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Abstract

Suppose A is a finite set, let P be a discrete probability distribution on A, and let M be
an arbitrary “mass” function on A. We give a precise characterization of the most efficient
way in which An can be almost-covered using spheres of a fixed radius. An almost-covering
is a subset Cn of An, such that the union of the spheres centered at the points of Cn has
probability close to one with respect to the product distribution Pn. Spheres are defined
in terms of a single-letter distortion measure on An, an efficient covering is one with small
mass Mn(Cn), and n is typically large. In information-theoretic terms, the sets Cn are
rate-distortion codebooks, but instead of minimizing their size we seek to minimize their
mass. With different choices for M and the distortion measure on A our results give various
corollaries as special cases, including Shannon’s classical rate-distortion theorem, a version
of Stein’s lemma (in hypothesis testing), and a new converse to some measure-concentration
inequalities on discrete spaces. Under mild conditions, we generalize our results to abstract
spaces and non-product measures.
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1 Introduction

Suppose A is a finite set and let P a discrete probability mass function on A (more general
probability spaces are considered later). Assume that the distortion (or distance) ρ(x, y) between
two symbols (or points) x and y from A is measured by a fixed ρ : A×A→ [0,∞), and for each
n ≥ 1 define a single-letter distortion measure (or coordinate-wise distance function) ρn by

ρn(xn1 , y
n
1 ) =

1
n

n∑
i=1

ρ(xi, yi), (1)

for xn1 = (x1, x2, . . . , xn) and yn1 = (y1, y2, . . . , yn) in An.
Given a D ≥ 0, we want to “almost” cover the product space An using a finite number of

balls (or “spheres”) B(yn1 , D), where

B(yn1 , D) = {xn1 ∈ An : ρn(xn1 , y
n
1 ) ≤ D} (2)

is the (closed) ball of distortion-radius D centered at yn1 ∈ An. For our purposes, an “almost
covering” is a subset C ⊂ An, such that the union of the balls of radius D centered at the points
of C have large Pn-probability, that is,

Pn ([C]D) is close to 1, (3)

where [C]D is the D-blowup of C

[C]D =
⋃
yn1 ∈C

B(yn1 , D) = {xn1 : ρn(xn1 , y
n
1 ) ≤ D for some yn1 ∈ C}.

More specifically, given a “mass function” M : A → (0,∞), we are interested in covering An

efficiently, namely, finding sets C that satisfy (3) and also have small mass

Mn(C) =
∑
yn1 ∈C

Mn(yn1 ) =
∑
yn1 ∈C

n∏
i=1

M(yi).

One way to state our main question of interest is as follows:

(∗)


If the sets {Cn ; n ≥ 1} asymptotically D-cover An, that is,

Pn ([Cn]D)→ 1 as n→∞,
how small can their masses Mn(Cn) be?

Question (∗) is partly motivated by the fact that several interesting questions can be easily
restated in this form. Three such examples are presented below, and in the remainder of the
paper (∗) is addressed and answered in detail. In particular, it is shown that Mn(Cn) typically
grows (or decays) exponentially in n, and an explicit lower bound, valid for all finite n, is given
for the exponent (1/n) logMn(Cn) of the mass of an arbitrary Cn. [Throughout the paper, ‘log’
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denotes the natural logarithm.] Moreover, a sequence of sets Cn asymptotically achieving this
lower bound is exhibited, showing that it is best possible. The outline of the proofs follows,
to some extent, along similar lines as the proof of Shannon’s rate-distortion theorem [15]. In
particular, the “extremal” sets Cn achieving the lower bound are constructed probabilistically;
each Cn consists of a collection of points yn1 generated by taking independent and identically
distributed (IID) samples from a suitable distribution on An, but (unlike Shannon) here we need
to condition on seeing typical realizations, making the individual elements of the random Cn

non-IID.

Example 1. (Measure Concentration on the Binary Cube) Take A = {0, 1} so
that An is the n-dimensional binary cube consisting of all binary strings of length n, and let
Pn be a product probability distribution on An. Write ρn(xn1 , y

n
1 ) for the normalized Hamming

distortion between xn1 and yn1 , so that ρn(xn1 , y
n
1 ) is the proportion of mismatches between the

two strings; formally:

ρn(xn1 , y
n
1 ) =

1
n

n∑
i=1

I{xi 6=yi}, xn1 , y
n
1 ∈ An. (4)

Geometrically, if An is given the usual nearest-neighbor graph structure (two points are con-
nected if and only if they differ in exactly one coordinate), then ρn(xn1 , y

n
1 ) is the graph distance

between xn1 and yn1 , normalized by n.
A well-known measure-concentration inequality for subsets Cn of An states that, for any

D ≥ 0,

Pn([Cn]D) ≥ 1− e−nD
2/2

Pn(Cn)
. (5)

[See Proposition 2.1.1 in the comprehensive account by Talagrand [17], or Theorem 3.5 in the
review paper by McDiarmid [12], and the references therein.] Roughly speaking, (5) says that “if
Cn is not too small, [Cn]D is almost everything.” In particular, it implies that for any sequence
of sets Cn ⊂ An and any D ≥ 0,

if lim inf
n→∞

1
n

logPn(Cn) > −D2/2, then Pn([Cn]D)→ 1. (6)

A natural question to ask is whether there is a converse to the above statement: If Pn([Cn]D)→
1, how small can the probabilities of the Cn be? Taking M ≡ P , this reduces to question
(∗) above. In this context, (∗) can be thought of as the opposite of the usual isoperimetric
problem. We are looking for sets with the “largest possible boundary”; sets Cn whose D-
blowups (asymptotically) cover the entire space, but whose volumes Pn(Cn) are as small as
possible. A precise answer for this problem is given in Corollary 3 and the discussion following
it, in the next section.
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Example 2. (Lossy Data Compression) Let A be a finite alphabet so that An consists
of all possible messages of length n from A, and assume that messages are generated by a mem-
oryless source, with distribution Pn on An. A code for these messages consists of a codebook
Cn ⊂ An and an encoder φn : An → Cn. If we think of ρn(xn1 , y

n
1 ) as the distortion between

a message xn1 and its reproduction yn1 , then for any given codebook Cn the best choice for the
encoder is clearly the map φn taking each xn1 to the yn1 in Cn which minimizes the distortion
ρn(xn1 , y

n
1 ). Hence, at least conceptually, finding good codes is the same as finding good code-

books. More specifically, if D ≥ 0 is the maximum amount of distortion we are willing to
tolerate, then a sequence of good codebooks {Cn} is one with the following properties:

(a) The probability of encoding a message with distortion exceeding D is asymptotically neg-
ligible:

Pn([Cn]D)→ 1.

(b) Good compression is achieved, that is, the sizes |Cn| of the codebooks are small.

What is the best achievable compression performance? That is, if the codebooks {Cn} satisfy
(a), how small can their sizes be? Shannon’s classical source coding theorem (cf. [15][2]) answers
this question. In our notation, taking M ≡ 1 reduces the question to a special case of (∗), and
in Corollary 2 in the next section we recover Shannon’s theorem as a special case of Theorems 1
and 2.

Example 3. (Hypothesis Testing) Let A be a finite set and P1, P2 be two probability
distributions on A. Suppose that the null hypothesis that a sample Xn

1 = (X1, X2, . . . , Xn) of n
independent observations comes from P1 is to be tested against the simple alternative hypothesis
that Xn

1 comes from P2. A test between these two hypotheses can be thought of as a decision
region Cn ⊂ An: If Xn

1 ∈ Cn we declare that Xn
1 ∼ Pn1 , otherwise we declare Xn

1 ∼ Pn2 . The
two probabilities of error associated with this test are

αn = Pn1 (Ccn) and βn = Pn2 (Cn). (7)

A good test has these two probabilities vanishing as fast as possible, and we may ask, if αn → 0,
how fast can βn decay to zero? Taking ρ to be Hamming distortion, D = 0, P = P1, and
M = P2, this reduces to our original question (∗). In Corollary 1 in the next section we answer
this question by deducing a version of Stein’s lemma from Theorems 1 and 2. It is worth noting
that the connection between questions in hypothesis testing and information theory goes at least
as far back as Strassen’s 1964 paper [16] (see also Blahut’s paper [3] in 1974, and Csiszár and
Körner’s book [7] for a detailed discussion).

The rest of the paper is organized as follows. In Section 2, Theorems 1 and 2 provide an
answer to question (∗). In the remarks and corollaries following Theorem 2 we discuss and
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interpret this answer, and we present various applications along the lines of the three examples
above. Theorem 1 is proved in Section 2 and Theorem 2 is proved in Section 3. In Section 4
we consider the same problem in a much more general setting. We let A be an abstract space,
and instead of product measures Pn we consider the n-dimensional marginals Pn of a stationary
measure P on AN. In Theorems 3 and 4 we give analogs of Theorems 1 and 2, which hold
essentially as long as the spaces (An, Pn) can be almost-covered by countably many ρn-balls.
Although the results of Section 2 are essentially subsumed by Theorems 3 and 4, it is possible
to give simple, elementary proofs for the special case treated in Theorems 1 and 2, so we give
separate proofs for these results first. The more general Theorems 3 and 4 are proved in Section 5,
and the Appendix contains the proofs of various technical steps needed along the way.

