
An Efficient Recursive Partitioning Algorithm for Classification,

Using Wavelets

Vittorio Castelli Ioannis Kontoyiannis

System Theory and Analysis dept. Div of Applied Math & CS Dept

IBM T.J. Watson Res. Ctr. Brown University

P.O. Box 218 182 George Street

Yorktown Heights, NY 10598 Providence, RI 02906

vittorio@us.ibm.com yiannis@dam.brown.edu

August 1999



Abstract

We describe and analyze a new dyadic recursive partitioning algorithm for efficient

classification of large two-dimensional data sets, called progressive classification. It uses

generic (parametric or nonparametric) classifiers on a low-resolution representation of the

data obtained using the discrete wavelet transform. In this representation, each point

corresponds to a block of samples from the original data. At each step of the classification

process, the algorithm either decides to classify the whole block as belonging to a certain

class, or to re-examine the data at a higher-resolution level. We present simple theoretical

results showing that, compared to sample-by-sample algorithms, progressive classification

is computationally more efficient and also (under certain conditions) more accurate.

We outline how progressive classification deals with data in one dimension and in

dimensions higher than three, and we briefly discuss the complexity/accuracy tradeoff.



1 Introduction

We describe and analyze a new method for performing efficient classification on large two-dimensional

data sets (“images”). We apply a dyadic, recursive partitioning algorithm which generates a tree-

structured subdivision of the data, using an adaptive rule based on the wavelet transform. For our

purposes, an image is a real- or vector-valued configuration on a rectangular subset of the integer lattice

Z2. With each point on the lattice (“pixel”) we associate a real number (or a vector in Rd) denoting

its pixel-value, and a label denoting its class. The problem of classification consists of observing an

image with known pixel-values but unknown labels and assigning a label to each pixel.

The application illustrated in the following example was the major motivation for our study; see

[4, 22] for more details. Consider a database containing a large number of satellite images of the earth’s

surface, and suppose this database is constantly growing as newly acquired data is being added. The

practical value and usability of the database depends very strongly on whether or not the images

are classified during the pre-processing stage. Among other advantages, this allows users to perform

content-based searches in the database [23, 15], and makes it possible to conduct global change studies

on the classified data rather than on the original images.

The standard approach up to now (see Chettri et al. [6], Richards [17], Chettri and Cromp [5],

Salu and Tilton [20], Paola and Schowengerdt [16] and the references therein) has been to examine the

pixels one-by-one and classify them independently of the neighboring pixels. In practice, this approach

suffers from two obvious defects. It is computationally very expensive, and (other than through

smoothing) it does not take into account the strong correlations between the labels of neighboring

pixels that occur in natural images. More complex methods that exploit correlations between labels

and between pixel values (for instance, by using random fields to characterize both the label field

and the reflectance process and by putting a Bayesian prior on the parameter space on the model),

are generally computationally infeasible, due to the size and number of images in a typical satellite

image database. No relief seems to be forthcoming in the near future, as the amount of satellite data

acquired is increasing at a pace much faster than the corresponding increases in computing speed. See

[22] for an extensive discussion.

Data on the one-dimensional and three-dimensional lattices are somewhat less common. An exam-

ple of one-dimensional lattice data is the set of oil well measurements collected by lowering a package

of instruments to the bottom of the well, and slowly pulling them back to the surface. The instruments

measure several properties of the rocks surrounding the borehole, such as electrical resistivity, sonic

velocity, gamma rays, induced radioactivity etc. Typically, as the instrument package is retrieved, it

produces a set of measurements every 6 inches, which can be represented as a vector-valued random
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variable on the one-dimensional lattice. The measurements are then used to identify the bulk litholo-

gies (rock types) encountered in the borehole via a classification process (for more details, see, for

example, [14]). Three-dimensional data include atmospheric measurements, seismic data (used in the

petroleum industry) and some types of medical images.

In this paper, we present a new statistical method for classification called progressive classification,

and we argue that it can be used to classify transformed data quickly and accurately. The main gist of

our approach is to look at a lower-resolution representation of the data, where each pixel corresponds

to a kd pixel-block from the original d−dimensional data set. At each step of the classification process

the algorithm either assigns the same class label to the whole block, or it takes a “progressive step”:

it looks at a higher-resolution version of the data, where the original kd pixel-block is now represented

by 2d pixels instead of just one, and examines each one of those 2d pixels independently. The same

process is repeated iteratively.

The low-resolution representation of the data is obtained by taking its Discrete Wavelet Transform

(DWT) up L levels, and examining the lowest frequency subband.1 Starting with an M×N pixel

image, going up L levels reduces the size of the image by a factor of 4L so that, starting classification

at the lowest frequency subband, only (MN)/4L pixels have to be examined. Classifying a pixel at

level � (for some � ≤ L) means that the same label is assigned to all the corresponding 2�×2� pixels in

the original image. Taking the progressive step, on the other hand, means that the four pixels at level

(� − 1), corresponding to the one pixel we started with, are now examined independently, by looking

at the lowest frequency subband of the DWT of the image at level (�−1). It is important to note that

the choice of the classifier used within each level to decide on the classification of the whole block or

the progressive step is completely arbitrary (we have implemented progressive versions of CART [3],

nearest neighbor [7], learning vector quantization, maximum likelihood and neural network classifiers).

In practice, progressive classification was successfully implemented by Castelli et al. [4], where

practical issues arising in the implementation were discussed, and extensive numerical results were

presented to demonstrate its performance on large satellite images of the earth’s surface. The purpose

of this paper is to present a theoretical analysis that supports and helps interpret those results. From

this analysis (presented in Sections 2 and 3), it is seen that, first, progressive classification achieves a

significant speedup over pixel-by-pixel classification methods (which is not surprising), but also, for

images with label values that are highly correlated, the progressive classifier will give more accurate
1The DWT is at the base of numerous algorithms in statistical signal processing, data compression, and image analysis;

see the recent collection Antoniadis and Oppenheim [1], and the special issue Daubechies et al. [9]. The use of the DWT

is partly motivated by the fact that, in a large number of applications, images are stored in a compressed format and

the compression is based on the DWT.
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results than the corresponding non-progressive classifier. The reason for the speed-up is clear; looking

at a lower-resolution representation of the data and classifying (whenever possible) whole blocks,

means that the total number of pixels examined will be often much smaller than MN . The reason for

the improvement in classification accuracy is that the DWT produces a weighted average of the values

from each 2�×2� block, so that the classification algorithm often tends to assume more uniformity in

the data than may appear when looking at individual pixels.

The use of wavelets in classification has been proposed by several authors in the literature, where,

unlike in the present approach, the wavelet transform is used to extract relevant features that can

be used as predictors for the data (see, for example, Tate, Watson and Eglen [21]). A work closer

in spirit to the present paper is Donoho [11], where anisotropic Haar bases are used to partition the

observation space into classification regions in a way that is near-optimal with respect to minimax risk.

In contrast, we are interested in both the error rate of the classifier and the classification complexity.

In our case, the partition regions produced by the progressive classifiers are generated by a spatially

adaptive blocking technique, and they depend on the choice of the wavelet basis as well as on the

underlying classifier.

