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Abstract. Let A be finite set equipped with a probability distribution P, and
let M be a “mass” function on A. A characterization is given for the most
efficient way in which A™ can be covered using spheres of a fixed radius. A
covering is a subset C,, of A™ with the property that most of the elements
of A™ are within some fixed distance from at least one element of C,, and
“most of the elements” means a set whose probability is exponentially close
to one (with respect to the product distribution P™). An efficient covering is
one with small mass M"(Cy). With different choices for the geometry on A,
this characterization gives various corollaries as special cases, including Mar-
ton’s error-exponents theorem in lossy data compression, Hoeffding’s optimal
hypothesis testing exponents, and a new sharp converse to some measure
concentration inequalities on discrete spaces.
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1. Introduction

Let A be a finite set and P a probability distribution on A. Suppose that the
distance (or “distortion”) p(x,y) between any two points x,y € A is measured by a
given nonnegative function p : AxA — [0, 00), and for strings 27" = (x1,x2,... ,Ty)
and ¥ = (y1,Y2,... ,Yn) in A™ let p,(z7,y}) be the corresponding coordinate-
wise distance (or single-letter distortion measure) on A™ x A™:

1 n
pulat,yr) = > plisi).
i=1
Since A is a finite set, the function p is bounded above by

A
D = = Toyr).
max = 108X, p(z,y) R pn (), Y1)

Without loss of generality we assume throughout that P(a) > 0 for all a € A,
and that for each a € A there exists a b € A with p(a,b) = 0 (otherwise we may
consider p'(z,y) = [p(x,y) — min,ea p(z, 2)] instead of p(z,y)).

Given a D > 0, we want to cover “most” of A™ using balls B(y}, D), where

B(yy', D) ={zy € A" : pn(a¥,yy') < D}
is the closed ball of radius D centered at y7" € A™. To be precise, given a set
C,, C A™, we write [C,],, for the D-blowup of C,
A
(Calp = | B, D).
yreCy

A D-covering of A™ is a sequence of subsets C,, of A™, n > 1, such that the P"-
probability of the part of A™ which is not covered by C,, within distance D has
exponentially small probability,

(1) Pr{¢error”} 21— P"([C],) ~ 2 "E

for some E > 0. We are interested in “efficient” coverings of A™, that is, given a
“mass function” M : A — (0, 00), we want to find D-coverings {C,,} that satisfy
(1) and also have small mass

n
MG E Y M = Y [T M.

yPECh yreC, i=1
Clearly there is a trade-off between finding coverings {C),} with small mass, and
coverings with a good (i.e., large) error-exponent E as in (1). Typically, the better
the error-exponent, the larger the C,,, and the bigger their mass would tend to be.
Motivated, in part, by the following example and by the applications illus-
trated in the examples of the following section, in our main result we give a precise

characterization of this trade-off.
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Example: Measure Concentration on the Binary Cube.

Consider the n-dimensional binary cube A™ = {0, 1}". We measure distance
on A™ by the proportion of mismatches between two binary strings " and y7,
i.e., we take p, (2%, y}) to be the Hamming distance,

1 n
(2) @) = 52 Ty a0l € 47,
i—
which also coincides with the normalized graph distance when A" is equipped with
the nearest-neighbor graph structure. For simplicity, in this example we consider
natural logarithms and exponentials.

A well-known measure concentration inequality [10, Prop. 2.1.1][9, Thm. 3.5]
gives a precise lower bound on the sphere-covering error probability of an arbitrary
C,: For any D > 0, any product distribution P"™ on A", and any C,, C A™,

e—nD2/2
P 143 2 — 1 _ Pn C < —
{“error”} (Clo) < s
Therefore, if {C,} is any D-covering consisting of sets with P"(C,,) = e~ "" for
some r > 0, then the union of the balls B(y}, D) centered at the points y} € Cp,
covers all of A™ except for a set of probability no greater than

3) re (),

It is then natural to ask, what is the best achievable error exponent among all
D-coverings {C), } with probability no greater that ~ e~ ""? In other words, we are
asking for small sets with the largest possible “boundary,” sets C,, with “volume”
P"(Cy,) no greater than e~ ™" but whose D-blowups [C,,],, cover as much of A™ as
possible. As pointed in [6], this question can be thought of as the opposite of the
usual isoperimetric problem.

Taking M = P in the general setting described above, we obtain the answer
to this question as a corollary to our general result in the following section; see
Corollary 3.

