}. (40)

L ([Bi]pi) > 1—e€ey, whereey —0as N — oo, and (41)
MN(B) < exp{N(R(Djli) +¢/8)}. (42)
Now choose and fix an arbitrary y* € A, and for n = K'(Nk + 1) define new sets B} C A" by
K —1
BZ* = H [Bz'—i-jmodk’ X{Z/*}] ’
j=0

where [] denotes the cartesian product. Then, by (40), for any =7,
K —1
o _D-D" 1 (kN+1)+kN
pn(‘fl"yll7Bz) < T + E Z PN (mjgkN+1;+l aBi+jm0dk’> )
j=0

so by a simple union bound,

P (B, > 1- Z [1 _ pli+imodk’) ([BH_]' modk']D):|
j=
® 1—1623{1—/%([31] )}
1=0
(ﬁ) |~ Ken. (43)
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where we used (37) in (a), Lemma 5 (iv) in (b), and (41) in (¢). Also, using the definition of B}
and the bounds (40) and (42),

k'—1

1 log M(Y*) 1 <«
S loe MM(BY) < =620\ ), -
- log M"(B7) + E [

1 —
S AN+ 7 — log MN(Bi+jmodk’):|

kN

k-1

/41 2 RO+ /3]

=0

but from the definition of R(D|j) and (39) and (38) this is

IN

A

k'—1
1 N 1 1 A A A 1 A
ogd(B) < /s S [LHOPIPY <QP) 4 [1osar ) a0 b
=0

IN

IN+ L, +€/2
R(D) + 3¢/4, (44)

A

where the last inequality follows from (31). So in (43) and (44) we have shown that, for all
i=0,1,.. . K —1,

PY ([B7],)

v

1—kexy and (45)
1
—log M™(B}) < R(D)+ 3e/4. (46)
n
Finally we define sets C,, C A" by
Cp = U iBs.

From the last two bounds above and (40), the sets C,, have

1 log &/
~log M"(Cy) < Oi + R(D) +3¢/4 < R(D) + e,
and by Lemma 5 (i47),
=N =N
Pu((Caly) = 5 S BV (C,) = 1 S B9 (B, 2 1,
i=0 i=0

where €/, = ke when n = k'(Nk + 1).

In short, we have shown that for any D > Dy, and any € > 0, there exist (fixed) integers
k, k" and Ny such that:

There is a sequence of sets Cy,, for n = k'(Nk + 1), N > Ny, satisfying:
(+) (1/n)log M™(Cy,) < R(D) + ¢ for all n, and
P, ([Ch],) — 1 asn — oo.

Since this is essentially an asymptotic result, the restrictions that N > Ny and n be of the form
n = k'(Nk + 1) are inessential. Therefore they can be easily dropped to give (+) for all n > 1,
that is, to produce a sequence of sets {C), ; n > 1} satisfying (i) and (ii) of Theorem 4. O
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Appendix

Proof of Remark 1: In view of part (i) of Theorem 2 and the remark that P™ ([Cy],) — 1,

for every m > 1 we can choose a sequence of sets {C’flm) ; m > 1} such that

1 1
—logM™(C{™) < R(D)+—, forallm,n>1, and
n m
1
p" ([C’,(Lm)]D> > 1-—, forallm >1, n > N(m),

m
where N(m) is some fixed sequence of integers, strictly increasing to oo as m — oo. So for

each n > 1 there is a unique m = m(n) such that N(m) < n < N(m + 1). Since {N(m)} is
strictly increasing, the sequence {m(n)} is nondecreasing and m(n) — oo as n — oo. Define
Cr = oy () for all n > 1. From the last two bounds,
1
m(n)’

for all n > N(m(n)).

1
—logM"(C}) < R(D)+ for all n > 1, and
n

1

P ([C; —
(Cils) > s
But since n is always n > N(m(n)) by definition, and m(n) — oo as n — oo, this proves (i)

and (7i"). Also, since p is bounded, (iii") immediately follows from (i3’). O

Proof outline of Lemma 1: For part (i) it suffices to consider the case I(P,Q, D) < 0o, so we
may assume that the set M(P, @, D) is nonempty. Since the marginals of any W € M(P,Q, D)
are P and @, W is absolutely continuous with respect to Px @, so H(W||P x Q) is continuous
over W € M(P,Q,D). Since the sets M(P,Q, D) are compact (in the Euclidean topology),
the infimum in (8) must be achieved. A similar argument works for R(D): Combining the two
infima in its definition,

R(D) = Weiﬁl(fRD) {HW|[Wx xWy) + Ew, [log M(Y)]}, (47)
where M(P, D) = UgM(P,Q, D). Since the sets M(P, D) are compact, the infimum in (47) is
achieved by some W* € M(P, D), and Q* = Wy achieves the infimum in (9).

For part (i7) recall the assumption that for all a € A there is b = b(a) such that p(a,b) = 0.
If we let W(a,b) = P(a)l{p—p(a)}, then W € M(P, D) for any D > 0 and from (47), R(D) <
Ew, [logM(Y)] < oo for all D > 0. Since the sets M(P, D) are increasing in D, R(D) is
nonincreasing. To see that it is convex, let W € M(P,D;) and W/ € M(P, Dy) arbitrary.
Given X\ € [0,1] let ' =1 — X, and write V = AW + X'W’. Then V € M(P,AD; + X' D) and
the Y-marginal of V, Vy, is AWy + X'Wj,. Recalling (47) and that relative entropy is jointly

convex in its two arguments,
R(AD + N'Dy)
< H(\V||Vx xVy) + Ey, [log M (Y)]
< MH(W([Wx xWy) + By log MOY]} + X {HOW' [ Wi xWi.) + By, log M(Y)] }
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Taking the infimum over all W € M(P, D1), W' € M(P, D5), and using (47) shows that R(D)
is convex, and since it is finite for all D > 0 it is also continuous.