In Section 2, after some preliminaries on classification and wavelets we define the progressive clas-

sifier and present our analysis of progressive classifiers applied to one-dimensional data. These simple

results provide some insight on the the more complex analysis for two-dimensional data developed in

Section 3. Section 4.2 briefly shows how progressive classification can be applied to general lattice data

in dimensions higher than two. In Section 4.1 we discuss the tradeoff between classification complexity

and accuracy, and in Section 4.3 we discuss the choice of the wavelet basis. Section 5 shows the re-

sults of a small experiment comparing the performance of the progressive classifier, the corresponding

baseline classifier and a Bayesian method known as Iterated Conditional Modes. Appendix A contains

the proofs of the results in Section 2.

Throughout the paper, random variables are denoted by upper-case letters and their realizations

by the corresponding lower-case letters. We write φ(·) for the standard Normal density. Vectors are

in lower-case boldface type, and vector-valued random variables are in upper-case boldface type. For

i ∈ {0, 1}, we write i = 1 − i, and δi,j = 1 if i = j, δi,j = 0 otherwise.
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2 Classification in One Dimension

2.1 Preliminaries

First we give a brief description of the one dimensional DWT; Daubechies [8] has a complete account.

Let x = {xi ; i = 0, 1, . . . , 2L − 1} be the data sequence to be transformed, and fix two wavelet

(finite impulse response) filters F and G, where by a “filter” we mean a (typically short) sequence

of real numbers, and “wavelets” correspond to a class of regular filters that are related to bases in

L2(R); see Daubechies [8], Rioul and Vetterli [19], and Rioul [18]. The DWT consists of the following

recursive operation. The sequence x is first filtered through F and G separately, and the results

are downsampled to obtain two new sequences v1 = {v1
i } and w1 = {w1

i } (where “filtering” means

“convolution” and “downsampling” means discarding every other sample). We call v1 and w1 the

subbands of the DWT of x at level 1, and their elements are the level-1 wavelet coefficients of x. To

take the DWT up L levels we repeat the described process recursively on the sequence w1 another

(L− 1) times, to obtain sequences v2,v3, . . . ,vL,wL, called the subbands of x at levels 2, 3, . . . , L; the

sequence {wL
i vL

i . . . v1
i } is called the L-level DWT of x, and its elements are the wavelet coefficients.

The sequences {w1
i }, {w2

i }, . . . , {wL
i } are the multiresolution approximations of x at levels 1, 2, . . . , L,

respectively, and together with x = {w0
i } they form a multiresolution pyramid. Recall that the DWT

is reversible in that the data can be progressively reconstructed to any required level of resolution

from their wavelet coefficients.

For simplicity, most of our analysis will be based on using Haar wavelets, that is, the DWT will be

specified by the filters G = (1/
√

2, 1/
√

2) and F = (1/
√

2,−1/
√

2). The main results of this paper,

however, hold for general wavelet filters. In the case of Haar wavelets, the level-� wavelet coefficients

{w�
i} will be scaled averages of distinct subsequences from x:

w�
i =

w�−1
2i√
2

+
w�−1

2i+1√
2

= 2−�/2
2�−1∑
j=0

x2�i+j = 2�/2


 1

2�

2�−1∑
j=0

x2�i+j


 . (1)

We refer to the coefficients {w�
i} as the wavelet coefficients from the lowest frequency subband of the �-

level wavelet transform of x, or, for short, the level-� wavelet coefficients of x. (In the wavelet literature,

the coefficients {w�
i} are often referred to as the “scaling function coefficients” or the “approximation

coefficients.”)

Next a few words about classification. Let x be an observation (for instance, the vector of re-

flectance values at a particular location of a remotely-sensed multispectral image), and let θ describe

an associated state of nature (for instance, the land-cover class of the region corresponding to the

pixel), usually referred to as the “label” of the observation. The pair (x, θ) is called a labeled sample.
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For the sake of simplicity, in the rest of the paper θ will take one of two values, 0 and 1, but all the

results easily extend to any finite number of different classes. The problem of classification consists

of guessing the value of the label θ given x. The simplest statistical setting for the classification

problem treats the pair (x, θ) as a realization of a pair of dependent random variables (X,Θ), where

Pr (Θ = 0) = π, Pr (Θ = 1) = 1 − π, and X is conditionally distributed according to FΘ(·) given

Θ. In general, we assume that FΘ(·) has density fΘ(·) with respect to an appropriate measure (we

do not specify the reference measure in order to give a unified treatment of continuous and discrete

observations, having densities with respect to Lebesgue measure and counting measure, respectively).

A classifier is simply a mapping θ̂ from the observation space to the set {0, 1}, assigning a label θ̂(x)

to each observation x. The pre-images of 0 and 1 are here denoted by Π0 and Π1, so that θ̂(x) = 0

for each x ∈ Π0, and θ̂(x) = 1 for each x ∈ Π0.

Classification rules differ in the way they partition the observation space (see, for instance, Devroye

et al. [10].) If the densities and the prior probabilities are known, then there is an optimal solution to

the classification problem called the Bayes’ decision rule, which labels the samples using the likelihood

ratio [π f0(X)] / [(1 − π) f1(X)]. If the likelihood ratio is greater than one, the Bayes decision rule

decides θ̂ = 0, whereas it decides θ̂ = 1 otherwise. The Bayes decision rule is the optimum classifier

for independent and identically distributed (i.i.d.) data, in the sense that it minimizes the probability

of classification error (see, e.g., Duda & Hart [12]). However, in most realistic cases (particularly in

the case of images), the data looks far from being i.i.d.

For one-dimensional data, we model the dependence between adjacent samples by assuming that

the observations and labels are generated by (X ,Θ) = {(Xi,Θi)}, where Θ is a stationary process

generating the labels, and the observations Xi are conditionally independent given the correspond-

ing labels θi, and distributed according to fθi
(·), where f0(·) and f1(·) are fixed, known densities.

In this setting, the problem of classification consists of observing the sequence of values {xi} and

producing a corresponding sequence of labels {θ̂i}, in such a way as to minimize the error rate,

limn→∞ E
[
n−1 ∑n

i=1 δθ̂i,θi

]
. Because of stationarity, the error rate is equal to the probability of clas-

sification error Pr
(
θ̂i �= θi

)
. A classifier that, given a collection of observations {xi}, assigns labels

{θ̂i} to them independently of one another is called a product classifier.

2.2 The Progressive Classifier

Assume that the data is in the form of an L-level DWT multiresolution pyramid.

Definition 1 A level-L progressive classifier is a pair (B, {Πi}L
i=1), where:
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i) B, the baseline classifier, is the product classifier characterized by the partition Π0 = {Π0
0,Π

0
1}

of the observation space, and operates on the full-resolution data;

ii) {Π�}L
�=1 is a collection of partitions of the observation space such that, for each �, Π� consists

of three (distinct) regions Π�
prog,Π

�
0,Π

�
1.

The progressive classifier starts the analysis of the data at the coarsest resolution level, level L. If

a coefficient wL
i belongs to the region ΠL

j then all the samples of the corresponding block at full

resolution are labeled with the same label j. If the coefficient falls within region ΠL
prog the progressive

classifier first inverts the DWT one level (to get the coefficients wL−1 from wL and vL), and then

analyzes the corresponding coefficients at level (L − 1) independently, using the partition ΠL−1. The

same process is repeated iteratively.