2. Results

Given any D > 0 and any R € R, let E(R,D) denote the best achievable
error-exponent among all D-coverings with mass asymptotically bounded by 2"%.
Letting C(R) denote the collection of all sequences of subsets C, of A™ with
lim sup,, % log M™(C,,) < R, define,

E(R,D) 2 sup lim inf—l log [1 - P”([Cn]D)},
{Cn}eC(R) "2 M

where ‘log’ denotes the logarithm taken to base 2.
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A weaker version of this problem was recently considered in [6], where it was

shown that the probability of error can only decrease to zero if R is greater than
R(D; P, M),

A
4) R(D;P,M)= inf {HP P x Py)+ E|l MY},
(4) R( )= op ot vy <p VI (Pxy ([P X Py) + Eflog M(Y)]
where the infimum is taken over all jointly distributed random variables (X,Y)
such that X has distribution P and Ep(X,Y) < D, and Px,y denotes the joint
distribution of X,Y, Py denotes the marginal distribution of Y, and H(u|v)
denotes the relative entropy between two probability measures p and v on the
same finite set S,
H(ulr) 2> u(s)

seS
Therefore, the error-exponent F(R, D) can only be nontrivial (i.e., nonzero) for
R > R(D; P,M). Also note that any C,, C A™ has

1 log M™(C),) < l1ogM”(A") = log M (A).
n n

Hence, from now on we restrict attention to the range of interesting values for R
between R(D; P, M) and Rumax = log M(A).

Theorem. For all D € [0, Dyax) and all R(D; P, M) < R < Rpax, the best
achievable exponent of the error probability, among all D-coverings {C,} with
mass asymptotically bounded by 27, is
E(R,D)=FE*(R,D
(RD)=E(RD)E i HQIP)
where R(D; P, M) is defined in (4) and H(Q||P) denotes the relative entropy (or
Kullback-Leibler divergence) between two distributions P and Q.

Remarks.

1. A slightly different error-exponent. Alternatively, we can define a version
of the optimal error-exponent by considering only D-coverings {C,,} with mass
bounded by 2™F for all n:

E'(R,D) 2 liminf —~ log{ min [1 - P”([Cn]D)} } .

n—oo Cp: M"(Cp)<2nR

From the theorem it easily follows that E'(R, D) is also equal to E*(R, D) at
all points R where E*(R, D) is continuous and, since it is nondecreasing in R,
E*(R, D) is indeed continuous at all except countably many values of R. But in
general it may fail to be continuous everywhere, as illustrated in the discussions by
Marton [7] and Ahlswede [1] for the special case of lossy data compression (which
corresponds to taking M (z) = 1; see Example 2 below).

2. Proof. The proof of the theorem is a modification of Marton’s [7] original
argument for the case of error-exponents in lossy data compression. The optimal
sets {Cy,} achieving E*(R, D) are randomly generated, and they are universal in
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that their construction only depends on R, D, and M. Therefore, they achieve the
optimal error-exponent simultaneously for all distributions P.

Ezxample 1: Hypothesis Testing.

Let Py and P; be two probability distributions A with all positive proba-
bilities. Suppose that the null hypothesis that a sample X7 = (X1, Xo,...,X,)
of n independent observations comes from Py is to be tested against the simple
alternative that X7 comes from P;. Any test between these two hypotheses is sim-
ply a decision region C,, C A™: If X{* € C), we declare that X" ~ P[', otherwise
we declare X7' ~ Pj'. The set C, is called the critical region, and the type-I and
type-11 probabilities of error associated with the test are, respectively,

an, =Py (Cy) and B, = PI(C).

Clearly we wish to have «,, and 3, both decrease to zero as fast as possible. In
particular, we may ask how quickly (, can decay to zero if we require that «,
decays exponentially at some rate 7 > 0, i.e., a,, ~ 27"". In statistical terminology,
we are asking for the fastest rate of decay of the type-II error probability among
all tests with significance level o, < 277",

Formally, we want to identify the best exponent of the error probability
Bn = 1—= Pp(C,) among all C,, with P} (C,) < 27"". Taking P = P, M =
Py, R = —r, and allowing no distortion, this question reduces exactly to the
our earlier sphere-covering problem. [To be precise, allowing no distortion means
we take D = 0 with p(z,y) being Hamming distortion as in (2).] Accordingly,
R(D; P,M) = R(0; Py, Py) turns out to be equal to —H (P || Fp), and from the the-
orem we immediately obtain the following classical result of Hoeffding. Also see
[2, Thms. 9, 10] and [3, Ex.12, p.43] for versions of this result in the information
theory literature.