2 The Discrete Memoryless Case

Let A be a finite set and P be a discrete probability mass function on A. Fix a ρ : A×A→ [0,∞),
and for each n ≥ 1 let ρn be the corresponding single-letter distortion measure (or coordinate-
wise distance function) on An defined as in (1). Also let M : A→ (0,∞) be an arbitrary positive
mass function on A. We assume, without loss of generality, that P (a) > 0 for all a ∈ A, and
also that for each a ∈ A there exists a b ∈ A with ρ(a, b) = 0 (otherwise we may consider
ρ′(x, y) = [ρ(x, y) − minz∈A ρ(x, z)] instead of ρ). Let {Xn} denote a sequence of IID random
variables with distribution P , and write P = PN for the product measure on AN equipped with
the usual σ-algebra generated by finite-dimensional cylinders. We write Xj

i for vectors of random
variables (Xi, Xi+1, . . . , Xj), 1 ≤ i ≤ j ≤ ∞, and similarly xji = (xi, xi+1, . . . , xj) ∈ Aj−i+1 for
realizations of these random variables.

Next we define the rate function R(D) that will provide the lower bound on the exponent of
the mass of an arbitrary Cn ⊂ An. For D ≥ 0 and Q a probability measure on A, let

I(P,Q,D) = inf
W∈M(P,Q,D)

H(W‖P×Q) (8)

where H(µ‖ν) denotes the relative entropy between two discrete probability mass functions µ
and ν on a finite set S,

H(µ‖ν) =
∑
s∈S

µ(s) log
µ(s)
ν(s)

,

and where M(P,Q,D) consists of all probability measures W on A×A such that WX , the
first marginal of W , is equal to P , WY , the second marginal, is Q, and EW [ρ(X,Y )] ≤ D; if
M(P,Q,D) is empty, we let I(P,Q,D) =∞. The rate function R(D) is defined by

R(D) = R(D;P,M) = inf
Q
{I(P,Q,D) + EQ[logM(Y )]} , (9)

4



where the infimum is over all probability distributions Q on A. Recalling the definition of
the mutual information between two random variables, R(D) can equivalently be written in a
more information-theoretic way. If (X,Y ) are random variables (or random vectors) with joint
distribution W and corresponding marginals WX and WY , then the mutual information between
X and Y is defined as

I(X;Y ) = H(W‖WX×WY ).

Combining the two infima in (8) and (9) we can write

R(D) = inf
(X,Y ): X∼P, Eρ(X,Y )≤D

{I(X;Y ) + E[logM(Y )]} (10)

where the infimum is taken over all jointly distributed random variables (X,Y ) such that X has
distribution P and Eρ(X,Y ) ≤ D. For any xn1 ∈ An and Cn ⊂ An, write

ρn(xn1 , Cn) = min
yn1 ∈Cn

ρn(xn1 , y
n
1 ).

In the following two Theorems we answer question (∗) stated in the Introduction. Theorem 1
contains a lower bound (valid for all finite n) on the mass of an arbitrary Cn ⊂ An, and Theorem 2
shows that this bound is asymptotically tight. In information-theoretic terms, Theorems 1 and 2
can be thought of as generalized direct and converse coding theorems, for minimal-mass (rather
than minimal-size) codebooks.

Theorem 1. Let Cn ⊂ An be arbitrary and write D = EPn [ρn(Xn
1 , Cn)]. Then

1
n

logMn(Cn) ≥ R(D).

Theorem 2. Assume that ρ(x, y) = 0 if and only if x = y. For any D ≥ 0 and any ε > 0
there is a sequence of sets {Cn} such that:

(i)
1
n

logMn(Cn) ≤ R(D) + ε for all n ≥ 1

(ii) ρn(Xn
1 , Cn) ≤ D eventually, P− a.s.

Remark 1. Part (ii) of Theorem 2 says that I[Cn]
D

(Xn
1 ) → 1 with probability one, so by

Fatou’s lemma, Pn ([Cn]D)→ 1. From this and (i) it is easy to deduce the following alternative
version of Theorem 2 (see the Appendix for a proof): For any D ≥ 0 there is a sequence of sets
{C∗n} such that:

(i′) lim sup
n→∞

1
n

logMn(C∗n) ≤ R(D)

(ii′) Pn([C∗n]D)→ 1, and

(iii′) lim sup
n→∞

EPn [ρn(Xn
1 , C

∗
n)] ≤ D
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Remark 2. As will become evident from the proof of Theorem 2, the additional assumption
on ρ is only made for the sake of simplicity, and it is not necessary for the validity of the result.
In particular, it allows us to give a unified argument for the cases D = 0 and D > 0.

Theorem 1 is proved at the end of this section, and Theorem 2 is proved in Section 3.
Although the proof of Theorem 2 is somewhat technical, the idea behind the construction of the
extremal sets Cn is simple: Suppose Q∗ is a probability measure on A achieving the infimum in
the definition of R(D), so that

R(D) = I(P,Q∗, D) + EQ∗ [logM(Y )]
4
= I∗ + L∗.

Write Q∗n for the product measure (Q∗)n, and let Q̂n be the measure obtained by conditioning
Q∗n to the set of points yn1 ∈ An whose empirical measures (“types”) are uniformly close to Q∗.
Then let Cn consist of approximately enI

∗
points yn1 drawn IID from Q̂n. Each point in the

support of Q̂n has mass Mn(yn1 ) ≈ enL∗ and Cn contains about enI
∗

of them, so Mn(Cn) is close
to enI

∗
enL

∗
= enR(D). The main technical content of the proof is therefore to prove (ii), namely,

that enI
∗

points indeed suffice to almost D-cover An.
The above construction also provides a nice interpretation for R(D). If we had started

with a different measure Q in place of Q∗, we would have ended up with sets C ′n of size
≈ exp(nI(P,Q,D)), consisting of points yn1 of mass Mn(yn1 ) ≈ exp(nEQ(logM(Y ))), and the
total mass of C ′n would be

Mn(C ′n) ≈ exp{n[I(P,Q,D) + EQ(logM(Y ))]}.

By optimizing over the choice of Q in (9) we are balancing the tradeoff between the size and the
weight of the set Cn, between a few heavy points and many light ones.

It is also worth noting that the extremal sets Cn above were constructed by taking samples
yn1 from the non-product measure Q̂n. Unlike in Shannon’s proof of the data compression
theorem, here we cannot get away by simply using the product measure Q∗n. This is because
we are not just interested in how many points yn1 are needed to almost cover An, but also we
need control their masses Mn(yn1 ). Since exponentially many yn1 ’s are required to cover An, if
they are generated from Q∗n then there are bound to be some atypically heavy ones, and this
drastically increases the total mass Mn(Cn). Therefore, by restricting Q∗n to be supported on
the set of yn1 ∈ An whose empirical measures are uniformly close to Q∗, we are ensuring that
the masses of the yn1 will be essentially constant, and all approximately equal to enL

∗
.

Next we derive corollaries from Theorems 1 and 2, along the lines of the examples in the
Introduction. First, in the context of hypothesis testing, let P1, P2 be two probability distribu-
tions on A with all positive probabilities. Suppose that the null hypothesis that Xn

1 ∼ Pn1 is
to be tested against the alternative Xn

1 ∼ Pn2 . Given a test with an associated decision region
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Cn ⊂ An, its two probabilities of error αn and βn are defined as in (7). In the notation of this
section, let ρn be Hamming distortion as in (4), P = P1 and M = P2. Observe that, here,

EPn1 [ρn(Xn
1 , Cn)] ≤ EPn1 [ICcn(Xn

1 )] = Pn1 (Ccn),

and define, in the notation of (9), the error exponent

ε(α) = −R(α;P1, P2), α ∈ [0, 1].

Noting that ε(0) = H(P1‖P2), from Theorems 1 and 2 and Remark 1 we obtain the following
version of Stein’s lemma (see Lemma 6.1 in Bahadur’s monograph [1], or Theorem 12.8.1 in [6]).

Corollary 1. (Hypothesis Testing) Let α = αn = Pn1 (Ccn) and β = βn = Pn2 (Cn) be
the two types of error probabilities associated with an arbitrary sequence of tests {Cn}.

(i) For all n ≥ 1, β ≥ e−nε(α).

(ii) If αn → 0, then

lim inf
n→∞

1
n

log βn ≥ −H(P1‖P2).

(iii) There exists a sequence of decision regions Cn with associated tests whose error probabilities
achieve αn → 0 and (1/n) log βn → −H(P1‖P2), as n→∞.

Note that, although the decision regions Cn in (iii) above achieve the best exponent in the
error probability, they are not the overall optimal decision regions in the Neyman-Pearson sense.