To simplify the analysis, throughout Sections 2 and 3 we will assume that the DWT is taken

based on the Haar basis, although, as we briefly discuss in Section 4.3, the progressive classifier just

defined can be applied to any orthonormal or biorthogonal wavelet basis. Below we list some further

assumptions that will be used in some of our results (all of which will subsequently be relaxed).

1. Gaussian: The distributions of samples of classes 0 and 1 are Gaussian with unit variance and

means +1 and −1, respectively.

2. Markov: The labels are generated by a stationary symmetric Markov chain with transition

probabilities pi|j = p if i �= j, and pi|i = (1 − p).

3. Bayes: The baseline classifier is the product Bayes’ decision rule.

Under the Gaussian assumption, the joint distribution of (X1,X2) is a mixture of four bivariate

Gaussians, with identity covariance matrix and means (2Θ1 − 1, 2Θ2 − 1). In general (with or without

the Gaussian assumption), let µθ1,θ2 be the conditional measure on the (x1, x2)-plane induced by

the distribution of (X1,X2), given the values of the corresponding labels (Θ1 = θ1,Θ2 = θ2). Write

π(i, j) = Pr{Θ1 = i,Θ2 = j} for the mixture coefficients, so that, under the Markov assumption,

π(1, 1) = π(0, 0) = (1 − p)/2 and π(1, 0) = π(0, 1) = p/2.

2.3 Results for the Level-1 Progressive Classifier

In this section we demonstrate that, under certain conditions, the level-1 progressive classifier is more

accurate and computationally more efficient than the corresponding baseline classifier. All the proofs

are given in Appendix A.
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In the simplest case, when all three assumptions 1, 2 and 3 are satisfied, it follows from Equation

(1) that the coefficients W 1
i are distributed according to a mixture of Gaussians, with density

1
2

(1 − p)φ(x +
√

2) +
1
2

(1 − p)φ(x −
√

2) + p φ(x),

where φ(·) is the standard Normal density. In this case the baseline classifier decides θ̂i = 1 if xi > 0

and θ̂i = 0 otherwise. The level-1 progressive classifier operates as follows. The level-1 partition is

defined by a threshold T , discussed more in detail in Section 4.2. If w1
i < −T then the classifier decides

θ̂2i = θ̂2i+1 = 0, if w1
i > T it decides θ̂2i = θ̂2i+1 = 1, and if −T ≤ w1

i ≤ T it takes the progressive step

and reduces to the baseline classifier. Figure 1 shows the decision regions of the baseline classifier and

the level-1 progressive classifier.

1
1

−T / 2 T/ 2

T/ 2

−T / 2

φ φ1,1

φ φ

1x

2x
w

0,1

1,00,0

1

Π
0
1

Π
1

Π
1

prog

(a)

1
1

−T / 2 T / 2

T / 2

−T / 2

1x

2x
w

φ0,0

φ0,1 φ 1,1

φ1,0

(0,0) (1,0)

(1,1)(0,1)

(b)

1
1

−T / 2 T / 2

T / 2

−T / 2

1x

2x
w

φ0,0

φ0,1 φ 1,1

φ1,0

A

B

C

D

(c)

1
1

−T / 2 T / 2

T / 2

−T / 2

1x

2x
w

φ0,0

φ0,1 φ 1,1

φ1,0

(0,0)

(0,1) (1,1)

(1,0)

(d)

Figure 1:

Under these assumptions, the error rate of the level-1 progressive classifier with a fixed threshold

is smaller than the error rate of the baseline classifier, for for data with strong enough correlations.

Theorem 1 Under assumptions 1, 2, and 3, for each threshold T there exists pT > 0 such that for

every transition probability p < pT the error rate of the level-1 progressive classifier is smaller than

the error rate of the baseline classifier.

7



The theorem thus states that for every choice of the threshold T governing the progressive behavior,

there is a family of label processes for which the level-1 progressive classifier is more accurate than

the baseline classifier.

Next we drop the Gaussian and the Bayes assumptions (assumptions 1 and 3) and extend Theo-

rem 1 to general level-1 progressive classifiers. Our next result makes it possible to compare baseline

non-parametric classifiers (such as CART) with their corresponding progressive versions.

We partition the observation space (x1, x2) into disjoint regions Ai,j,k and A0, for i, j, k ∈ {0, 1},
where if the point (x1, x2) belongs to region Ai,j,k, the baseline classifier decides θ̂1 = i, θ̂2 = j and

the level-1 progressive classifier decides θ̂1 = θ̂2 = k. If the point (x1, x2) belongs to region A0, the

progressive classifier takes the progressive step, and the baseline classifier and the progressive classifier

produce the same results. If a point falls into any region Ai,j,k where i �= k or j �= k, the progressive

classifier and the baseline classifier produce different results. The following theorem states conditions

under which the progressive classifier is more accurate than the baseline classifier in terms of the

probabilities of such regions.

Theorem 2 Under the Markov assumption 2, if

P1 =
∑

m=0,1

∑
i,j=0,1

{
(1 − 2δi,m)µm,m(Ai,j,i) + (1 − 2δj,m)µm,m(Ai,j,j)

}
> 0, (2)

then there exists p0 > 0 such that for each transition probability p < p0 the level-1 progressive classifier

has smaller error rate than the baseline classifier.

Although the assumption P1 > 0 may at first seem like an arbitrary technicality, a closer look

shows that, in general, only an erroneously constructed progressive classifier will have P1 ≤ 0 (observe

that we can interchange the roles of i and j in (2), i.e., change the decisions of the progressive classifier

in the regions Ai,j,k, k! = i and Ai,j,k, k! = j to their complements, to obtain a classifier satisfying

the condition.) Thus, any bona fide progressive classifier is more accurate than the baseline classifier,

as long as the label process is correlated enough.

Theorem 2 is especially useful in the construction of non-parametric progressive classifiers, where

the condition 2 can be easily checked, and confidence intervals for P1 can be constructed using Monte

Carlo methods. Also, once both the baseline and the progressive classifiers are trained, the value of

p0 can be estimated using iterative simulation techniques.

Next we obtain conditions under which the progressive classifier is faster than the baseline classifier.

Classification is an expensive operation. In practice, both parametric and nonparametric classifiers

require considerably more resources than inverting a wavelet transform and, since classifying a sample

at full resolution and classifying a wavelet coefficient have comparable computational complexity, the

figure of merit will be the expected number of elementary classification operations.
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Theorem 3 The level-1 progressive classifier is faster than the corresponding baseline classifier if and

only if Pr{W 1
1 ∈ Π1

prog} < 1/2.

For example, let assumptions 1, 2 and 3 hold, consider the Bayes progressive classifier based on

a threshold T , let Φ(x) denote the standard normal cumulative distribution function, and define

Q1 = Φ(T ) − Φ(−T ), and Q2 = Φ(T − √
2) − Φ(−T − √

2) < Q1. It is easy to see here that if

Q1 < 1/2, then the progressive classifier will be faster than the baseline classifier, and if Q2 > 1/2

it will be slower, regardless of the value of the transition probability p. If, however, Q2 < 1/2 and

Q1 > 1/2, then the progressive classifier will only be faster when p < p0 = (1/2 − Q2)/(Q1 − Q2).

This example can be generalized as follows, by relaxing the Gaussian assumption to generic dis-

tributions:

Corollary 1 Under the Markov assumption, suppose that the level-1 partition satisfies

µ1,0(Π1
prog) + µ0,1(Π1

prog) > 1 and µ1,1(Π1
prog) + µ0,0(Π1

prog) < 1.