Corollary 1. (Hypothesis Testing) [5] Let {C,} be an arbitrary sequence of
tests with associated error probabilities a,, and f3,, as above. Among all tests with

. 1
limsup — log o, < —r
n—oo M
for some r € (0, H(Py||P)), the fastest achievable asymptotic rate of decay of 3,
is .

lim ——1lo = inf H(Q||P).

n—oo n gﬁn Q:H(Q||Po)<r (QH 1)

As mentioned earlier, the decision regions C,, in the Corollary are randomly

generated. Therefore, although they do achieve asymptotically optimal perfor-
mance, they are not optimal for finite n in the Neyman-Pearson sense.

Ezxample 2: Lossy Data Compression.

Suppose data X = (X7, Xa,...,X,) is generated by a stationary, memo-
ryless source, i.e., XJ* are i.i.d. (independent and identically distributed) random
variables, with distribution P on the finite alphabet A. The objective of lossy
data compression is to find efficient representations y* € A™ for all source strings
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zt € A™. In particular, suppose that the maximum amount of distortion p, (z}, y7")
that we are willing to tolerate between a source string x7 and its representation
Yy} is some D > 0, where {p,} is a family of single-letter distortion measures as
in (1). Then the problem is to find an efficient codebook C,, C A™ such that for
most of the source strings z7 there is a y" € C), with p,(27,y}) < D.

Here, an efficient codebook C,, is one that leads to good compression, i.e.,
one whose size is as small as possible. And, on the other hand, we also want
to make sure that the probability that a source string cannot be represented by
any element of C,, with distortion D or less, is small. Taking M to be counting
measure (M (z) =1 for all z € A), the mass M"(C,,) of the codebook becomes its
size |Cy, |, and the problem of finding a good codebook reduces to the earlier sphere-
covering question. Accordingly, the rate-function R(D; P; M) reduces to Shannon’s
rate-distortion function R(D; P), and the theorem yields Marton’s error-exponents
result.

Corollary 2. (Lossy Data Compression) [7] Let D > 0 be a given distortion
level, and R(D; P) < R < log|A|. Among all sequences of codebooks {C,,} with
asymptotic rate no greater than R bits/symbol,

1
lim sup - log|Ch| < R,

n—00

the fastest achievable asymptotic rate of decay of the probability of error is

1 . o
Jim = log |1 = P*([Cnl) _Q:R<%l;fQ>>RH(Q”P)'

Ezxample 3: Measure Concentration on the Binary Cube.

Consider again the setting of the example described in the introduction. There
we asked for the best achievable error exponent among all D-coverings {C),} with
probability no greater that ~ e¢™"". Taking M = P in the theorem, we obtain
the answer to this question in the following Corollary. Let H.(P||Q) denote the
relative entropy expressed in nats rather than bits, H.(P|Q) = (log, 2)H(P||Q),
and similarly write R.(D; P, M) = (log, 2)R(D; P, M).

Corollary 3. (Converse Measure Concentration) Let D > 0 and 0 < r <
—Rc(D; P, P). Among all D-coverings {C),} with

1
lim sup - log, P"(Cy) < —r,

n—od
the fastest achievable asymptotic rate of decay of the probability of error is
1
lim ——log, [1 = P"([Cul,)| = €"(r, D),
n—od n
where

“(r,D) = inf H.(Q|P).
EmD)= i g, H(@IP)
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Although the exponent £*(r, D) above is not as explicit as (%2 — ) in (3),
it is easy to evaluate numerically and it contains much more useful information.
For example, Figure 1 shows the graph of £*(r, D) as a function of r, for D =
0.3, P being the Bernoulli(0.4 ) distribution, and r running over the range r €
(0.6109, 0.6393) where £*(r, D) is nontrivial (i.e., finite and nonzero). In this case,

(3) is only useful when (%2 — r) is positive, i.e., for r € (0,0.045): There (3)
says that, whenever P"(C,,) =~ e ™" for some r € (0,0.045), the probability of
error decays exponentially fast. But in that range, and in fact for all » up to
~ 0.61, we have £*(r, D) = oo so there are sets C,, with P"(C},) = e ™" and
probability of error decaying super-exponentially fast. Moreover, in the range r €
(0.6109,0.6393) where £*(r, D) is nontrivial, we can choose C,, with P"(C),) =~

e~ and Pr{“error”} ~ ¢~"& (nD),

(infinity) -
0.06} i
0.04F *
0.02F i
0 ! ! ! .
0.59 0.6 0.61 0.62 0.63 0.64 0.65

FIGURE 1. Graph of the error-exponent function £*(r, D) in
Corollary 3 as a function of r, for D = 0.3 and P(1) = 0.4.
Note that £*(r, D) is infinite for all r € (0,0.6109), and that it is
zero for r > 0.6393.
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Finally we remark that the “extremal” sets in the classical isoperimetric
problem, namely, those C,, that achieve equality in (3), are very different from
the extremal sets in Corollary 3. The former are well-known to be Hamming balls
B, centered at 0" = (0,0,...,0) € A", B, = {z] : pp(z},0™) < 6} (see [4][8,
p. 174][10, Sec. 2.3]), while the latter are collections of strings y7 randomly selected
from a collection of suitable strings.