The proof of (iii) is essentially identical to that of (ii), using the definition (8) in place of
(47). The only difference is that I(P,Q, D) can be infinite, so its convexity (and the fact that
it is nonincreasing) imply that it is continuous for D > 0 except possibly at D = inf{D > 0 :
I(P,Q, D) < o}

Part (iv) is a well-known information theoretic fact; see, e.g., Lemma 9.4.2 in [9].

For part (v) let W* achieve the infimum in (47). Since relative entropy is nonnegative we
always have R(D) > Rmin, with equality if and only if W5 is supported on the set A’ = {y €
A : log M(y) = Rmin} and W* = W5 x W5 Clearly, these two conditions are satisfied if and
only if

D > inf{Ep«q[p(X,Y)] : Q supported on A'},

but the right hand side above is exactly equal to Dy ax. |

Proof of Lemma 2: If 7; = 0 then, as discussed in the proof of Theorem 2, Fj(e1) = {dq,} for
all ;7 and
H(d0,|Q") = —log Q" (a;) < —log P(a;) < oc.

If v; > 0 then there must exist a b* € A, b* # a;, such that W*(b*|a;) > 0. Write dyax for the
maximum of ), W*(bla;j)p(a;,b) over all j = 1,...,m, and let pyin = min{p(a,b) : a # b}.
For oo € (0,1), let

WH(a1]|a;) + o ifb=a;
Qi(b) = { W*(b¥|a) —a ifb=1b*
W*(bla;) otherwise.

Then, for €; small enough to make (§ — €1)pmin > €1dmax(1 + €1), it is an elementary calculation
to verify that @Q; € Fj(e1) and H(Q;||Q*) < oo, as long as « satisfies the following conditions:

a < 1-—W*aila;)
a < W*b"|a;)

€1dmax < 0 — e '
Pmin 1+ €1
Taking W (a;,b) = Q;(b)P(a;) we also have W € F(eq). O

Proof of Lemma 3: Since the sets M, (P,,, Qn, D) are increasing in D, R, (D) is nonincreasing
in D. Next we claim that relative entropy is jointly convex in its two arguments. Let i, v be two
probability measures over a Polish space (5,S). In the case when p and v both consist of only

a finite number of atoms, the joint convexity of H (u||v) is well-known (see, e.g., Theorem 2.7.2
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in [6]). In general, H(u||v) can be written as

E;
H(pllv) = sup Z j(E;) log /:EEg

where the supremum is over all finite measurable partitions of S (see Theorem 2.4.1 in [14]).
Therefore H(p||lv) is the pointwise supremum of convex functions, hence itself convex. As in
(47), combining the two infima, R, (D) can equivalently be written as

RuD) = inf (Ol W < W) + B, log M7} (49)
where M,,(P,, D) = Ug, My (P, Qn, D). Using this together with the joint convexity of relative
entropy as in the proof of Lemma 1 (i7) shows that R, (D) is convex. Since it is also nonincreasing
and bounded away from —oo, R, (D) is also continuous at all D except possibly at the point

D™ = inf{D >0 : R.(D) < +00}.

min
This proves (7). For (i) notice that if R(D) exists then it must also be nonincreasing and convex
in D > 0 since R, (D) is; therefore, it must also be continuous except possibly at Dyyip.
For part (iii), let m,n > 1 arbitrary, and let W,,, € M,,(Py,, D) and W,, € M, (P,, D).
Define a probability measure Wiy,4, on (A" x A", A" x A™) by

Wonn (d7 ", dy ™) = W (dy |27) W (dy 3ot 2 P(da ™).

Notice that Wi+n € Mpin(Pmtn, D), and that, if (XT+",Y17”+") are random vectors dis-
tributed according to Wiy, then Y™ and Y%/* are conditionally independent given X|"*™.

m—+1
Therefore,
(a) m—+n m+n
Ryn(D) < H(Wm—&-nHWm—&-n,X X Wm-i-n,Y) + EWm+n,y [log M (Yl )]
= (X7 + Bw,,,y[log MY
(d)
< LX)+ XY + Ew, y [log M™(Y{™)] + Ew, \, [log M"™(Y]")]

where (a) follows from (48) and (b) follows from the conditional independence of Y{™ and Y,

given X" (see, e.g., Lemma 9.4.2 in [9]). So we have shown that R,,1,(D) is bounded above
by

H(Won [Wonx X Winy) + Byt log M7 (Y{™)] + H(Wol[Wox X Way) + Eu, , llog M"(¥")],
and taking the infimum over all W,,, € M,,(P,,, D) and W,, € M,,(P,, D) yields

Rm-}—n(D) < Rm(D) + Rn(D) (49)
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[Note that in the above argument we implicitly assumed that we could find W, € M,,,(Py,, D)
and W,, € M, (P,, D); if this was not the case, then either R,,(D) or R,(D) would be equal
to +o00, and (49) would still trivially hold.] Therefore the sequence {R, (D)} is subadditive
and it follows that lim, (1/n)R, (D) = inf,,(1/n)R, (D). From this it is immediate that Dy, =
inf,, Dr(::l)n

Part (iv) is a well-known information theoretic fact; see, e.g., Problem 7.4 in [2]. O
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