Then there exists a transition probability p
′
0 > 0 such that for each p < p

′
0 the level-1 progressive

classifier is faster than the baseline classifier.

The main results of this section, Theorem 2 and Corollary 1, imply that, for generic class-

conditional distributions of the observations and generic classifiers, under just the Markov assumption,

when the transition probability p of the label process is small enough, a well-designed level-1 progres-

sive classifier is both faster and more accurate than the corresponding baseline classifier.

2.4 Results for the Level-� Progressive Classifiers

Here we extend the results of the previous section to level-� progressive classifiers. Combined with

the results of the previous section they provide criteria for the selection of the starting level and the

partitions of the progressive classifier (see also the remark at the end of Section 3.2). The proofs are

given in Appendix A6.

From the definition of the Haar wavelet coefficients and the conditional independence assumption,

it follows that the density of a level-� coefficient W �
i is a scaled mixture of several copies of the densities

f0 and f1. Given the values of the corresponding labels, the conditional density of W �
i only depends on

S�
i =

∑2�(i+1)−1

j=2�i
Θj, the number of class-1 labels in the set {(X2�i,Θ2�i), . . . , (X2�(i+1)−1,Θ2�(i+1)−1)}.

In particular, under the Gaussian assumption, the conditional density of W �−1
0 given θ0, . . . , θ2�−1−1 is

fW �−1
0

(w | θ0, . . . , θ2�−1−1) = fW �−1
0

(w | S�−1
0 ) (3)

= φ
(
w + 2−(�−1)/2(2�−1 − 2S�−1

0 )
)

, (4)
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and its unconditional density is given by the mixture

fW �−1
0

(w) =
2�−1∑
k=0

fW �−1
0

(w | S�−1
0 = k)Pr

{
S�−1

0 = k
}
, (5)

where the mixing coefficients Pr{S�−1
0 = k} can be calculated from the model for the label process Θ.

Incidentally, note that equations (3) and (5) still define the densities of the wavelet coefficients when

the Gaussianity assumption 1 is relaxed. In particular, fW �−1
0

(w | θ0, . . . , θ2�−1−1) depends only on the

number of samples of class 1, that is, on S�−1
0 . However, it is clear that fW �−1

0
(w | S�−1

0 = k) is no

longer a Gaussian density, and therefore equality (4) does not hold.

Similarly, the joint density fW �−1
0 ,W �−1

1
(w0, w1) of W �−1

0 and W �−1
1 is given by

2�−1∑
i=0

2�−1∑
j=0

Pr{S�−1
0 = i, S�−1

1 = j}fW �−1
0

(w0 | S�−1
0 = i)fW �−1

1
(w1 | S�−1

1 = j). (6)

Although in general it is difficult to obtain closed-form expressions for the probabilities of the events

{S�−1
0 = i, S�−1

1 = j}, in the Markov case standard numerical techniques can be used to easily provide

adequate approximations (details can be found in Castelli and Kontoyiannis [4]). Figure 2 shows an

example of the mixture density (6) and its components for level � = 4 under the Gaussian assumption,

for the Markov model with p = 0.08.

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

W

f(
W

)

A B

C

f(W)

Figure 2:

The level-� progressive classifier is completely specified by a level-(� − 1) progressive classifier and

a partition of the (w0, w1)-plane into Π�
0, Π�

1 and Π�
prog. If W �

0 ∈ Πprog, then the level-� progressive

classifier takes the progressive step and reduces to the product level-(� − 1) progressive classifier.

To facilitate our analysis, we further subdivide Π�
0 and Π�

1 into the regions {Ai,j,k}, k = 0, 1, i, j ∈
{0, 1,prog}. The index k indicates the decision of the level-� classifier to label all the points in the
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corresponding full-resolution block as class k. The indices i and j denote the decisions of the level-

(� − 1) classifier applied to W �−1
0 and W �−1

1 , respectively. This means that if i equals 0 or 1, the

classifier labels the block corresponding to W �−1
0 as homogeneous of class i, and if i = prog the

classifier takes the progressive step; similarly for j.

Next we prove results analogous to Theorems 2 and 3. Let π�(i, j) denote the mixture parameters

Pr{S�−1
0 = i, S�−1

1 = j}, let π�(i) = Pr{S�
0 = i}, and write µi,j for the conditional measure on the

(w0, w1)-plane induced by the density

f
W �−1

0 ,W �−1
1

(w0, w1 | S�−1
0 = i, S�−1

1 = j) = f
W �−1

0
(w0 | S�−1

0 = i)f
W �−1

1
(w1 | S�−1

1 = j).

Let ei,j,k denote the conditional expected number of errors that the level-(� − 1) classifier makes in

classifying W �−1
0 and W �−1

1 , given that W �
0 ∈ Ai,j,k.

Theorem 4 The error rate of the level-� progressive classifier is smaller than the error rate of the

level-(� − 1) progressive classifier if and only if the following quantity is positive:

∑
i,j

2�∑
n=0

min (n,2�)∑
m=max (0,2�−n)

π(m,n − m)
{
µm,n−m(Ai,j,1)(ei,j,1 + m − 2�) + µm,n−m(Ai,j,0)(ei,j,0 − m)

}
.

Theorem 5 Any level-� progressive classifier that has Pr{W �
1 ∈ Π�

prog} < 1/2, is faster than the

corresponding level-(� − 1) progressive classifier.

In the Gaussian case with the Bayes classifier and a Markov model, Theorem 5 simplifies to:

Corollary 2 Suppose that assumptions 1, 2 and 3. There exists p� > 0 such that for each p < p� the

level-� progressive classifier is faster than the corresponding level-(� − 1) progressive classifier.

3 Classification in Two Dimensions

3.1 Preliminaries

For two-dimensional data (“images”), we consider the DWT performed using separable filters; the

image is first filtered and downsampled row-by-row and the resulting matrix is filtered and down-

sampled column-by-column. The result is arranged as a matrix composed of four blocks (subbands).

The upper-left block, called the lowest frequency subband at level 1, contains an approximation of the

original image at half resolution and double scale. The filtering operation is performed recursively on

this subband.
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In this section we carry over the analysis of Section 2, based on the more realistic image model of a

dependent random field. Consider a collection of labeled samples generated by the stationary random

field (X ,Θ) = {(Xu,Θu) ; u ∈ Z2}, where the observations Xi take values in Rd and the labels

Θu ∈ {0, 1}. Assume that, given the values of the corresponding class labels, the random variables

Xu are conditionally independent, and distributed according to the fixed densities f0(·) and f1(·).
The general level-� progressive classifier is defined exactly as in the one-dimensional case. The other

assumptions 1 and 3 from Section 2.2 remain the same, while the Markovian assumption is replaced

by the stationarity of the label field.

As before, an important quantity in the analysis will be S�
u, the number of class-1 samples corre-

sponding to W �
u. For u = (m,n), S�

u = S�
m,n =

∑(2�+1)m−1
i=2�m

∑(2�+1)n−1
j=2�n

Θi,j. By the definition of the

Haar basis, (cf. (1) in one dimension),

W �
m,n =

1
2

W �−1
2m,2n +

1
2

W �−1
2m+1,2m +

1
2

W �−1
2m,2n+1 +

1
2

W �−1
2m+1,2n+1

= 2� 1
22�

2�−1∑
i=0

2�−1∑
j=0

X2�m+i,2�n+j

so that the conditional density of W �
m,n, given the labels {θi,j ; i = 2�m, 2�m+1, . . . , 2�(m+1)−1, j =

2�n, . . . , 2�(n + 1) − 1}, is a scaled convolution of S�
m,n copies of f1 and (22� − S�

m,n) copies of f0.

