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Abstract — Rissanen’s Minimum Description

Length (MDL) principle for model selection proposes

that, among a predetermined collection of models, we

choose the one which assigns the shortest description

to the data at hand. In this context, a “description”

is a lossless representation of the data that also takes

into account the cost of describing the chosen model

itself. We examine how the MDL principle might ex-

tend to the case when the requirement for lossless

coding is relaxed (lossy compression), and we outline

some of the mathematical and conceptual ingredients

that facilitate this extension

I. Introduction

Rissanen’s Minimum Description Length (MDL) principle,
as well as several other prominent model selection criteria, are
based on the idea that among a predetermined collection of
models (or model classes), the one which best captures the
characteristics of the data is the one which can be used to
encode the data using the smallest number of bits.2

In applications, it is often the case that we are willing to
tolerate less accurate but simpler models. Consider for exam-
ple the case of lossy data compression. Given a data string
xn1 = (x1, x2, . . . , xn), the objective is to efficiently represent
xn1 by a corresponding string yn1 = (y1, y2, . . . , yn) that agrees
with xn1 to within some fixed level of accuracy. More precisely,
we require that the distortion ρn(xn1 , y

n
1 ) between the original

string xn1 and its representation yn1 is within some fixed bound,
say

ρn(xn1 , y
n
1 ) ≤ D

(see below for more precise definitions).

Now suppose that xn1 is generated as a realization of a ran-
dom process {Xn} with nth order distributions Pn. From
rate-distortion theory [14][5] we know that the most efficient
way to represent Xn

1 is by an element Y n1 of Shannon’s random
codebook – that is, a suitably chosen realization of the opti-
mum reproduction distribution Q∗n. As is well known, unless
we restrict our selves to lossless compression, the distribution
Q∗n will typically be very different from Pn. Therefore, in the

1This work was supported in part by a grant from the Purdue
Research Foundation.

2See, e.g., [13] or [4] for extensive discussions of the MDL prin-
ciple, and the paper [15] for a description of the minimum message
length (MML) principle; Akaike’s information criterion (AIC) also
admits a similar information-theoretic interpretation [1].

sense of rate-distortion theory, if we are willing to tolerate dis-
tortion up to level D in the description of our data, the most
efficient “model” is that provided by Q∗n.

In lossless compression, there is a natural correspondence
between models for the data (that is, probability distribu-
tions) and prefix-free codes. This correspondence is briefly
summarized in Section II. In Sections III-V we show that there
is a similar (although more complicated) correspondence be-
tween probability distributions on the reproduction alphabet
and lossy compression codes at a fixed distortion level, we
propose a lossy analog to the lossless idealized Shannon code,
and we show that it is competitively optimal. In Section VI
we provide some of the technical details, and in Section VII
we briefly mention some recent related work.

II. Background: Lossless Compression

Suppose that the data string xn1 = (x1, x2, . . . , xn) takes
values in a a finite set A, called the source alphabet, that is,
xn1 ∈ An. A prefix-free code, or simply a lossless code on An is
a map ψn : An → {0, 1}∗ with the property that no codeword
in the range of ψn is a prefix of another. Every such code
induces a length function Ln : An → N, defined by

Ln(xn1 ) = length of [ψn(xn1 )] (in bits).

As is well-known, the prefix-free property is characterized by
the following inequality; see, e.g., [6, Chapter 5]:

Kraft Inequality. If ψn is a is a prefix-free code
with length function Ln, then∑

xn1 ∈An
2−Ln(xn1 ) ≤ 1. (K)

Conversely, if Ln is a length function satisfy-
ing (K), then there is a prefix-free code ψn with
length function Ln.