Extensions.

1. Different alphabets. Although we assumed from the start that p(x,y) is
a distortion measure on A x A, it is straightforward to generalize the main result
as well as the subsequent discussion above to the case when p(z,y) is a distor-
tion measure between the “source” alphabet A and a different (“reproduction”)
alphabet /1, as long as it is still the case that for each a € A there exists a b € A
with p(a,b) = 0. The necessary modifications to the statements and proofs follow
exactly as in the case of Marton’s result; see [3, Sec. 2.4].

2. Strong converse. As mentioned earlier, the theorem is stated only for values
of R above R(D; P, M) since we trivially have F(R, D) = 0 for R < R(D; P, M);
see [6, Thm. 1]. In that range it is also possible to prove a “strong converse”
showing that, not only E(R, D) = 0, but in fact the probability of error goes to
one exponentially fast with a certain rate.

3. Proof

First we prove the converse part of the theorem, i.e., that E(R, D) < E*(R, D).

Note that the rate-function R(D; P, M) defined in (4) is jointly uniformly
continuous in D > 0 and P; this can be easily seen to be the case by arguing along
the lines of the proof of [3, Lemma 2.2.2] for the rate-distortion function R(D; P).
Now let {C,} be an arbitrary D-covering with {C,} € C(R). Take any Q on A
such that R(D;Q, M) > R (if no such @ exists then the claim is trivially true),
and let 6 > 0 be such that R(D;Q,M) > R+ ¢. Since {C,} € C(R), we have
log M™(C,) < n(R + §/2), eventually, and by the continuity of R(D;Q, M) in D
we can find an 1 > 0 small enough so that

log M™(Cy) < n(R+6/2) <nR(D+n;Q, M), eventually.
Therefore, by the “weak converse” in [6, Thm. 1], we must also have
(5) Ege | win pu(X7'90)| > D+, eventually,
yreln

where X7 denote n i.i.d. random variables with distribution Q™. Writing

A
Zn = min pul(XT 1),
the bound in equation (5) implies that

D +n < E|Z,) < DQ"(Zy < D) + Dunax Q"(Z, > D)
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ie.,
n

“(Z, D _.
Q(n> )>Dmax_D

From Stein’s lemma [3, Cor. 1.1.2] we also know that, for any P and any
€ >0,

1
lim — log [ min
n—oo N B, CA":Qn(By)>e

P(5)| = ~D(@IP),
Taking € = 7/(Dmax — D) > 0 and applying this to the events

B, 2 {Z, > D} = [C,]°

yields
liminf 1 log {1 — P"([Cn]p)} > —-D(Q||P),

n—oo 1

and since this holds for all @ with R(D;Q, M) > R, we obtain

lim sup — — log [1-Pr(C.],)] < B°(R.D).
n—00 n
Finally, since the sequence {C,} € C(R) was arbitrary, this establishes that
E(R,D) < E*(R, D), as required.
To prove the direct part of the theorem, asserting the existence of a D-covering
{C,} € C(R) such that

lim inf ! log |1 — P"([Cy],)| > E*(R, D),
n— o0 n
we follow the same outline as in the proof of the direct part of [3, Thm. 2.4.5].
Using the joint uniform continuity of R(D; P, M) in D > 0 and P, the proof of
the type-covering lemma [3, Lemma 2.4.1] can be generalized to the corresponding
statement with R(D; P, M) in place of R(D; P). The main new observation here is
that, since all the elements y7* of the covering set B are drawn from the set T[’{,*]
of Y*-typical strings, where (X*,Y™*) achieve the infimum in the definition (4) of
R(D; P, M), their mass M™(y}]') satisfies

1
- log M"™(y7') < Ellog M(Y™)] + 0n

> log M (y)l :

Y

where the sequence 6, — 0 as n — oc.

Finally, following the same steps as in the proof of the direct part of [3,
Thm. 2.4.5] and replacing R(D; P) by R(D; P, M), we obtain the existence of
a D-covering {C,} € C(R) with error exponent no worse than E*(R,D) — 4,
where 6 > 0 is an arbitrary constant. This proves that E(R, D) > E*(R, D), and
completes the proof. m]
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