3.2 Results

In this section we generalize Theorems 4 and 5 of Section 2.4 to the general level-� progressive classifiers

operating on two-dimensional data. We obtain conditions under which the progressive level-� classifier

is more accurate and more efficient than the corresponding level-(� − 1) classifier. The proofs of

Theorems 6 and 7 below are exactly parallel to those of Theorems 4 and 5, and are omitted.

Let f �
i,j,h,k(w0,0, w0,1, w1,0, w1,1) be the joint conditional density of (W �−1

0,0 , W �−1
0,1 , W �−1

1,0 , W �−1
1,1 )

given {S�−1
0,0 = i, S�−1

0,1 = j, S�−1
1,0 = h, S�−1

1,1 = k}, and denote the induced conditional measure by

µ�
i,j,h,k(w0,0, w0,1, w1,0, w1,1). Similarly, f �

i (w) denotes the conditional density of W �
u given {S�

u = i},
and µ�

i(w) is the induced measure. As before, the mixture coefficients are written as π�(i) = Pr{S�
u = i}

and π�(i, j, h, k) = Pr{S�−1
0,0 = i, S�−1

0,1 = j, S�−1
1,0 = h, S�−1

1,1 = k}.
Now fix a level-(� − 1) classifier with partition Π�−1

0 ,Π�−1
1 ,Π�−1

prog, and consider a level-� partition

Π�
0,Π

�
1,Π

�
prog for the level-� classifier. Define the regions:

Ai,j,h,k,m = {w�−1
0,0 ∈ Π�−1

i , w�−1
0,1 ∈ Π�−1

j , w�−1
1,0 ∈ Π�−1

h , w�−1
1,1 ∈ Π�−1

k , w� ∈ Π�−1
m },

and write ei,j,h,k,m for the conditional expected number of errors of the product level-(� − 1) classifier

given that (w�−1
0,0 , w�−1

0,1 , w�−1
1,0 , w�−1

1,1 ) ∈ Ai,j,h,k,m.
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Our next result extends Theorem 4 to the two-dimensional case.

Theorem 6 If the partition Π�
0,Π

�
1,Π

�
prog of the level-� classifier satisfies

∑
i,j,h,k

4�−1∑
n=1

∑
{n1, n2, n3, n4}

Σni = n

π�(n1, n2, n3, n4)
[
µn1,n2,n3,n4 (Ai,j,h,k,1)

{
ei,j,h,k,1 +

∑
ni − 4�

}

+µn1,n2,n3,n4 (Ai,j,h,k,0)
{
ei,j,h,k,0 −

∑
ni

}]
> 0,

then the error rate of the level-� progressive classifier is smaller than the error rate of the level-(�− 1)

classifier.

The above condition is not as clean as in the one-dimensional case, partly because no assumptions

were made on the label field Θ so we do not have exact expressions for the mixture parameters

π�(i, j, h, k). However, all the listed quantities can be consistently estimated from the data, using

simple estimators, making the result of Theorem 5 especially valuable for non-parametric classifiers.

Consider, for example, the following procedure: Divide the available samples into a training set and

test set. Train the classifier with the training set, then restrict the attention to the level-� wavelet

coefficients w� of the test set, that are generated from four level-(� − 1) coefficients (w�−1
0,0 , w�−1

0,1 ,

w�−1
1,0 , and w�−1

1,1 ) corresponding to regions of the image containing n1, n2, n3 and n4 samples of class 1

respectively. Compute the proportion of such coefficients for which w�−1
0,0 ∈ Π�−1

i , w�−1
0,1 ∈ Π�−1

j , w�−1
1,0 ∈

Π�−1
h , w�−1

1,1 ∈ Π�−1
k , and w� ∈ Π�

1. This proportion is a consistent estimator of µn1,n2,n3,n4 (Ai,j,h,k,1).

When a parametric model is assumed, the above quantities can be estimated numerically, and

confidence intervals found, for instance through Monte Carlo simulation. For example, in Castelli

and Kontoyiannis [4] a simple, explicit construction of an m-dependent field Θ was used, which was

motivated by the problem of classifying satellite images of the earth’s surface. This construction

provided us with a field that looked very similar (in the statistical sense) to the distribution of land-

cover classes found in practice, and also allowed for direct simulation, and easy calculation, of the

prior probabilities π�(n) and π�(i, j, h, k) needed for the construction of parametric classifiers.

Note that the result of Theorem 6 can be easily specialized to any set of additional assumptions.

Under the Gaussian assumption, for instance, if the progressive classifier is defined by a threshold (as

it is the case for the Bayes decision rule) we immediately obtain the following.

Corollary 3 Suppose that the Gaussian assumption holds, that the baseline classifier is defined by a

threshold T , and that there exists a value of T , say T ∗ < ∞, such that the level-� progressive classifier

has smaller error rate than the level-(� − 1) classifier.
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Then the same will hold for any T > T ∗, and there exists a unique threshold T opt < ∞ at which

the difference of the error rate is maximum.

The analogue of Theorem 5 in the two-dimensional case is:

Theorem 7 Any level-� progressive classifier satisfying Pr{W �
u ∈ Π�

prog} < 3/4 is faster than the

corresponding level-(� − 1) progressive classifier.

A remark on the selection of the starting level: Since the random variable 2−�(S�
0 − 22(�−1))

converges to a Gaussian with finite, nonzero variance as � → ∞ (see, for example, Guyon [13] for a

general central limit theorem), the probabilities of the events {S0 = 0} and {S0 = 22�} both tend to

zero. Therefore, starting progressive classification at a very high level � of the multiresolution pyramid,

will almost always force us to take the progressive step.

4 Extensions

4.1 Speed vs. Accuracy

In certain applications, minimizing the probability of classification error alone may not be the most

satisfactory approach. Also from our results it becomes apparent that accuracy and speed are con-

trasting requirements: Reducing the size of the progressive regions will make the progressive classifier

faster, but this eventually reduces the accuracy. In order to balance the tradeoff between classification

accuracy and classification time we can introduce a Lagrangian cost function, J(λ) = R+λt, where R

is the probability that a sample is incorrectly classified, and t is the average classification time. Recall

that t is a function of the starting level in the multiresolution pyramid, of the hierarchy of decision

regions, and of the implementation of the DWT algorithm, and R is a function of the starting level

and the decision regions. In practice, this loss function is easy to implement and tune: Large values

of λ will produce strategies that most of the time classify at the lowest available level of the pyramid,

while small values of λ will give classifiers that take the progressive step more often. Figure 3 shows

an example of the form of J , for a 1-level progressive classifier, under the assumptions of Theorem

1. Here, the progressive classifier is uniquely determined by a threshold T , thus J depends only on

T and λ. Note that, for every choice of λ there is a Tλ that minimizes J , which corresponds to the

unique solution to the minimization problem.