The Kraft inequality provides a natural and very useful
correspondence between lossless codes and (sub-)probability
distributions: From any length function satisfying (K) we get
a “model” on An by defining

Qn(xn1 )
4
= 2−Ln(xn1 ), xn1 ∈ An. (1)

Conversely, if we ignore the constraint that the code-lengths
Ln(xn1 ) have to be integers, then for any probability distribu-
tion Qn on An there is a code with code-lengths given by

Ln(xn1 )
4
= − logQn(xn1 ), xn1 ∈ An. (2)



[Throughout, log denotes the logarithm taken to base 2.] The
code with length function (2) is often called the Shannon code
(or Shannon-Fano code) with respect to the distribution Qn.

Now suppose that data are generated by a random process
{Xn}, and let Pn be its nth order marginal, that is, Pn denotes
the distribution of Xn

1 = (X1, X2, . . . ,Xn) on An. Assuming
we know the true distribution Pn, the best code for describing
Xn

1 is the Shannon code with respect to Pn, i.e., the prefix-
free code with code-lengths given by (2) with Pn in place of
Qn.

The following well-known result makes more precise the
sense in which the Shannon code with respect to Pn is the
“best” code.

Theorem 1. [2][3] Shannon Code Competitive Optimality
Let {Ln} be the length functions of an arbitrary sequence
of prefix-free codes on An. If Xn

1 are data generated by an
arbitrary random process {Xn} with marginal distributions
Pn, we have:

(a) For all n,

EPn [Ln(Xn
1 )] ≥ EPn [− logPn(Xn

1 )] = H(Xn
1 ),

where H(Xn
1 ) is the entropy of Xn

1 .

(b) For all n and all K ≥ 1, the probability

Pr{Ln beats the Shannon code by K bits or more}
= Pr{Ln(Xn

1 ) ≤ − logPn(Xn
1 )−K}

≤ 2−K .

(c) If {cn} is a sequence of nonnegative constants such that∑
n≥1 2−cn <∞, then, with probability one,

Ln(Xn
1 ) ≥ − logPn(Xn

1 )− cn, eventually.

This result justifies, to some extent, our identification of the
Shannon code as the “best” code, and it further encourages us
to think of codes and models as being interchangeable. In the
remainder of this note, we identify a corresponding “Shannon
code” for lossy compression, we argue that it leads to a natural
correspondence between codes and models in the lossy case,
and we demonstrate its competitive optimality.

III. Lossy Compression:

Random Coding & a Lossy Shannon Code

Let {Xn} be a random source taking values in the source
alphabet A, and for 1 ≤ i ≤ j ≤ ∞, write Xj

i for the vec-
tor of random variables (Xi, Xi+1, . . . ,Xj) and similarly write
xji = (xi, xi+1, . . . , xj) ∈ Aj−i+1 for a realization of Xj

i . For
most of this section we will assume that {Xn} is a memoryless
source, that is, that the Xn are independent and identically
distributed (i.i.d.) random variables with common distribu-
tion P on A.

Let Â denote the reproduction alphabet. For the sake of
simplicity, we assume throughout that both A and Â are finite
sets. For an arbitrary nonnegative function ρ on A× Â, we
define a sequence of single-letter distortion measures ρn on
An×Ân by

ρn(xn1 , y
n
1 ) =

1

n

n∑
i=1

ρ(xi, yi) xn1 ∈ An, yn1 ∈ Ân,

and we also make the customary assumption that

max
x∈A

min
y∈Â

ρ(x, y) = 0.

We consider variable-length codes operating at a fixed dis-
tortion level, that is, codes Cn defined by triplets (Bn, φn, ψn)
where:

(a) Bn is a subset of Ân called the codebook;

(b) φn : An → Bn is the quantizer;

(c) ψn : Bn → {0, 1}∗ is a prefix-free map on Bn.

For D ≥ 0, the code Cn = (Bn, φn, ψn) is said to operate
at distortion level D, if it encodes each source string with
distortion D or less:

ρn(xn1 , φn(xn1 )) ≤ D, for all xn1 ∈ An.