In the case of data compression, we have random data Xn
1 generated by some product

distribution Pn. Given a single-letter distortion measure ρn and a maximum allowable distortion
level D ≥ 0, our objective is to find good codebooks Cn. As discussed in Example 2 above, good
codebooks are those that asymptotically cover An, i.e., Pn([Cn]D) → 1, and whose sizes |Cn|
are relatively small. In our notation, if we take M(·) ≡ 1, then Mn(Cn) = |Cn| and the rate
function R(D) (from (9) or (10)) reduces to Shannon’s rate-distortion function

RS(D) = inf
Q

inf
W∈M(P,Q,D)

H(W‖P×Q)

= inf
(X,Y ): X∼P, Eρ(X,Y )≤D

I(X;Y ).

From Theorems 1 and 2 and Remark 1 we recover Shannon’s source coding theorem (see [15][2]).

Corollary 2. (Data Compression) For any n ≥ 1, if the average distortion achieved by
a codebook Cn is D = EPn [ρn(Xn

1 , Cn)], then

1
n

log |Cn| ≥ RS(D).

7



Moreover, for any D ≥ 0, there is a sequence of codebooks {Cn} such that EPn [ρn(Xn
1 , Cn)]→ D,

the codebooks Cn asymptotically cover An, Pn([Cn]D)→ 1, and

lim
n→∞

1
n

log |Cn| = RS(D).

Finally, in the context of measure-concentration, taking M = P and writing RC(D) for the
concentration exponent R(D;P, P ), we get:

Corollary 3. (Converse Measure Concentration) Let {Cn} be arbitrary sets.

(i) For any n ≥ 1, if D = EPn [ρn(Xn
1 , Cn)], then Pn(Cn) ≥ enRC(D).

(ii) If Pn([Cn]D)→ 1, then

lim inf
n→∞

1
n

logPn(Cn) ≥ RC(D).

(iii) There is a sequence of sets {Cn} such that Pn([Cn]D)→ 1 and (1/n) logPn(Cn)→ RC(D),
as n→∞.

In particular, in the case of the binary cube, part (ii) of the corollary provides a precise
converse to the measure-concentration statement in (6). Although the concentration exponent
RC(D) = R(D;P, P ) is not as explicit as the exponent −D2/2 in (6), RC(D) is a well-behaved
function and it is easy to evaluate it numerically. For example, Figure 1 shows the graph of
RC(D) in the case of the binary cube, with P being the Bernoulli measure with P (1) = 0.4.
Various easily checked properties of R(D) = R(D;P,M) are stated in Lemma 1, below; proof
outlines are given in the Appendix.

As mentioned in the Introduction, the question considered in Corollary 3 can be thought of
as the opposite of the usual isoperimetric problem. Instead of large sets with small boundaries,
we are looking for small sets with the largest possible boundary. It is therefore not surprising
that the extremal sets in (6) and in Corollary 3 are very different. In the classical isoperimetric
problem, the extremal sets typically look like Hamming balls around 0n = (0, 0, . . . , 0) ∈ An,
Bn = {xn1 : ρn(xn1 , 0

n) ≤ r/n} (see the discussions in Section 2.3 of [17], p. 174 in [11], or the
original paper by Harper [10]), while the extremal sets in our case are collections of vectors yn1
drawn IID from the measure Q̂n on An.
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Figure 1: Graph of the function RC(D) = R(D;P, P ) for 0 ≤ D ≤ 1, in the case of the binary
cube An = {0, 1}n, with P (1) = 0.4.

Lemma 1.(i) The infima in the definitions of R(D) and I(P,Q,D) in (9) and (8) are in fact
minima.

(ii) R(D) is finite for all D ≥ 0, it is nonincreasing and convex in D, and therefore also
continuous.

(iii) For fixed P and Q, I(P,Q,D) is nonincreasing and convex in D, and therefore it is
continuous except possibly at the point D = inf{D ≥ 0 : I(P,Q,D) <∞}.

(iv) If the random variables Xn
1 = (X1, . . . , Xn) are IID, then for any random vector Y n

1

jointly distributed with Xn
1 :

I(Xn
1 ;Y n

1 ) ≥
n∑
i=1

I(Xi;Yi).

(v) If we let Rmin = min{logM(y) : y ∈ A} and

Dmax = Dmax(P ) = min{EP [ρ(X, y)] : y such that logM(y) = Rmin},

then

R(D) is
{

= Rmin for D ≥ Dmax

> Rmin for 0 ≤ D < Dmax.

Next we prove Theorem 1. It is perhaps somewhat surprising that the proof is very short
and completely elementary, relying only on Jensen’s inequality and the convexity of R(D).
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Proof of Theorem 1: Given an arbitrary Cn, let φn : An → Cn be a function that maps
each xn1 ∈ An to the closest yn1 in Cn, i.e., ρn(xn1 , φ(xn1 )) = ρn(xn1 , Cn). For Xn

1 ∼ Pn let
Y n

1 = φn(Xn
1 ), write Qn for the distribution of Y n

1 , and Wn(xn1 , y
n
1 ) = Pn(xn1 )I{φn(xn1 )}(yn1 ) for

the joint distribution of (Xn
1 , Y

n
1 ). Then

EWn [ρn(Xn
1 , Y

n
1 )] = D (11)

and by Jensen’s inequality,

logMn(Cn) = log

 ∑
yn1 ∈Cn

(
Qn(yn1 )

Mn(yn1 )
Qn(yn1 )

)
≥

∑
yn1 ∈Cn

Qn(yn1 ) log
Mn(yn1 )
Qn(yn1 )

=
∑

xn1 ,y
n
1 ∈An

Wn(xn1 , y
n
1 ) log

Wn(xn1 , y
n
1 )

Pn(xn1 )Qn(yn1 )
+
∑
yn1 ∈Cn

Qn(yn1 ) logMn(yn1 ).

By the definition of mutual information this equals

I(Xn
1 ;Y n

1 ) + EQn [logMn(Y n
1 )],

which, by Lemma 1 (iv), is bounded below by

n∑
i=1

[I(Xi;Yi) + EQn [logM(Yi)]] .

Finally, by the definition of R(D) and its convexity this is bounded below by

n∑
i=1

R (EWn [ρ(Xi, Yi)]) ≥ nR

(
1
n

n∑
i=1

EWn [ρ(Xi, Yi)]

)
= nR(D)

where the last equality follows from (11). 2

3 Proof of Theorem 2.

Let P , D ≥ 0 be fixed, and ε > 0 be given. By Lemma 1 (i) we can pick Q∗ and W ∗ in the
definition of R(D) and I(P,Q∗, D), respectively, such that

R(D) = H(W ∗‖P×Q∗) + EQ∗ [logM(Y )]
4
= I∗ + L∗.

For n ≥ 1, write Q∗n for the product measure (Q∗)n, and for yn1 ∈ An let

P̂yn1 =
1
n

n∑
i=1

δyi
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denote the empirical measure of yn1 . Pick δ > 0 (to be chosen later) and define, for each n ≥ 1,
the set of “good” strings

Gn = {yn1 ∈ An : P̂yn1 (b) ≤ Q∗(b) + δ, ∀ b ∈ A}

(if Gn as defined above is empty – this may only happen for finitely many n – simply let Gn
consist of a single vector (a, a, . . . , a), with a ∈ A chosen so that logM(a) = Rmin). Also, let
Q̂n be the measure Q∗n conditioned on Gn:

Q̂n(F ) =
Q∗n(F ∩ Gn)
Q∗n(Gn)

; F ⊂ An.

For n ≥ 1, let {Y (i) = (Y1(i), Y2(i), . . . , Yn(i)) ; i ≥ 1} be an IID sequence of random vectors
Y (i) ∼ Q̂n, and define Cn as the collection of the first en(I∗+ε/2) of them:

Cn = {Y (i) : 1 ≤ i ≤ en(I∗+ε/2)}.

By the definition of Gn, any yn1 ∈ Gn has

1
n

logMn(yn1 ) =
∑
b∈A

P̂yn1 (b) logM(b) ≤ L∗ + δ

(∑
b∈A

logM(b)

)
≤ L∗ + ε/2,

by choosing δ > 0 appropriately small. Therefore,

Mn(Cn) ≤ en(I∗+ε/2)en(L∗+ε/2) = en(R(D)+ε)

and (i) of the Theorem is satisfied. Let Xn
1 be IID random variables with distribution P . To

verify (ii) we will show that

in ≤ en(I∗+ε/2) eventually, P×Q− a.s. (12)

where in is the index of the first Y (i) that matches Xn
1 within ρn-distortion D,

in = inf{i ≥ 1 : ρn(Xn
1 , Y (i)) ≤ D},

and Q =
∏
n≥1(Q̂n)N. Recall the notation B(xn1 , D) = {yn1 ∈ An : ρn(xn1 , y

n
1 ) ≤ D}. For (12) it

suffices to prove the following two statements

lim sup
n→∞

1
n

log
[
in Q̂n(B(Xn

1 , D))
]
≤ 0 P×Q− a.s. (13)

lim inf
n→∞

1
n

log Q̂n(B(Xn
1 , D)) ≥ −I∗ P− a.s. (14)

Proving (14) is the main technical part of the proof and it will be done last. Assuming it holds,
we will first establish (13). For m ≥ 1 let Gm = {x∞1 ∈ A∞ : Q̂n(B(xn1 , D)) > 0 ∀n ≥ m}, and

11



note that by (14), P (∪m≥1Gm) = 1. Pick m ≥ 1; for any n ≥ m, and any x∞1 ∈ Gm, conditional
on Xn

1 = xn1 , in is a Geometric(pn) random variable with pn = Q̂n(B(xn1 , D)). So for ε′ > 0
arbitrary

Pr
{

1
n

log
[
in Q̂n(B(Xn

1 , D))
]
> ε′

∣∣∣∣ Xn
1 = xn1

}
≤ (1− pn)

eε
′n
pn
−1

and for all n large enough (independent of xn1 ) this is bounded above by

[
(1− pn)1/pn

]eε′n−1

≤ e−eε
′n−1

,

uniformly over x∞1 ∈ Gm. Since the above right-hand side is summable over n, by the Borel-
Cantelli lemma and the fact that ε′ > 0 was arbitrary we get (13) for P-almost all x∞1 ∈ Gm.
But since P (∪m≥1Gm) = 1, this proves (13).