When implementing progressive classifiers, the size of the progressive region can be easily tuned. In

the nonparametric case this is accomplished by varying the percentage of training samples correspond-

ing to regions of the training data where samples from both classes are present. In the parametric
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Figure 3:

case the baseline classifier produces estimates of the posterior probabilities, so that a final decision is

always reached by means of a likelihood ratio test. Thus the amount of progressiveness can be tuned

by selecting appropriate thresholds for the ratio test.

4.2 Higher-Dimensional Data

The progressive classifier, as well as the present analysis can be extended to higher-dimensional data,

as long as they are naturally indexed by (a rectangular subset of) the d−dimensional Euclidean lattice.

Practical examples are data from volumetric (three-dimensional) medical imaging, geological data or

atmospheric data. Also we have only considered scalar predictors, although vector-valued predictors

are also very common. In the case of multispectral satellite images, each pixel location is associated

with a vector of measurements corresponding to the intensity of the electromagnetic radiation in

different portions of the spectrum. Since the derivations of Theorems 2 through 7 do not rely on the

scalar predictors assumption, the results hold in the more general vector-valued case.

4.3 General Wavelet Bases

Although the Haar wavelet basis was used to simplify the theoretical analysis, in practice, progressive

classification can be applied using any orthonormal or biorthogonal family of wavelets, with only minor

modifications. As reported in Castelli et al. [4] a large number of experiments were done using other

wavelet bases, and the experimental results agree well with our theoretical findings.

In the general case the analysis will be more involved since adjacent wavelet coefficients are no

longer conditionally independent given the values of the underlying labels. But as the proofs of the
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more general results (Theorems 2–5 and their two-dimensional counterparts) did not explicitly rely on

that assumption, they remain valid in the generic wavelet case with only minor modifications in their

statements.

The extension is based on the following argument: if we use a scaling function filter with 2n

coefficients, a coefficient at level � depends on the values of N� pixels. In one dimension, N1
� can be

computed recursively, as follows: N1
1 = 2n, N1

� = 2 ∗ (2n + N1
�−1 − 2]. In k dimensions, Nk

� = (N1
� )k,

since we use separable filters. Thus, the conditional distribution of the coefficient given the labels

of the corresponding hypercubic set of pixels depends now on Nk
� labels. Divide the labels into

those corresponding to the “core” cube of side 2�, and the remaining ones. Take the expectation

of this conditional distribution with respect to the non-core labels. The resulting distribution is

the conditional distribution of the wavelet coefficient given the central 2� k labels. Note that these

labels are now unique to the coefficient, i.e., the corresponding conditional distribution of the adjacent

wavelet coefficients is conditional given a disjoint set of labels, as it was the case with the Haar

wavelet. Substitute then this distribution for the one used in Theorems 2–5 (and their two-dimensional

counterparts), modify accordingly the definitions of the measures µ. Then the formal results and their

proofs hold without change.

Although they may not always provide computationally simple ways to define the optimum de-

cision regions in the parametric case, Theorems 2–7 justify the use of the progressive approach in

many relevant practical cases, most importantly in conjunction with nonparametric classifiers. In

this case they can also provide guidelines on how to evaluate numerically the partitions produced by

nonparametric methods.

5 An Extreme Case

While this paper is not meant as a case study, we include the results of a small experiment comparing

the progressive classifier with the baseline classifier, and with a more sophisticated method called ICM

(Iterated Conditional Modes) described in [2]. The experiment was designed on purpose in such a way

as to favor ICM, so this case is really a stretch for the progressive classifier.

ICM relies on the same assumptions as the progressive classifier, namely, that the label field

is a stationary stochastic process and that the observations are conditionally independent given the

corresponding labels. ICM is based on a classifier that produces estimates of the posterior probabilities

of the labels given the observations, and of the joint distribution of the labels in the immediate

neighborhood of each pixel. In a first pass, the posteriors of the classes given the observations are

computed, and then the resulting map is iteratively refined using the estimates of the local joint
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distributions of neighboring pixels. This method was suggested to us because it converges quickly and

produces apparently good results.

The data is a portion of a satellite image from the NALC dataset, of size 1000×1000 pixels, where

each pixel covers 60×60 meters square on the ground. This image covers a portion of the Colorado

high planes, and was acquired during the month of August.

To favor ICM, we selected a two-class classification problem; in an n-class problem, even though

ICM uses a simple 3×3 neighborhood region, our implementation of ICM would require the reliable

estimation of n8 conditional probabilities. The two classes were selected in such a way that the

baseline classifier could distinguish them well. In particular, we selected agricultural regions and non-

agricultural regions. Vegetated areas other that non-agricultural regions appear less “green” (lighter)

in the image (see Figure 4).

(a) (b)

Figure 4:

The test image was then manually classified using computer-assisted classical photo-interpretation

methods, and a ground-truth map was produced. The conditional distributions used by ICM were

computed from the entire 1000 × 1000 pixel image. In the experiments the same baseline classifier

is used alone and in conjunction with ICM. Training sets were constructed by randomly sampling

selected portions of the 1000 × 1000 image. Samples selected for the training set were not used to

evaluate the accuracy of the classification.

A training set size of 8000 samples was used for the baseline classifier, for the ICM classifier, and

for the overall progressive classifier. In the case of the progressive classifier the 8000 samples were

equally divided between the different levels. We also tried using 8000 samples for each level; this did

not significantly slow down the progressive classifier, although, of course, it increased the classification

accuracy.

The baseline classifier used in the experiment was the 7-nearest-neighbor classifier [7], our imple-
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mentation of which automatically produces estimates of the a-posteriori probabilities of the individual

classes, and thus is well-suited for use with ICM. It is worth noting, that, unlike ICM, progressive

classification can be used with classifiers that do not produce estimates of the posterior probabilities

(such as CART [3]). In our experience, such classifiers are much faster and equally accurate.

Finally, our implementation of ICM relies on fast algorithms that we have developed in the past

for similar purposes (segmentation rather than classification), thus the timing for ICM does not suffer

from poor coding.

The multiresolution pyramid was obtained with the Daubechies Biorthogonal Symmetric wavelets

of order 3, corresponding to filters of length 8. The experiments were run on an IBM workstation

model 43P, with a PowerPC 604 processor running at 133 MHz, 192 MB of RAM and 1 MB of cache.

Timings were obtained directly from the system clock, using appropriate UNIX system calls, and

reflect only the time spent in the process address space.

Results are shown in Table 1. Given the medium resolution of the image data and the particular

characteristics of the selected region, as the starting resolution decreases, the progressive classifier

tends to take the progressive step rather than classifying the samples. Straightforward estimation of

the quantities in Theorems 6 and 7 showed that the level-2 progressive classifier would be faster but

less accurate than the level-1 progressive classifier, and that the level-1 progressive classifier would be

both faster and more accurate than the baseline classifier. We do not know how to compare ICM with

the progressive or baseline classifier other than through experiments.

From Table 1 it is clear that the straightforward (counting) estimates in Theorems 6 and 7 accu-

rately predicted both speed and accuracy of the level 1 and level 2 progressive classifiers. The level-1

progressive classifier is both faster and more accurate than the baseline classifier. The level-2 classifier

is faster than the level-1 classifier, yet slightly less accurate than the baseline classifier. ICM is by

nature slower than the baseline classifier, more accurate (not surprisingly so, since we used a very

large training set to estimate the random field local properties), and yet, it appears not to offer any

advantage over the progressive classifier.