As ψn is a prefix-free lossless code, it induces a length function
Ln on Bn,

Ln(yn1 ) = length of [ψn(yn1 )]. yn1 ∈ Bn,

Moreover, the code Cn induces a length function `n on An,

`n(xn1 ) = length of [ψn(φn(xn1 ))],

and he functions Ln and `n are clearly related by

`n(xn1 ) = Ln(φn(xn1 )). (3)

Shannon’s celebrated source coding theorem [14] character-
izes the best achievable compression ratio among codes oper-
ating at distortion level D. In particular, suppose {Xn} is
a memoryless source with distribution P . Then, for any se-
quence of codes {Cn = (Bn, φn, ψn) ; n ≥ 1} operating at dis-
tortion level D, the expected compression ratio E[`n(Xn

1 )]/n
is asymptotically bounded below by the rate-distortion func-
tion R(D),

lim inf
n→∞

E[`n(Xn
1 )]

n
≥ R(D) bits per symbol (4)

where R(D) = R(P,D) is defined by the well-known formula

R(D) = inf
(X,Y )

I(X;Y ) (5)

and the infimum is over all pairs (X,Y ) such that X ∼ P
and E[ρ(X,Y )] ≤ D. Moreover, Shannon showed that the
the lower bound in (4) is (asymptotically) achievable by a
sequence of random codes. Next we outline their construction
(the presentation is along the lines of [10]).

Let (X∗, Y ∗) be a pair of random variables achieving
the infimum in (5), and let Q∗ denote the distribution of
Y ∗. Following Shannon, we generate i.i.d. codewords Y (i) =
(Yi,1, Yi,2, . . . , Yi,n), i = 1, 2, . . . , each drawn according to

the product distribution Q∗n
4
= (Q∗)n on Ân. Now, given a

source string Xn
1 , we can encode it by specifying the index

i = Wn of the first codeword Y (i) for which the distortion
ρn(Xn

1 , Y (i)) is D or less:

Wn = inf{i ≥ 1 : ρn(Xn
1 , Y (i)) ≤ D}.

The description of Wn takes no more than

logWn + log logWn +O(log log logWn) bits,



and the representation of Xn
1 by Y (i) is always within dis-

tortion D or less. But Wn, the “waiting time” until the first
D-close match for Xn

1 , is approximately equal to the reciprocal
of the probability of finding such a match. More precisely,

logWn ≤ log[1/Q∗n(B(Xn
1 , D))] + logn+ 2 log logn,

eventually, with probability one, where the “distortion balls”
B(xn1 , D) are defined by

B(xn1 , D) = {yn1 ∈ Ân : ρn(xn1 , y
n
1 ) ≤ D}, xn1 ∈ An. (6)

Also, from the recent results in [7] and [16] we know that the
probabilities log[1/Q∗n(B(Xn

1 , D))] are equal to

nR(D) +

n∑
i=1

f(Xi) +
1

2
logn+O(log logn)

eventually, with probability one (see Proposition 3 in [10]),
where f : A → R is a function depending on D and P , such
that EP [f(X)] = 0 (see Section VI for more details and a pre-
cise definition of f). Putting these estimates together, we get
the following upper bound on the description length of Shan-
non’s random code (Theorem 2 below is a slight refinement of
Theorem 5 (a) in [10]):

Theorem 2. Pointwise Performance of Random Coding
Suppose {Xn} is a memoryless source with rate-distortion
function R(D). The description lengths of Shannon’s random
code are bounded above by

nR(D) +

n∑
i=1

f(Xi) +
5

2
logn+O(log logn) bits

eventually, with probability one.

Is this the best we can do? The answer is “yes, up to a few
(logn) terms.” Theorem 3 below follows from [10, Theorem 4].

Theorem 3. Pointwise Optimality of Random Coding
Suppose {Xn} is a memoryless source with rate-distortion
function R(D). For any sequence of codes {Cn} with corre-
sponding length functions {`n}, operating at distortion level
D, we have

`n(Xn
1 ) ≥ nR(D) +

n∑
i=1

f(Xi)− (1 + ε) logn bits

eventually, with probability one.