Next we turn to the proof of (14). Since, by the law of large numbers, Q∗n(Gn) → 1, as
n→∞, (14) is equivalent to

lim inf
n→∞

1
n

logQ∗n (B(Xn
1 , D) ∩ Gn) ≥ −I∗ P− a.s. (15)

Choose and fix one of the (almost all) realizations x∞1 of P for which

P̂xn1 (a)→ P (a), for all a ∈ A.

Let ε1 ∈ (0, δ) arbitrary, and choose and fix N large enough so that

|P̂xn1 (a)− P (a)| < ε1P (a) for all a ∈ A, n ≥ N. (16)

Let a1, a2, . . . , am denote the elements of A, write n0 = 0,

ni = nP̂xn1 (ai), i = 1, 2, . . . ,m

and Nj =
∑j

k=0 nk, j = 0, 1, . . . ,m. For n ≥ N , writing Y n
1 = (Y1, Y2, . . . , Yn) for a vector of

random variables with distribution Q∗n, we have that Q∗n (B(xn1 , D) ∩ Gn) equals

Q∗n

{
1
n

n∑
i=1

ρ(xi, Yi) ≤ D and
1
n

n∑
i=1

I{Yi=b} ≤ Q
∗(b) + δ, ∀ b ∈ A

}

= Q∗n


m∑
i=1

ni
n

1
ni

Ni∑
j=Ni−1+1

ρ(ai, Yj) ≤ D and
m∑
i=1

ni
n

1
ni

Ni∑
j=Ni−1+1

I{Yj=b} ≤ Q
∗(b) + δ, ∀ b ∈ A


where we have used the fact that the Yi are IID (and hence exchangeable) to rewrite xn1 as
consisting of n1 a1’s followed n2 a2’s, and so on. Let γi = P (ai)

∑
b∈AW

∗(b|ai)ρ(ai, b) for

12



i = 1, 2, . . . ,m. Recalling that, by the choice of W ∗,
∑

i γi = EW ∗ρ(X,Y ) ≤ D, and that Q∗ is
the Y -marginal of W ∗, the above probability is bounded below by

m∏
i=1

Q∗ni

nin 1
ni

ni∑
j=1

ρ(ai, Yj) ≤ γi and
ni
n

1
ni

ni∑
j=1

I{Yj=b} ≤ P (ai)[W ∗(b|ai) + δ], ∀ b ∈ A

 .

Writing Γi = γi/[P (ai)(1 + ε1)], i = 1, 2, . . . ,m and using (16), this is in turn bounded below by

m∏
i=1

Q∗ni

 1
ni

ni∑
j=1

ρ(ai, Yj) ≤ Γi and
1
ni

ni∑
j=1

I{Yj=b} ≤
W ∗(b|ai) + δ

1 + ε1
, ∀ b ∈ A


=

m∏
i=1

Q∗ni

{
P̂Y ni1

∈ Fi
}
, (17)

where Fi is the collection of probability mass functions Q on A,

Fi = Fi(ε1) =
{
Q : EQ[ρ(ai, Y )] ≤ Γi and Q(b) ≤ W ∗(b|ai) + δ

1 + ε1
, ∀ b ∈ A

}
.

We will apply Sanov’s theorem to each one of the terms in (17). Consider two cases: If Γi > 0
then Fi is the closure of its interior (in the Euclidean topology), so by Sanov’s theorem

lim inf
ni→∞

1
ni

logQ∗ni
{
P̂Y ni1

∈ Fi
}
≥ − inf

Q∈Fi
H(Q‖Q∗) (18)

(see Theorem 2.1.10 and Exercise 2.1.18 in [8]). If Γi = 0 then γi = 0 and this can only happen
if W ∗(·|ai) = I{ai}(·), in which case Fi = {δai} and

1
ni

logQ∗ni
{
P̂Y ni1

∈ Fi
}

= logQ∗(ai) = −H(δai‖Q∗)

so (18) still holds in this case. Combining the above steps (note that each ni →∞ as n→∞),

lim inf
n→∞

1
n

logQ∗n (B(xn1 , D) ∩ Gn) ≥ lim inf
n→∞

1
n

log

[
m∏
i=1

Q∗ni

{
P̂Y ni1

∈ Fi
}]

= lim inf
n→∞

m∑
i=1

P̂xn1 (ai)
1
ni

logQ∗ni
{
P̂Y ni1

∈ Fi
}

≥ −
m∑
i=1

P (ai) inf
Q∈Fi

H(Q‖Q∗),

and this holds for P-almost any x∞1 . Rewriting the ith infimum above as the infimum over
conditional measures W (·|ai) ∈ Fi, yields

lim inf
n→∞

1
n

logQ∗n (B(Xn
1 , D) ∩ Gn) ≥ − inf

W∈F (ε1)
H(W‖P×Q∗) P− a.s.

13



where F (ε1) = {W : WX = P and W (·|ai) ∈ Fi(ε1), ∀ i = 1, 2, . . . ,m} . Finally, since ε1 was
arbitrary we can let it decrease to 0 to obtain

lim inf
n→∞

1
n

logQ∗n (B(Xn
1 , D) ∩ Gn) ≥ lim sup

ε1↓0
[− inf

W∈F (ε1)
H(W‖P×Q∗)]

(a)
= − inf

W∈F (0)
H(W‖P×Q∗)]

(b)

≥ −I∗ P− a.s.

This gives (15) and completes the proof, once we justify steps (a) and (b). Step (b) follows upon
noticing that W ∗ ∈ F (0) and recalling that H(W ∗‖P×Q∗) = I∗. Step (a) follows from the fact
that H(W‖P×Q∗) is continuous over those W that are absolutely continuous with respect to
P×Q∗, and from the observation in Lemma 2 below (verified in the Appendix). 2

Lemma 2. For all ε1 > 0 small enough there exist Qi ∈ Fi(ε1) such that H(Qi‖Q∗) <∞, for
1 ≤ i ≤ m. Therefore, for all ε1 > 0 small enough the exists W ∈ F (ε1) with H(W‖P×Q∗) <∞.

Note that, in the above proof, a somewhat stronger result than the one given in Theorem 2
is established: It is not just demonstrated that there exist sets Cn achieving (i) and (ii), but
that (almost) any sequence of sets Cn generated by taking approximately enI

∗
IID samples from

Q̂n will satisfy (i) and (ii).
We also mention that Bucklew [4] used Sanov’s theorem to prove the direct part of Shannon’s

data compression theorem. The proof of Theorem 2 is similar, except that it involves a less
direct application of Sanov’s theorem to the sequence of non-product measures Q̂n, and the
conclusions obtained are somewhat stronger (pointwise rather than L1 bounds). Similarly, in
the proof of Theorem 4, the Gärtner-Ellis theorem from large deviations is applied in a manner
which parallels the approach of [5].

4 The General Case

Let A be a Polish space (namely, a complete, separable metric space) equipped with its associated
Borel σ-algebra A, and let P be a probability measure on (AN,AN). Also let (Â, Â) be a (possibly
different) Polish space. Given a nonnegative measurable function ρ : A× Â → [0,∞), define
ρn : An×Ân → [0,∞) as in (1). [The reason for considering Â as possibly different from A

is motivated by the common data compression scenario, where, in practice, it is often the case
that original data take values in a large alphabet A (for example, Gaussian data have A = R),
whereas compressed data take values in a much smaller alphabet (for example, Gaussian data
on a computer are typically quantized to the finite alphabet Â consisting of all double precision
reals).]

14



Let {Xn} be a sequence of random variables distributed according to P, and for each n ≥ 1
write Pn for the n-dimensional marginal distribution of Xn

1 . We say that P is a stationary mea-
sure if Xn

1 has the same distribution as Xn+k
1+k , for any n, k. Let M : Â→ (0,∞) be a measurable

“mass” function on Â. To avoid uninteresting technicalities, we will assume throughout that
M is bounded away from zero, M(y) ≥ M∗ for some constant M∗ > 0 and all y ∈ Â. Next we
define the natural analogs of the rate functions I(P,Q,D) and R(D). For n ≥ 1, D ≥ 0 and Qn
a probability measure on (Ân, Ân), let

In(Pn, Qn, D) = inf
Wn∈Mn(Pn,Qn,D)

H(Wn‖Pn×Qn) (19)

where H(µ‖ν) denotes the relative entropy between two probability measures µ and ν

H(µ‖ν) =

{ ∫
dµ log dµ

dν , whendµdν exists
∞, otherwise

and where Mn(Pn, Qn, D) consists of all probability measures Wn on (An×Ân,An×Ân) such
that Wn,X , the first marginal of Wn, is equal to Pn, the second marginal Wn,Y is Qn, and∫
ρn dWn ≤ D; if Mn(Pn, Qn, D) is empty, let In(Pn, Qn, D) =∞. Then Rn(D) is defined by

Rn(D) = Rn(D;Pn,M) = inf
Qn
{In(Pn, Qn, D) + EQn [logMn(Y n

1 )]} , (20)

where the infimum is over all probability measuresQn on (Ân, Ân). Note that since In(Pn, Qn, D)
is nonnegative and M is bounded away from zero, Rn(D) is always well-defined. Recall also that
the mutual information between two random vectors Xn

1 and Y n
1 with joint distribution Wn and

corresponding marginals Pn and Qn, is defined by I(Xn
1 ;Y n

1 ) = H(Wn‖Pn×Qn), so that Rn(D)
can alternatively be written in a form analogous to (10) in the discrete case:

Rn(D) = inf
(Xn

1 ,Y
n
1 ): Xn

1 ∼Pn, Eρn(Xn
1 ,Y

n
1 )≤D

{I(Xn
1 ;Y n

1 ) + E[logMn(Y n
1 )]} .

Finally, the rate function R(D) is defined by

R(D) = lim
n→∞

1
n
Rn(D)

whenever the limit exists. Next we state some simple properties of Rn(D) and R(D), proved in
the Appendix.

Lemma 3.(i) For each n ≥ 1, Rn(D) is nonincreasing and convex in D ≥ 0, and therefore
also continuous at all D except possibly at the point

D
(n)
min = inf{D ≥ 0 : Rn(D) < +∞}.
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(ii) If R(D) exists then it is nonincreasing and convex in D ≥ 0, and therefore also contin-
uous at all D except possibly at the point

Dmin = inf{D ≥ 0 : R(D) < +∞}.

(iii) If P is a stationary measure, then

R(D) = lim
n→∞

1
n
Rn(D) = inf

n≥1

1
n
Rn(D) exisits,

and Dmin = infnD
(n)
min.

(iv) The mutual information I(Xn
1 ;Y n

1 ) is convex in the marginal distribution Pn of Xn
1 , for

a fixed conditional distribution of Y n
1 given Xn

1 .

Next we state analogs of Theorems 1 and 2 in the general case. As before, we are interested
in sets Cn that have large blowups but small masses; since M is bounded away from zero we
may restrict our attention to finite sets Cn.

Theorem 3. Let Cn ⊂ Ân be an arbitrary finite set and write D = EPn [ρn(Xn
1 , Cn)]. Then

logMn(Cn) ≥ Rn(D). (21)

If P is a stationary measure, then for all n ≥ 1

logMn(Cn) ≥ nR(D).

As will become apparent from its proof (at the end of this section), Theorem 3 remains
true in great generality. The exact same proof works for arbitrary (non-product) positive mass
functions Mn in place of Mn, and more general distortion measures ρn, not necessarily of the
form in (1). Moreover, as long as Rn(D) is well-defined, the assumption that M is bounded
away from zero is unnecessary. In that case we can also consider countably infinite sets Cn, and
(21) remains valid as long as Rn(D) is continuous in D (see Lemma 3).

In the special case when P is a product measure it is not hard to check that Rn(D) = nR(D)
for all n ≥ 1, so we can recover Theorem 1 from Theorem 3.

For Theorem 4 some additional assumptions are needed. We will assume that the functions
ρ and logM are bounded, i.e., that there exist constants ρmax ≥ 0 and Lmax < ∞ such that
ρ(x, y) ≤ ρmax and | logM(y)| ≤ Lmax, for all x ∈ A, y ∈ Â. For k ≥ 1, we say that P is
stationary (respectively, ergodic) in k-blocks if the process {X̃(k)

n ; n ≥ 0} = {X(n+1)k
nk+1 ; n ≥ 0}

is stationary (resp. ergodic). If P is stationary then it is stationary in k-blocks for every k. But
an ergodic measure P may not be ergodic in k-blocks. For the second part of the Theorem we
will assume that P is ergodic in blocks, that is, that it is ergodic in k-blocks for all k ≥ 1. Also,
since R(D) =∞ for D below Dmin, we restrict our attention to the case D > Dmin. Theorem 4
is proved in the next section.
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Theorem 4. Assume that the functions ρ and logM are bounded, and that P is a stationary
ergodic measure. For any D > Dmin and any ε > 0, there is a sequence of sets {Cn} such that:

(i)
1
n

logMn(Cn) ≤ R(D) + ε for all n ≥ 1

(ii) Pn([Cn]D)→ 1 as n→∞.

If, moreover, P is ergodic in blocks, there are sets {Cn} that satisfy (i) and

(iii) ρn(Xn
1 , Cn) ≤ D eventually, P− a.s.

Remark 3. A corresponding version of the asymptotic form of Theorems 1 and 2 given
in Remark 1 of the previous section can also be derived here, and it holds for every stationary
ergodic P.

Remark 4. The assumptions on the boundedness of ρ and logM are made for the purpose of
technical convenience, and can probably be relaxed to appropriate moment conditions. Similarly,
the assumption that Mn is a product measure can be relaxed to include sequences of measures
Mn that have rapid mixing properties. Finally, the assumption that P is ergodic in blocks is not
as severe as it may sound. For example, it is easy to see that any weakly mixing measure (in
the ergodic-theoretic sense – see [13]) is ergodic in blocks.

Proof of Theorem 3: Given an arbitrary Cn, let φn : An → Cn be defined as in the proof
of Theorem 1. For Xn

1 ∼ Pn define Y n
1 = φn(Xn

1 ), write Qn for the (discrete) distribution
of Y n

1 , and Wn(dxn1 , dy
n
1 ) = Pn(dxn1 )δφn(xn1 )(dyn1 ) for the joint distribution of (Xn

1 , Y
n

1 ). Then
EWn [ρn(Xn

1 , Y
n

1 )] = D, and by Jensen’s inequality applied as in the discrete case

logMn(Cn) ≥
∑
yn1 ∈Cn

Qn(yn1 ) log
Mn(yn1 )
Qn(yn1 )

=
∫

dWn(xn1 , y
n
1 ) log

dWn(xn1 , y
n
1 )

d(Pn×Qn)
+
∑
yn1 ∈Cn

Qn(yn1 ) logMn(yn1 )

= I(Xn
1 ;Y n

1 ) + EQn [logMn(Y n
1 )].

By the definition of Rn(D), this is bounded below by Rn(D). The second part follows immedi-
ately from the fact that Rn(D) ≥ nR(D), by Lemma 3 (ii). 2

5 Proof of Theorem 4

The proof of the Theorem is given in 3 steps. First we assume that P is ergodic in blocks, and
for any D > D

(1)
min we construct sets Cn satisfying (i) and (iii) with R1(D) in place of R(D). In

the second step (still assuming P is ergodic in blocks), for each D > Dmin we construct sets Cn
satisfying (i) and (iii). In Step 3 we drop the assumption of the ergodicity in blocks, and for
any D > Dmin we construct sets Cn satisfying (i) and (ii).
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5.1 Step 1:

Let P and D > D
(1)
min be fixed, and let an arbitrary ε > 0 be given. By Lemma 3 we can choose

a D′ ∈ (Dmin, D) such that R1(D′) ≤ R1(D) + ε/8 and a probability measure Q∗ on (Â, Â) such
that

I∗ + L∗
4
= I1(P1, Q

∗, D′) + EQ∗ [logM(Y )] ≤ R1(D) + ε/8 ≤ R1(D) + ε/4. (22)

Also we can pick a W ∗ ∈M1(P1, Q
∗, D′) such that

H(W ∗‖P1×Q∗) ≤ I∗ + ε/4. (23)

As in the proof of Theorem 2, for n ≥ 1, write Q∗n for the product measure (Q∗)n, and define

Hn =

{
yn1 ∈ Ân :

1
n

n∑
i=1

logM(yi) ≤ L∗ + ε/4

}
.

Let Q̃n be the measure Q∗n conditioned on Hn, Q̃n(F ) = Q∗n(F ∩ Hn)/Q∗n(Hn), for F ∈ Ân.
For each n ≥ 1, let {Y (i) = (Y1(i), Y2(i), . . . , Yn(i)) ; i ≥ 1} be IID random vectors Y (i) ∼ Q̃n,
and define

Cn = {Y (i) : 1 ≤ i ≤ en(I∗+ε/2)}.

By the definition of Hn, any yn1 ∈ Gn has Mn(yn1 ) ≤ en(L∗+ε/4), so by (22)

Mn(Cn) ≤ en(I∗+ε/2)en(L∗+ε/4) ≤ en(R1(D)+ε)

and (i) of the Theorem is satisfied with R1(D) in place of R(D). Let Xn
1 be a random vector

with distribution Pn, and, as in the proof of Theorem 2, let in be the index of the first Y (i) that
matches Xn

1 within ρn-distortion D. To verify (iii) we will show that

in ≤ en(I∗+ε/2) eventually, P×Q− a.s.

where Q =
∏
n≥1(Q̃n)N, and this will follow from the following two statements:

lim sup
n→∞

1
n

log
[
in Q̃n(B(Xn

1 , D))
]
≤ 0 P×Q− a.s. (24)

lim inf
n→∞

1
n

log Q̃n(B(Xn
1 , D)) ≥ −(I∗ + ε/4) P− a.s. (25)

The proof of (24) is exactly the same as the proof of (13) in the proof of Theorem 2. To prove
(25), first note that by the law of large numbers Q∗n(Hn) → 1, as n → ∞, so (25) is equivalent
to

lim inf
n→∞

1
n

logQ∗n (B(Xn
1 , D) ∩Hn) ≥ −(I∗ + ε/4) P− a.s. (26)
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Let Y1, Y2, . . . be IID random variables with common distribution Q∗. For any realization x∞1
of P, define the random vectors ξi and Zn by

ξi = (ρ(xi, Yi), logM(Yi)) , i ≥ 1

Zn =
1
n

n∑
i=1

ξi, n ≥ 1.

Also let Λn(λ) be the log-moment generating function of Zn,

Λn(λ) = logE
[
e(λ,Zn)

]
, λ = (λ1, λ2) ∈ R2,

where (·, ·) denotes the usual inner product in R2. Then for P-almost any x∞1 , by the ergodic
theorem,

1
n

Λn(nλ) =
1
n

logE
[
e
∑n
i=1(λ,ξi)

]
=

1
n

n∑
i=1

logEQ∗
[
eλ1ρ(xi,Y )+λ2 logM(Y )

]
→ EP1

{
logEQ∗

[
eλ1ρ(X,Y )+λ2 logM(Y )

]}
(27)

where X and Y above are independent random variables with distributions P1 and Q∗, respec-
tively. Next we will need the following lemma. Its proof is a simple application of the dominated
convergence theorem, using the boundedness of ρ and logM .

Lemma 4. For k ≥ 1 and probability measures µ and ν on (Ak,Ak) and (Âk, Âk), respec-
tively, define

Λµ,ν(λ) =
∫

log
{∫ [

exp
(
λ1ρk(xk1, y

k
1 ) + λ2

1
k

logMk(yk1 )
)]

dν(yk1 )
}
dµ(xk1),

for λ = (λ1, λ2) ∈ R2. Then Λµ,ν is convex, finite, and differentiable for all λ ∈ R2.

From Lemma 4 we have that the limiting expression in (27), which equals ΛP1,Q∗ , is finite and
differentiable everywhere. Therefore we can apply the Gärtner-Ellis theorem (Theorem 2.3.6 in
[8]) to the sequence of random vectors Zn, along P-almost any x∞1 , to get

lim inf
n→∞

1
n

logQ∗n (B(xn1 , D) ∩Hn) = lim inf
n→∞

1
n

log Pr(Zn ∈ F ) ≥ − inf
z∈F

Λ∗(z) P− a.s. (28)

where F = {z = (z1, z2) ∈ R2 : z1 < D, z2 < L∗ + ε/4} and

Λ∗P1,Q∗(z) = sup
λ∈R2

[(λ, z)− ΛP1,Q∗(λ)]

is the Fenchel-Legendre transform of ΛP1,Q∗(λ). Recall our choice of W ∗ in (23). Then for any
bounded measurable function φ : Â→ R and any fixed x ∈ A,

H(W ∗(·|x)‖Q∗(·)) ≥
∫
φ(y)dW ∗(y|x)− log

∫
eφ(y)dQ∗(y)
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(see, e.g., Lemma 6.2.13 in [8]). Fixing x ∈ A and λ ∈ R2 for a moment, take φ(y) = λ1ρ(x, y)+
λ2 logM(y), and integrate both sides dP1(x) to get

H(W ∗‖P1×Q∗) ≥ λ1EW ∗(ρ) + λ2EQ∗ [logM(Y )]− ΛP1,Q∗(λ).

Taking the supremum over all λ ∈ R2 and recalling (23) this becomes

I∗ + ε/4 ≥ H(W ∗‖P1×Q∗) ≥ Λ∗P1,Q∗(D
∗, L∗)

where D∗ =
∫
ρ dW ∗ ≤ D′ < D, so

I∗ + ε/4 ≥ inf
z∈F

Λ∗P1,Q∗(z).

Combining this with the bound (28) yields (26) as required, and completes the proof of this
step.

5.2 Step 2:

Let P and D > Dmin be fixed, and an arbitrary ε > 0 be given. By Lemma 3 we can pick k ≥ 1
large enough so that D(k)

min < D and (1/k)Rk(D) ≤ R(D) + ε/8. This step consists of essentially
repeating the argument of Step 1 along blocks of length k. Choose a D′ ∈ (D(k)

min, D) such that

1
k
Rk(D′) ≤

1
k
Rk(D) + ε/16, (29)

and a probability measure Q∗k on (Âk, Âk) achieving

I∗k + L∗k
4
=

1
k
Ik(Pk, Q∗k, D

′) +
1
k
EQ∗k [logMk(Y k

1 )] ≤ 1
k
Rk(D′), (30)

so that

I∗k + L∗k ≤ R(D) + ε/4. (31)

Also pick a W ∗k ∈Mk(Pk, Q∗k, D
′) such that

1
k
H(W ∗k ‖Pk×Q∗k) ≤ I∗k + ε/4. (32)

For any n ≥ 1 write n = mk + r for integers m ≥ 0 and 0 ≤ r < k, and define

Hn,k =

{
yn1 ∈ Ân :

1
n

n∑
i=1

logM(yi) ≤ L∗k + ε/4

}
.

Write Q∗n,k for the measure [
m∏
i=1

Q∗k

]
×[Q∗k]r,
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where [Q∗k]r denotes the restriction of Q∗k to (Âr, Âr), and let Q̃n,k be the measure Q∗n,k condi-
tioned on Hn,k. For each n ≥ 1, let {Y (i) = (Y1(i), Y2(i), . . . , Yn(i)) ; i ≥ 1} be IID random
vectors Y (i) ∼ Q̃n, and let Cn consist of the first en(I∗k+ε/2) of them. As before, by the definitions
of Hn,k and Cn, and using (31), it easily follows that

1
n

logMn(Cn) ≤ R(D) + ε

so (i) of the Theorem is satisfied. Let Y1, Y2, . . . , Yn be distributed according to Q∗n,k, and note

that the random vectors Y (i+1)k
ik+1 are IID with distribution Q∗k (for i = 0, 1, . . . ,m−1). Therefore,

as n→∞, by the law of large numbers we have that with probability 1:

1
n

n∑
i=1

logM(Yi) ≤
(m
n

) 1
m

m−1∑
i=0

logMk(Y (i+1)k
ik+1 ) +

kLmax

n
→ L∗k. (33)

Following the same steps as before, to verify (iii) it suffices to show that

lim inf
n→∞

1
n

log Q̃n,k(B(Xn
1 , D)) ≥ −(I∗k + ε/4) P− a.s.

and, in view of (33), this reduces to

lim inf
n→∞

1
n

logQ∗n,k (B(Xn
1 , D) ∩Hn,k) ≥ −(I∗k + ε/4) P− a.s. (34)

For an arbitrary realization x∞1 from P and with Y n
1 as above, consider blocks of length k. For

i = 0, 1, . . . ,m− 1, we write

Ỹ
(k)
i = Y

(i+1)k
ik+1 and x̃

(k)
i = x

(i+1)k
ik+1

so that the probability Q∗n,k (B(Xn
1 , D) ∩Hn,k) can be written as

Q∗n,k

{(
mk

n

)
1
m

m−1∑
i=0

ρk(Ỹ
(k)
i , x̃

(k)
i ) +

r

n
ρr(Y n

n−r+1, x
n
n−r+1) ≤ D

and
(
mk

n

)
1
m

m−1∑
i=0

1
k

logMk(Ỹ (k)
i ) +

1
n

logM r(Y n
n−r+1) ≤ L∗k + ε/4

}
.

Since we assume ρ(x, y) ≤ ρmax and | logM(y)| ≤ Lmax for all x ∈ A, y ∈ Â, then for all n large
enough (uniformly in x∞1 ) the above probability is bounded below by

(Q∗k)
m

{
1
m

m−1∑
i=0

ρk(Ỹ
(k)
i , x̃

(k)
i ) ≤ D′ + ε/8 and

1
m

m−1∑
i=0

1
k

logMk(Ỹ (k)
i ) ≤ L∗k + ε/8

}
.

Now we are in the same situation as in the previous step, with the IID random variables Ỹ (k)
i in

place of the Yi, the ergodic process {X̃(k)
i } in place of {Xi}, and D′+ε/8 in place of D. Repeating

the same argument as in Step 1 and invoking Lemma 4 and the Gärtner-Ellis theorem,

lim inf
n→∞

1
n

logQ∗n,k (B(Xn
1 , D) ∩Hn,k) ≥ − inf

z1<D′+ε/8, z2<L∗k+ε/8
Λ∗k(z1, z2) P− a.s. (35)
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where, in the notation of Lemma 4, Λ∗k(z) is the Fenchel-Legendre transform of ΛPk,Q∗k(λ).
Recall our choice of W ∗k in (32) and write D∗k =

∫
ρk dW

∗
k ≤ D′. Then by an application of

Lemma 6.2.13 from [8] together with (32) we get that

I∗k + ε/4 ≥ 1
k
H(W ∗k ‖Pk×Q∗k) ≥ Λ∗k(D

∗, L∗k),

and this together with (35) proves (34), concluding this step.

5.3 Step 3:

In this part we invoke the ergodic decomposition theorem to remove the assumption that P is
ergodic in blocks. Although somewhat more delicate, the following argument is very similar to
Berger’s proof of the abstract coding theorem; see pp. 278-281 in [2].

As in Step 2, let P and D > Dmin be fixed, and let an ε > 0 be given. Pick k ≥ 1 large
enough so that D(k)

min < D and 1
kRk(D) ≤ R(D) + ε/8, and pick D′ ∈ (D(k)

min, D) such that (29)
holds. Also choose Q∗k and W ∗k as in Step 2 so that (30), (31) and (32) all hold.

Let Ω = (Ak)N, F = (Ak)N, and note that there is a natural 1-1 correspondence between
sets in F ∈ AN and sets in F̃ ∈ (Ak)N: Writing x̃i = x

(i+1)k
ik+1 ,

F̃ = {x̃∞1 : x∞1 ∈ F}. (36)

Let µ be the stationary measure on (Ω,F) describing the distribution of the “blocked” process
{X̃i = X

(i+1)k
ik+1 ; i ≥ 0}, where, since k is fixed throughout the rest of the proof, we have dropped

the superscript in X̃(k)
i . Although µ may not be ergodic, from the ergodic decomposition theorem

we get the following information (see pp. 278-279 in [2]).

Lemma 5.There is an integer k′ dividing k, and probability measures µi, i = 0, 1, . . . , k′ − 1
on (Ω,F) with the following properties:

(i) µ = (1/k′)
∑k′−1

i=0 µi.
(ii) Each µi is stationary and ergodic.
(iii) For each i, let P(i) denote the measure on (AN,AN) induced by µi:

P
(i)(F ) = µi(F̃ ), F ∈ AN

[recall the notation of (36)]. Then P = (1/k′)
∑k′−1

i=0 P
(i), and each P(i) is stationary in k′-blocks

and ergodic in k′-blocks.
(iv) For each 0 ≤ i ≤ k′ and j ≥ 0, the distribution that P(i) induces on the process

{Xj+n ; n ≥ 1} is P(i+jmod k′).

For each i = 0, 1, . . . , k′− 1, let µi,1 denote the first-order marginal of µi and write R(D|i) =
R1(D;µi,1, M̃) for the first-order rate function of the measure µi, with respect to the distortion
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measure ρk, and with mass function M̃ = Mk. Since W ∗k chosen as above has its Ak-marginal
equal to Pk we can write it as W ∗k = V ∗k ◦ Pk where V ∗k (·|Xn

1 ) denote the regular conditional
probability distributions. Write P (i)

k for the k-dimensional marginals of the measures P(i), and
define probability measures W (i)

k on (An× Ân,An×Ân) by W (i)
k = V ∗k ◦P

(i)
k . Let Di =

∫
ρk dW

(i)
k

so that by Lemma 5 (iii),

1
k′

k′−1∑
i=0

Di =
∫
ρk dW

∗
k ≤ D′. (37)

Similarly, writing Q(i)
k for the Âk-marginal of W (i)

k and applying Lemma 5 (iii),

1
k′

k′−1∑
i=0

∫
logMk(yk1 ) dQ(i)

k (yk1 ) =
∫

logMk(yk1 ) dQ∗k(y
k
1 ) (38)

and using the convexity of mutual information from Lemma 3 (iv),

1
k′

k′−1∑
i=0

H(W (i)
k ‖P

(i)
k ×Q

(i)
k ) ≤ H(W ∗k ‖Pk×Q∗k). (39)

For N ≥ 1 large enough we can use result of Step 1 to get N -dimensional sets Bi that almost-
cover (Âk)N with respect to µi. Specifically, consider N large enough so that

max{ρmax, Lmax, 1}
kN

< min{ε/8, (D −D′)/2}. (40)

For any such N , by the result of Step 1 we can choose sets Bi ⊂ (Âk)N such that, for each i,

µi

(
[Bi]Di

)
≥ 1− εN , where εN → 0 as N →∞, and (41)

M̃N (Bi) ≤ exp{N(R(Di|i) + ε/8)}. (42)

Now choose and fix an arbitrary y∗ ∈ Â, and for n = k′(Nk + 1) define new sets B∗i ⊂ Ân by

B∗i =
k′−1∏
j=0

[
Bi+jmod k′×{y∗}

]
,

where
∏

denotes the cartesian product. Then, by (40), for any xn1 ,

ρn(xn1 , B
∗
i ) <

D −D′

2
+

1
k′

k′−1∑
j=0

ρkN

(
x
j(kN+1)+kN
j(kN+1)+1 , Bi+jmod k′

)
,

so by a simple union bound,

P
(i) ([B∗i ]D)

(a)

≥ 1−
k′−1∑
j=0

[
1− P(i+jmod k′)

(
[Bi+jmod k′ ]D

)]
(b)
= 1−

k′−1∑
i=0

[
1− µi

(
[Bi]Di

) ]
(c)

≥ 1− k′εN , (43)

23



where we used (37) in (a), Lemma 5 (iv) in (b), and (41) in (c). Also, using the definition of B∗i
and the bounds (40) and (42),

1
n

logMn(B∗i ) ≤ logM(Y ∗)
kN + 1

+
1
k′

k′−1∑
j=0

[
1
kN

log M̃N (Bi+jmod k′)
]

≤ ε/8 +
1
k′

k′−1∑
j=0

[
1
k

(R(Dj |j) + ε/8)
]
,

but from the definition of R(D|j) and (39) and (38) this is

1
n

logMn(B∗i ) ≤ ε/4 +
1
k′

k′−1∑
j=0

[
1
k
H(W (j)

k ‖P
(j)
k ×Q

(j)
k ) +

1
k

∫
logMk(yk1 ) dQ(j)

k (yk1 )
]

≤ I∗k + L∗k + ε/2

≤ R(D) + 3ε/4, (44)

where the last inequality follows from (31). So in (43) and (44) we have shown that, for all
i = 0, 1, . . . , k′ − 1,

P
(i) ([B∗i ]D) ≥ 1− k′εN and (45)

1
n

logMn(B∗i ) ≤ R(D) + 3ε/4. (46)

Finally we define sets Cn ⊂ Ân by
Cn = ∪k′−1

i=0 B
∗
i .

From the last two bounds above and (40), the sets Cn have

1
n

logMn(Cn) ≤ log k′

n
+R(D) + 3ε/4 ≤ R(D) + ε,

and by Lemma 5 (iii),

Pn ([Cn]D) =
1
k′

k′−1∑
i=0

P
(i) ([Cn]D) ≥ 1

k′

k′−1∑
i=0

P
(i) ([B∗i ]D) ≥ 1− ε′n

where ε′n = k′εN when n = k′(Nk + 1).
In short, we have shown that for any D > Dmin and any ε > 0, there exist (fixed) integers

k, k′ and N0 such that:

(+)


There is a sequence of sets Cn, for n = k′(Nk + 1), N ≥ N0, satisfying:

(1/n) logMn(Cn) ≤ R(D) + ε for all n, and
Pn ([Cn]D)→ 1 as n→∞.

Since this is essentially an asymptotic result, the restrictions that N ≥ N0 and n be of the form
n = k′(Nk + 1) are inessential. Therefore they can be easily dropped to give (+) for all n ≥ 1,
that is, to produce a sequence of sets {Cn ; n ≥ 1} satisfying (i) and (ii) of Theorem 4. 2
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Appendix

Proof of Remark 1: In view of part (i) of Theorem 2 and the remark that Pn ([Cn]D) → 1,
for every m ≥ 1 we can choose a sequence of sets {C(m)

n ; n ≥ 1} such that
1
n

logMn(C(m)
n ) ≤ R(D) +

1
m
, for all m,n ≥ 1, and

Pn
(

[C(m)
n ]D

)
≥ 1− 1

m
, for all m ≥ 1, n ≥ N(m),

where N(m) is some fixed sequence of integers, strictly increasing to ∞ as m → ∞. So for
each n ≥ 1 there is a unique m = m(n) such that N(m) ≤ n < N(m + 1). Since {N(m)} is
strictly increasing, the sequence {m(n)} is nondecreasing and m(n) → ∞ as n → ∞. Define
C∗n = C

m(n)
n for all n ≥ 1. From the last two bounds,

1
n

logMn(C∗n) ≤ R(D) +
1

m(n)
, for all n ≥ 1, and

Pn ([C∗n]D) ≥ 1
m(n)

, for all n ≥ N(m(n)).

But since n is always n ≥ N(m(n)) by definition, and m(n) → ∞ as n → ∞, this proves (i′)
and (ii′). Also, since ρ is bounded, (iii′) immediately follows from (ii′). 2

Proof outline of Lemma 1: For part (i) it suffices to consider the case I(P,Q,D) <∞, so we
may assume that the setM(P,Q,D) is nonempty. Since the marginals of any W ∈M(P,Q,D)
are P and Q, W is absolutely continuous with respect to P×Q, so H(W‖P×Q) is continuous
over W ∈ M(P,Q,D). Since the sets M(P,Q,D) are compact (in the Euclidean topology),
the infimum in (8) must be achieved. A similar argument works for R(D): Combining the two
infima in its definition,

R(D) = inf
W∈M(P,D)

{H(W‖WX×WY ) + EWY
[logM(Y )]} , (47)

where M(P,D) = ∪QM(P,Q,D). Since the sets M(P,D) are compact, the infimum in (47) is
achieved by some W ∗ ∈M(P,D), and Q∗ = W ∗Y achieves the infimum in (9).

For part (ii) recall the assumption that for all a ∈ A there is b = b(a) such that ρ(a, b) = 0.
If we let W (a, b) = P (a)I{b=b(a)}, then W ∈ M(P,D) for any D ≥ 0 and from (47), R(D) ≤
EWY

[logM(Y )] < ∞ for all D ≥ 0. Since the sets M(P,D) are increasing in D, R(D) is
nonincreasing. To see that it is convex, let W ∈ M(P,D1) and W ′ ∈ M(P,D2) arbitrary.
Given λ ∈ [0, 1] let λ′ = 1 − λ, and write V = λW + λ′W ′. Then V ∈ M(P, λD1 + λ′D2) and
the Y -marginal of V , VY , is λWY + λ′W ′Y . Recalling (47) and that relative entropy is jointly
convex in its two arguments,

R(λD1 + λ′D2)

≤ H(V ‖VX×VY ) + EVY [logM(Y )]

≤ λ {H(W‖WX×WY ) + EWY
[logM(Y )]}+ λ′

{
H(W ′‖W ′X×W ′Y ) + EW ′Y [logM(Y )]

}
.
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Taking the infimum over all W ∈ M(P,D1), W ′ ∈ M(P,D2), and using (47) shows that R(D)
is convex, and since it is finite for all D ≥ 0 it is also continuous.

The proof of (iii) is essentially identical to that of (ii), using the definition (8) in place of
(47). The only difference is that I(P,Q,D) can be infinite, so its convexity (and the fact that
it is nonincreasing) imply that it is continuous for D ≥ 0 except possibly at D = inf{D ≥ 0 :
I(P,Q,D) <∞}.

Part (iv) is a well-known information theoretic fact; see, e.g., Lemma 9.4.2 in [9].
For part (v) let W ∗ achieve the infimum in (47). Since relative entropy is nonnegative we

always have R(D) ≥ Rmin, with equality if and only if W ∗Y is supported on the set A′ = {y ∈
A : logM(y) = Rmin} and W ∗ = W ∗X×W ∗Y . Clearly, these two conditions are satisfied if and
only if

D ≥ inf{EP×Q[ρ(X,Y )] : Q supported on A′},

but the right hand side above is exactly equal to Dmax. 2

Proof of Lemma 2: If γi = 0 then, as discussed in the proof of Theorem 2, Fi(ε1) = {δai} for
all ε1 and

H(δai‖Q∗) = − logQ∗(ai) ≤ − logP (ai) <∞.

If γi > 0 then there must exist a b∗ ∈ A, b∗ 6= ai, such that W ∗(b∗|ai) > 0. Write dmax for the
maximum of

∑
bW

∗(b|aj)ρ(aj , b) over all j = 1, . . . ,m, and let ρmin = min{ρ(a, b) : a 6= b}.
For α ∈ (0, 1), let

Qi(b) =


W ∗(a1|ai) + α if b = ai

W ∗(b∗|ai)− α if b = b∗

W ∗(b|ai) otherwise.

Then, for ε1 small enough to make (δ− ε1)ρmin > ε1dmax(1 + ε1), it is an elementary calculation
to verify that Qi ∈ Fi(ε1) and H(Qi‖Q∗) <∞, as long as α satisfies the following conditions:

α < 1−W ∗(ai|ai)

α < W ∗(b∗|ai)
ε1dmax

ρmin
< α <

δ − ε1
1 + ε1

.

Taking W (ai, b) = Qi(b)P (ai) we also have W ∈ F (ε1). 2

Proof of Lemma 3: Since the setsMn(Pn, Qn, D) are increasing in D, Rn(D) is nonincreasing
in D. Next we claim that relative entropy is jointly convex in its two arguments. Let µ, ν be two
probability measures over a Polish space (S,S). In the case when µ and ν both consist of only
a finite number of atoms, the joint convexity of H(µ‖ν) is well-known (see, e.g., Theorem 2.7.2
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in [6]). In general, H(µ‖ν) can be written as

H(µ‖ν) = sup
{Ei}

∑
i

µ(Ei) log
µ(Ei)
ν(Ei)

where the supremum is over all finite measurable partitions of S (see Theorem 2.4.1 in [14]).
Therefore H(µ‖ν) is the pointwise supremum of convex functions, hence itself convex. As in
(47), combining the two infima, Rn(D) can equivalently be written as

Rn(D) = inf
Wn∈Mn(Pn,D)

{
H(Wn‖Wn,X×Wn,Y ) + EWn,Y

[logMn(Y n
1 )]
}

(48)

whereMn(Pn, D) = ∪QnMn(Pn, Qn, D). Using this together with the joint convexity of relative
entropy as in the proof of Lemma 1 (ii) shows that Rn(D) is convex. Since it is also nonincreasing
and bounded away from −∞, Rn(D) is also continuous at all D except possibly at the point

D
(n)
min = inf{D ≥ 0 : Rn(D) < +∞}.

This proves (i). For (ii) notice that if R(D) exists then it must also be nonincreasing and convex
in D ≥ 0 since Rn(D) is; therefore, it must also be continuous except possibly at Dmin.

For part (iii), let m,n ≥ 1 arbitrary, and let Wm ∈ Mm(Pm, D) and Wn ∈ Mn(Pn, D).
Define a probability measure Wm+n on (An×Ân,An×Ân) by

Wm+n(dxm+n
1 , dym+n

1 ) = Wm(dym1 |xm1 )Wn(dym+n
m+1 |x

m+n
m+1 )P (dxm+n

1 ).

Notice that Wm+n ∈ Mm+n(Pm+n, D), and that, if (Xm+n
1 , Y m+n

1 ) are random vectors dis-
tributed according to Wm+n, then Y m

1 and Y m+n
m+1 are conditionally independent given Xm+n

1 .
Therefore,

Rm+n(D)
(a)

≤ H(Wm+n‖Wm+n,X×Wm+n,Y ) + EWm+n,Y
[logMm+n(Y m+n

1 )]

= I(Xm+n
1 ;Y m+n

1 ) + EWm+n,Y
[logMm+n(Y m+n

1 )]
(b)

≤ I(Xm
1 ;Y m

1 ) + I(Xm+n
m+1 ;Y m+n

m+1 ) + EWm,Y
[logMm(Y m

1 )] + EWn,Y
[logMn(Y n

1 )]

where (a) follows from (48) and (b) follows from the conditional independence of Y m
1 and Y m+n

m+1

given Xm+n
1 (see, e.g., Lemma 9.4.2 in [9]). So we have shown that Rm+n(D) is bounded above

by

H(Wm‖Wm,X×Wm,Y ) + EWm,Y
[logMm(Y m

1 )] +H(Wn‖Wn,X×Wn,Y ) + EWn,Y
[logMn(Y n

1 )],

and taking the infimum over all Wm ∈Mm(Pm, D) and Wn ∈Mn(Pn, D) yields

Rm+n(D) ≤ Rm(D) +Rn(D). (49)
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[Note that in the above argument we implicitly assumed that we could find Wm ∈Mm(Pm, D)
and Wn ∈ Mn(Pn, D); if this was not the case, then either Rm(D) or Rn(D) would be equal
to +∞, and (49) would still trivially hold.] Therefore the sequence {Rn(D)} is subadditive
and it follows that limn(1/n)Rn(D) = infn(1/n)Rn(D). From this it is immediate that Dmin =
infnD

(n)
min.

Part (iv) is a well-known information theoretic fact; see, e.g., Problem 7.4 in [2]. 2
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