The results of the first three columns were obtained using the 7-nearest neighbor classifier. The

last column of Table 1 shows the speedup when a faster classifier is used, namely our implementation

of CART [3], for which we have only a classification and not a regression part (thus, we could not

use ICM in conjunction with CART. We assumed, however, that the post-processing time would

be essentially the same as with the 7-nearest-neighbor classifier, given that the CART and 7-nearest-

neighbor baseline classifier basically produce the same results. Here, the inherent speed of the baseline

classifier somewhat reduces the speedup of the level-1 progressive classifier, since the progressive

classification overhead costs are now of the same order of magnitude as the straight classification
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costs. However, the level-1 progressive classifier is now about 5 times faster than ICM, and the level-2

progressive classifier is more than 10 times faster.

It is clear that more complex classifiers will produce better results than our implementation of ICM

in terms of accuracy. However, even in the extreme case studied here, the progressive classifier was not

outperformed in terms of accuracy by a more complex algorithm. For the class of problems in which

we are interested (mostly centered around automatic analysis of satellite images) where the amount

data produced by the instrumentation is enormous and growing at an exponential rate, progressive

classification is an appealing solution in terms of accuracy, even when compared to more elaborate

classifiers than the ones almost universally used in the field.

6 Conclusions

We presented and analyzed progressive classification, a new classification framework for data organized

on regular lattices, such as images. Progressive classification can be used in conjunction with essentially

any existing classification rule. Since the progressive classifier was originally developed to label the

pixels of large multispectral satellite images, our analysis is based on comparisons with the usual

approach consisting of labeling individual pixels independently based on their reflectance in different

spectral bands.

We stated and proved results showing that, under a wide range of assumptions, the progressive

classifier is both more accurate and computationally more economical than corresponding baseline

classifiers. Specifically, we showed that if the label process is sufficiently correlated, then the progres-

sive classifier is both faster and more accurate than the simple pixel-by-pixel classification approach.

Although the statements of the more general theorems seem rather complicated, all the quantities in-

volved can be easily and consistently estimated from the data. This allows the development of simple

algorithms for selecting the optimum number of levels of the multiresolution pyramid, given specific

constraints on accuracy and speed.

The progressive classifier is not the optimum classifier; yet it appears to perform very well, even

in comparison to more complex algorithms. In Section 5 we presented the results of an experimental

comparison between the progressive classifier and a Bayesian classification method, ICM. The setup for

the comparison was specifically designed in a way that should favor ICM. Our results clearly indicate

that the progressive classifier was not outperformed in terms of accuracy, while it was significantly

faster that ICM.

The combination of these theoretical and experimental findings suggest that the progressive clas-

sifier is an appealing solution for problems involving large amounts of image data, or when individual
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image sizes make it computationally infeasible to use (Bayesian) random field methods. Examples of

such types of data include data used in the oil industry, remotely sensed images of the earth’s surface,

and aerial photographs.
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Appendix A

A1 Proof of Theorem 1

Fix a threshold T and let Rprog = Rprog(T, p) denote the error rate of the progressive classifier;

similarly, write Rbas = Rbas(T, p) for the error rate of the baseline classifier. Let ∆R = Rbas − Rprog

and divide the half-space {(x1 + x2) > T
√

2} into three regions, as shown in Figure 1(a): A =

{(x1+x2) > T
√

2}⋂{x1 ≤ 0}, B = {(x1+x2) > T
√

2}⋂{x2 ≤ 0} and C = {(x1+x2) > T
√

2}⋂{x1 >

0}⋂{x2 > 0}. Similarly define regions D, E and F in the half-space {(x1 + x2) < −T
√

2}.
When the point (x1, x2) belongs either to C or F then the level-1 progressive classifier reduces to

the baseline classifier, so, in an obvious notation, ∆R = ∆R(A) + ∆R(B) + ∆R(D) + ∆R(E). From

symmetry ∆R(A) = ∆R(B) = ∆R(D) = ∆R(E), and so ∆R = 4∆R(A). When (x1, x2) ∈ A, the

progressive classifier decides θ̂1 = θ̂2 = 1, while the baseline classifier decides θ̂1 = 1 and θ̂2 = 0. Since

the error rate is the expected number of errors per decision,

Rprog = 2 {0 · π(1, 1)µ1,1(A) + 1 · π(1, 0)µ1,0(A) + 1 · π(0, 1)µ0,1(A) + 2 · π(0, 0)µ0,0(A)}
Rbas = 2 {1 · π(1, 1)µ1,1(A) + 2 · π(1, 0)µ1,0(A) + 0 · π(0, 1)µ0,1(A) + 1 · π(0, 0)µ0,0(A)} ,

so that, substituting for the mixture coefficients π(i, j) and subtracting yields,

∆R = (1 − p)(µ1,1(A) − µ0,0(A)) − p(µ0,1(A) − µ1,0(A)).

From the assumptions on the distributions of the samples it follows that both quantities (µ1,1(A) −
µ0,0(A)) and (µ0,1(A) − µ1,0(A)) are positive. Consequently, for any p smaller than

pT =
µ1,1(A) − µ0,0(A)

µ1,1(A) − µ0,0(A) + µ0,1(A) − µ1,0(A)
,
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the error rate of the progressive classifier is less than the error rate of the baseline classifier. �

A2 Proof of Theorem 2

When the level-1 progressive classifier takes the progressive step it reduces to the baseline classifier,

and so their corresponding error rates can be written as

Rbas =
1
2

∑
i,j

∑
m,n

∑
k

(2 − δi,m − δj,n)π(m,n)µm,n(Ai,j) + R(A0)

Rprog =
1
2

∑
i,j

∑
m,n

∑
k

(2 − δk,m − δk,n) π(m,n)µm,n(Ai,j,k) + R(A0),

where R(A0) is the component of the risk corresponding to the progressive step, and thus is

common to both progressive level-1 and product baseline classifiers.

Next observe that δk,m − δi,m = 0 when i = k, that δk,m − δi,m = 1 when k = m and i = m, and

that δk,m − δi,m = −1 when k = m and i = m; similar relations hold for δk,n − δj,n. So substituting

for the probabilities π(i, j), the difference ∆R = Rbas − Rprog becomes

1
2

∑
m,n

∑
i,j

∑
k

(δk,m + δk,n − δi,m − δj,n)π(m,n)µm,n(Ai,j,k)

=
1
2

∑
m,n

π(m,n)


∑

i


(1 − 2δi,m)

∑
j

µm,n(Ai,j,i)


+

∑
j

{
(1 − 2δj,n)

∑
i

µm,n(Ai,j,j)

}


=
1 − p

4

∑
m


∑

i


(1 − 2δi,m)

∑
j

µm,m(Ai,j,i)


+

∑
j

{
(1 − 2δj,m)

∑
i

µm,m(Ai,j,j)

}


− p

4

∑
m


∑

i


(2δi,m − 1)

∑
j

µm,m(Ai,j,i)


 +

∑
j

{
(2δj,m − 1)

∑
i

µm,m(Ai,j,j)

}


�=
1 − p

4
P1 − p

4
P2.

Since, by assumption, P1 > 0, for each p < p0 = P1/(P1 +P2) the difference ∆R of the error rates will

be strictly positive. �

A3 Proof of Theorem 3

If W 1
1 �∈ Π1

prog, then the level-1 progressive classifier classifies the coefficient and no additional opera-

tions are required; conditional on the same event, the baseline classifier requires two operations. Now

if W 1
1 ∈ Π1

prog, then the level-1 classifier performs 1+ 2 = 3 classification operations, and the baseline

classifier performs only two. Thus, the level-1 classifier is faster if and only if