Observing that the upper and lower bounds provided in
Theorems 2 and 3, respectively, agree in their first- and
second-order terms, we decide to ignore the terms of order
O(logn) and smaller, and we define the (idealized) code-
lengths of the Shannon code at distortion level D by

`(S)
n (xn1 )

4
= nR(D) +

n∑
i=1

f(xi), xn1 ∈ An.

These “idealized” code-lengths turn out to have essentially
the same strong optimality properties that the Shannon code
enjoys in the lossless case. Theorem 4 generalizes Theorem 1
above to the lossy case (see [10, Corollary 2]).

Theorem 4. Shannon Code Competitive Optimality
Suppose {Xn} is a memoryless source with rate-distortion
function R(D), and let {`n} be the length functions of an
arbitrary sequence of codes {Cn} operating at distortion level
D. Then we have:

(a) For all n,

EPn [`n(Xn
1 )] ≥ EPn [`(S)

n (Xn
1 )] = nR(D).

(b) For all n and all K ≥ 1, the probability

Pr{`n beats `(S)
n by K bits or more}

= Pr{`n(Xn
1 ) ≤ `(S)

n (Xn
1 )−K}

≤ 2−K .

(c) If {cn} is a sequence of nonnegative constants such that∑
n≥1 2−cn <∞, then, with probability one,

`n(Xn
1 ) ≥ `(S)

n (Xn
1 )− cn, eventually.

IV. An Example

The competitive optimality property of the Shannon code
(Theorem 1 (b) in the lossless case and Theorem 4 (b) in the
lossy case) may seem somewhat remarkable at first sight. It
says that there is a sequence of codes (the Shannon codes)
that, no matter how hard we try, we can can only beat them
by K bits with probability at most 2−K – and this holds for
any block-length n.

Although this statement is precisely accurate in the lossless
case, in the lossy case we ignored some (logn) terms, so it
takes a little more work to make this into an honest bound.
This is carried out in the following example.

Suppose we want to compress a 300x300 pixel grayscale im-
age, call it X. The source and reproduction alphabets each
have size 256, and the block-length n is equal to 300x300 sym-
bols, or approximately 90 Kbytes. Then for each fixed distor-
tion level D, a slightly modified version of the random code
described above gives a code operating at that distortion level,
whose description lengths `∗(X) have the following property:
For any other code operating at distortion level D, the proba-
bility that its description lengths are significantly shorter than
`∗ is negligible. For example, the following is precisely true:

For any code C with code-lengths ` operating at
distortion level D:

Pr{` beats `∗ by 11 bytes or more}
= Pr{`(X) ≤ `∗(X)− 88 bits}
≤ 2−39.

The exact assumptions under which the above bound holds
are that: X is a 300x300 i.i.d. vector taking values in A =
{0, 1, . . . 255}, that the distortion level D > 0 is chosen out-
side the uninteresting region where R(D) = 0, and that n
(in this case 90,000) is large enough so that the optimum
reproduction distribution satisfies the (mild) condition that
Q∗n(B(xn1 , D)) ∈ (0, 1/2] for all xn1 .

V. The Codes/Distributions Correspondence

The strong optimality of the idealized lossy Shannon code
gives us a clear “target” to aim for, at least in the sense of
data compression. We want to come as close as possible to the
performance of Shannon’s random code as described above.

Next we argue that achieving compression performance
close to `

(S)
n is, to some extent, equivalent to obtaining ac-

curate estimates of the optimal reproduction distribution Q∗n.
We now step back to the general case when the source {Xn}

is not necessarily memoryless, and outline the correspondence
between codes at a fixed distortion level and distributions Qn
on Ân.



A. Distributions ⇒ (Random) Codes. This is the more
straightforward of the two directions. Given an arbitrary se-
quence {Qn} of probability distributions Qn on Ân, we can
repeat Shannon’s random coding argument, this time with re-
spect to the (typically suboptimal) distributions Qn. Recall
that, in the case of a memoryless source, and with Qn be-
ing the optimal distribution Q∗n, the random coding argument
produced a sequence of codes operating at distortion level D,
with code-lengths

`n(Xn
1 ) ≈ − logQ∗n(B(Xn

1 , D)) ≈ `(S)
n (Xn

1 ) bits,

where “≈” means that the difference between successive terms
is at most of order O(logn), with probability 1. Similarly, re-
peating the random coding argument for an arbitrary sequence
of distributions Qn, we obtain a sequence of codes with code-
lengths

`n(Xn
1 ) ≈ − logQn(B(Xn

1 , D)) bits. (7)

This is the natural analog of the relation (2) in the lossless
case. Note that relation (7) holds for an arbitrary sequence of
distributions Qn, as long as they produce random codes with
finite rate, i.e., as long as

lim sup
n→∞

− 1

n
logQn(B(Xn

1 , D)) <∞

with probability one.

B. Codes ⇒ Distributions. Recall that a code Cn operat-
ing at distortion level D is defined by a triplet (Bn, φn, ψn),
and the compression performance of Cn is described by its
length function `n. In this notation, ψn is a prefix-free map
defined on the codebook Bn ⊂ Ân, and it has a corresponding
length function Ln defined on Bn. Given such a code, we can
define a (sub-)probability distribution on Ân by

Qn(yn1 )
4
=

{
2−Ln(yn1 ) if yn1 ∈ Bn
0 otherwise.

(8)

This is the lossy analog of relation (1) in the lossy case. With
this definition, we can get a simple but useful lower bound
on the performance of Cn (cf. [10]): Since Cn operates at
distortion level D, for any xn1 ∈ An we have (recalling (3)):

`n(xn1 ) = Ln(φn(xn1 ))

= − logQn(φn(xn1 ))

≥ − logQn(B(xn1 , D)).

Comparing this with (7) further reinforces our interpretation
of the quantities

− logQ(B(xn1 , D))

as the natural lossy analogs of the Shannon code-lengths

− logQ(xn1 ).

VI. Some of the Details

Here we give some of the more technical details about the
function f(·) appearing in Theorems 2 and 3.

For a memoryless source with distribution P and rate-
distortion function R(D), let D > 0 be a distortion level such
that R(D) > 0. As before, write Q∗ for the distribution of the

random variable Y ∗ achieving the minimum in (5). For each
x ∈ A and each λ ∈ R let

Λx(λ) = loge

∑
y∈Â

Q∗(y)eλρ(x,y)


(where loge denotes the natural logarithm), and write λ∗ for
the unique λ < 0 such that

d

dλ
[EP (ΛX(λ))] = D.

Then, for x ∈ A, define

f(x) = fD(x)
4
= (log e)

[
− Λx(λ∗)− EP (−ΛX(λ∗))

]
.

Clearly f(X) has mean zero (with respect to P ), and in
general it is non-degenerate, that is, it is usually not identi-
cally equal to zero. This statement was recently made precise
in [8], where, among other things, the following is proved (un-
der some mild conditions):

Theorem 5. Nondegeneracy of f
Suppose that {Xn} is a memoryless source, that A = Â, and
that ρ(x, y) is a symmetric distortion measure. Only two pos-
sibilities exist:

A. Either f(x) = fD(x) is identically equal to zero for only
finitely many values of D, or

B. The source distribution P is uniform and ρ(x, y) is a
“permutation” distortion measure, in which case f(x) =
fD(x) is identically equal to zero for all D.

VII. Related Work

Here we briefly mention some recent work that explores
connections between rate-distortion theory and model selec-
tion.

Jun Muramatsu’s PhD thesis [11] contains very interest-
ing results connecting lossy data compression with algorithmic
complexity (in the sense of Kolmogorov). Dave Donoho gave
a seminar in the spring of 1998 at Stanford on the “Shannon
estimator” [9], a denoising technique based on random cod-
ing. Amir Najmi’s PhD thesis [12] proposes a different model-
selection criterion motivated by data compression ideas, and
he also draws some connections with rate-distortion theory
and with Donoho’s Shannon estimator.
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