(1 − Pr{W 1
1 ∈ Π1

prog} + 3Pr{W 1
1 ∈ Π1

prog}) < 2(1 − Pr{W 1
1 ∈ Π1

prog} + 2Pr{W 1
1 ∈ Π1

prog}),
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namely, if and only if Pr{W 1
1 ∈ Π1

prog} < 1/2, as claimed. �

A4 Proof of Corollary 1

The level-1 progressive classifier requires 1 operation to label a pair of samples when the wavelet

coefficient falls within the decision regions Π1
0 or Π1

1, and 3 operations for region Π1
prog. Hence the

expected number of operations to classify a sample (at full resolution) is

1
2
Pr

{
W 1

1 ∈ Π1
1

}
+

1
2
Pr

{
W 1

1 ∈ Π1
0

}
+

3
2
Pr

{
W 1

1 ∈ Π1
prog

}
=

1
2

+ Pr
{
W 1

1 ∈ Π1
prog

}
=

1
2

+
∑
i,j

π(i, j)µi,j

(
Π1

prog

)

=
1
2

+
1 − p

2

{
µ1,1

(
Π1

prog

)
+ µ0,0

(
Π1

prog

)}
+

p

2

{
µ1,0

(
Π1

prog

)
+ µ0,1

(
Π1

prog

)}
.

The progressive classifier will be faster than the baseline classifier if the expected number of operations

is less than 1, and, rearranging, this inequality is equivalent to p < p
′
0, where

p
′
0 =

1 − µ1,1

(
Π1

prog

)
− µ0,0

(
Π1

prog

)
µ1,0

(
Π1

prog

)
+ µ0,1

(
Π1

prog

)
− µ1,1

(
Π1

prog

)
− µ0,0

(
Π1

prog

) > 0. �

A5 Proof of Theorem 4

The decisions of the level-� progressive classifier and the level-(�−1) progressive classifier differ on the

region A =
⋃

Ai,j,k. If we write R�(A) = Pr
{
θ̂i �= θi | A

}
Pr (A) for the component of the error of the

level-� classifier in region A, then it can be expanded as:

2�∑
n=0

Pr
{
A, θ̂i �= θi | S�

0 = n
}

Pr
{
S�

0 = n
}

= 2−�
2�∑

n=0

min (n,2�)∑
m=max (0,2�−n)


π(m,n − m)

∑
i,j

{
(2� − n)µm,n−m(Ai,j,1) + nµm,n−m(Ai,j,0)

}
.

For the product level-(� − 1) classifier, the corresponding quantity R
(�−1)
prod (A) is given by

2−�
2�∑

n=0

min (n,2�)∑
m=max (0,2�−n)


π(m,n − m)

∑
i,j

{ei,j,1µm,n−m(Ai,j,1) + ei,j,0µm,n−m(Ai,j,0)}

 ,

so the difference ∆R = R
(�−1)
prod − R� is

2−�
2�∑

n=0

minn,2�∑
m=max 0,2�−n


∑

i,j

π(m,n − m)


µm,n−m(Ai,j,1)(ei,j,1 − 2� + n)
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+ µm,n−m(Ai,j,0)(ei,j,0 − n)





 ,

and the theorem follows. �

A6 Proof of Theorem 5

The proof is similar to the proof of Theorem 3. If W �
1 �∈ Π�

prog, the level-� progressive classifier classifies

the coefficient, and no additional operations are required; conditional on the same event, the product

level-(�−1) classifier requires 2+n1 operations (the product level-(�−1) classifier might take progressive

steps). Conditional on W �
1 ∈ Π�

prog, the product level-(� − 1) classifier performs 2 + n2 classification

operations, and the level-� classifier performs 1+2+n2 operations. Thus, the level-� classifier is faster

if (1−Pr{Π�
prog})+(3+n1)Pr{Π�

prog}) is smaller than (2+n2)(1−Pr{Π�
prog})+(2+n1)Pr{Π�

prog}),
or, equivalently, if

(2 + n2)Pr{Π�
prog} < 1 + n2.

Clearly this is satisfied if Pr{Π�
prog} < 1/2, and the level-� classifier is faster, independently of the

choice of the level-(� − 1) classifier. �

A7 Proof of Corollary 2

We just give a sketch of the proof. Note that, for each i, µ2�/2,2�/2(Πprog) ≥ µi,2n−j(Πprog), and also

that for any p > 0, π(2�/2, 2�/2) ≤ 1 − (1 − p)�−1. Arguing as in the proof of Corollary 1, the level-�

classifier is faster than the product level-(� − 1) classifier if

1
2
(1 − p)�−1

{
µ0,2�(Πprog) + µ2�,0(Πprog)

}
+

{
1 − (1 − p)�−1

}
µ2�/2,2�/2(Πprog) < 1/2,

and solving this inequality for p this is equivalent to p < p�, where

p� = 1 −

 µ2�−1,2�−1(Πprog) − 1/2

µ2�−1,2�−1(Πprog) − 1
2

{
µ2�,0(Πprog) + µ0,2�(Πprog)

}



1/(�−1)

. �
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Captions

Figure 1

The level-1 progressive classifier under assumptions 1, 2 and 3. Figure (a) shows the decision regions

Π1
0, Π1

1 and Π1
prog. Figure (b) depicts the 4 decision regions of the progressive classifier, identified by

the pair of produced labels. Figure (c) depicts the regions where the progressive classifier and the

baseline (product) classifier produce different answers. For instance, in region α, the baseline classifier

produces θ̂0 = 0 and θ̂1 = 1, while the progressive classifier produces θ̂0 = θ̂1 = 1. Figure (d) shows

the decision regions of the best classifier that uses the pair (X1, X2) as input.

Figure 2

The distribution of the coefficient W 4
1 and the components of the mixture under the Gaussian as-

sumption, for the Markov model with p = 0.08. The dashed-dotted lines labeled A and B are the

component densities of W 4
1 in the homogeneous regions, namely where all the labels θi are equal to 0

or 1, respectively. The dotted lines are the inhomogeneous component densities, when k of the labels

are equal to 1, and the others are equal to zero, for k = 1, 2, . . . , 15. The dashed line labeled C is the

mixture density of W 4
1 , when the coefficient corresponds to an inhomogeneous region.

Figure 3

The form of J(λ) = R + λt for the case of Theorem 1, plotted as a function of the threshold T and of

λ.

Figure 4

A 310×240-pixel portion of the test-image. In figure (a) very dark regions are water bodies, dark

regions are roughly agricultural and bright regions are roughly non-agricultural areas. Figure (b)

shows the photointerpretation results, used as ground truth.



Comparison of Baseline classifier, ICM and Progressive Classifiers starting at level 1 and 2 in terms

of speed and accuracy.

Classifier classification classification Speedup using Speedup using

time accuracy 7-Nearest Neighbor CART

baseline 425.59 0.9844 1 1

ICM 430.21 0.9859 0.989 .293

Progressive, level 1 232.56 0.9863 1.83 1.44

Progressive, level 2 175.93 0.9842 2.42 2.98

Table 1:


