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Abstract

We compare the long-term, steady-state performance of a variant
of the standard Dynamic Alternative Routing (DAR) technique com-
monly used in telephone and ATM networks, to the performance of
a path-selection algorithm based on the “balanced-allocation” princi-
ple [3, 16]; we refer to this new algorithm as the Balanced Dynamic
Alternative Routing (BDAR) algorithm. While DAR checks alterna-
tive routes sequentially until available bandwidth is found, the BDAR
algorithm compares and chooses the best among a small number of
alternatives.

We show that, at the expense of a minor increase in routing over-
head, the BDAR algorithm gives a substantial improvement in network
performance, in terms both of network congestion and of bandwidth
requirement.
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1 Introduction

Fast, high bandwidth, circuit switching telecommunications systems such
as ATM and telephone networks often employ a limited path-selection algo-
rithm in order to fully utilize the network resources while minimizing routing
overhead. Typically, between each pair of nodes in the network there is a
dedicated bandwidth for communication, namely, no more than a certain
fixed number of calls can be simultaneously active between each pair of
nodes. This dedicated bandwidth is chosen in order to satisfy the demand
for communication between these stations. Only when this bandwidth is
exhausted the admission control protocol tries to find an alternative route
through intermediate nodes. To minimize overhead and routing delays, the
protocol checks just a small number of alternative routes; if there are no
free connections available on any of these alternatives, then the call or com-
munication request is rejected. Implementations that use this technique
include the Dynamic Alternate Routing (DAR) algorithm used by British
Telecom [7], and AT&T’s Dynamic Nonhierarchical Routing (DNHR) algo-
rithm [1].

A common feature in these (and other) currently implemented protocols
is the sequential examination of alternative routes. Only when the algorithm
examines a route and finds it cannot be used an alternative one is examined.
The criteria for when a route can or should be used, and the method in which
the alternative route is selected have been the subject of extensive research,
in particular, in the context of British Telecom’s DAR algorithm [6, 7, 8];
see Kelly [9] for an extensive survey.

Dynamic routing can be viewed as a special case of the on-line load bal-
ancing problem, where the load (incoming calls or requests) may be assigned
to one or more servers (network links), and jobs (communication requests)
can be scheduled only on specific subsets (paths) of the set of servers, as
defined by the network topology. In this paper we study the impact of re-
placing the sequential searches of the routing algorithm by a version of the
balanced-allocation principle. The basic idea is as follows: Instead of sequen-
tially choosing alternative options (in our case, paths) until a desirable one
is found, in the balanced-allocation regime the algorithm randomly chooses
and examines a number of possible options, and assigns the job at hand to
the option that appears to be the best at the time of the assignment.

A number of papers have demonstrated the advantage of the application
of the balanced-allocation principle [2, 3, 4, 16, 17] for standard load bal-
ancing problems, where jobs require only one server and can be executed by
any server in the system. This research has shown that balanced allocations
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usually produce a very substantial improvement in performance, at the cost
of a small increase in overhead: Since several alternatives are examined even
when the first alternative would have been satisfactory, the complexity of
the routing algorithm is increased. But, as has been shown before and as
we also demonstrate in the present context, examining even a very small
number of alternative (thus increasing overhead by a very small amount)
can offer great performance improvements.

The idea of employing the balanced-allocation principle to the problem
of dynamic network routing as described in this paper was first explored
in [11]. In this context the goal is to reduce system congestion and min-
imize the blocking probability, that is, the probability that a call request
is rejected. The main difficulty in applying and analyzing the balanced-
allocation principle in a network setting is in handling the dependencies
imposed by the topology of the network. The preliminary results in [11]
show that the advantage of balanced allocations is so significant that it
holds even in the presence of a set of dependencies.

The performance of a routing protocol can be analyzed in a static (fi-
nite, discrete time) or in a dynamic (infinite, continuous time) setting. The
static case has been extensively studied in [10], extending and strengthen-
ing the results in [11]. In this paper we consider the continuous-time case.
The analysis of the continuous-time case suggested in [11] was based on ap-
plying Kurtz’s density-dependent jump Markov chain technique, following
the supermarket model analysis in [16, 17]. However, since the argument
in [11] is incomplete, we present here a different analysis. Our results con-
cern the long-term behavior of large networks employing a routing protocol
based on the balanced-allocation principle. The main tools we employ are a
Lyapunov drift criterion used to establish the existence of a stationary dis-
tribution for the BDAR routing protocol, and a continuous-time extension
of the technique in [3], used to analyze the stationary behavior of a network.

Balanced allocations have also been studied in the context of queueing
networks, where analogous results (under different asymptotic regimes than
the ones in this paper) are obtained in [12, 16, 20, 21], among others.

1.1 Model Description and Main Results

In the types of networks considered in this paper, a logical link or “band-
width” is reserved between each pair of stations, and an alternative route
is only used when this logical link has already been exhausted. We model
such a network as the complete undirected graph G = (V,E) with |V | = n
vertices (stations) and |E| = N =

(n
2

)
edges (links).
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The input to the system is a sequence of call requests, which are assumed
to arrive at Poisson times: New calls onto each link (i.e., between each pair of
nodes) arrive according to a Poisson process with rate λ, all arrival streams
being independent. Similarly, the duration of a call is independent of all
arrival times all other call durations, and it is exponentially distributed
with mean 1/µ.

The routing algorithm has to process the calls on-line, that is, the t-th
request is either assigned a path or rejected before the algorithm receives
the (t + 1)-th request. Once a call is assigned to a path, that path cannot
be changed throughout the duration of the call. We assume that each edge
has a capacity of 3B circuits (one circuit can transmit one call), where 1/3
of this capacity is reserved for direct calls (namely, it will only be used for
call requests between these two nodes), and the rest is reserved for being
used as part of an alternative route between two stations.

As in most of our results we consider large networks with a number n of
nodes growing to infinity, we will also assume that the capacity parameter B
may vary with n. Specifically, we assume that B = Bn is nondecreasing in n,
and we also allow the possibility B = ∞.

The goal in designing an efficient routing protocol is to assign routes to
the maximum possible number of call requests without violating the capacity
constraints on the edges. We will compare the performance of the following
two protocols:

The d-Dynamic Alternative Routing (DAR) algorithm works as follows.
When a new call request arrives, it tries to route the call through the direct
(one-link) path. If there are no available circuits on the direct path, then
the algorithm sequentially chooses alternative routes of length two, without
replacement, and assigns the call to the first available path. Up to d such
choices are made, and they are made at random. If no possible path is
found, then the request is rejected.

The d-Balanced Dynamic Alternative Routing (BDAR) algorithm also
assigns a new call request to the direct path if there are available circuits. If
not, then the algorithm chooses d length-two alternative paths at random,
with replacement, and compares the maximum load among them (in the
exact sense that we describe later). Then the call is assigned to the path
with the minimum load. As before, if there is no path with free circuits
among these d choices, then the call is rejected.

Consider some link e between two stations u and v, with a capacity of 3B
circuits, from which B are reserved for routing calls between u and v. The
rest of the 2B circuits, which is reserved for alternative paths, is further
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split into two. B circuits are reserved for routing calls with u as one of
the endpoint station communicating, and B circuits for calls with v as the
endpoint.

The model described so far, together with one of the two protocols above,
induces a continuous-time stochastic process describing the behavior of the
network. As we show below, this system (for fixed n) converges to a sta-
tionary regime exponentially fast. For our purposes, the main performance
measure is the minimum required bandwidth that ensures that, under the
stationary distribution of the network, the blocking probability (i.e., the
probability that a new call is rejected) is appropriately small.

In this paper our main goal is to compare the performance of the DAR
algorithm with that of BDAR. It is clear that BDAR’s performance is dom-
inated by its performance on alternative (length-two) routes. Therefore,
in order to simplify the analysis, we consider a variant of BDAR, called
BDAR*, which ignores the direct links and services each call only via an
alternative route, making use only of the 2B alternative connections of each
edge. In other words, we assume that each edge has capacity 2B and all of
it is dedicated to alternative routes. We show that even though the BDAR*
policy ignores the direct links, it has superior performance compared to
DAR.

The following result illustrates this superiority by exhibiting explicit
asymptotic bounds on their bandwidth requirements. It follows from the
results in Theorems 5 and 6.

Theorem 1. Assume that all the edges have a capacity of 3B circuits.
Under the DAR policy, capacity

B = Ω

(√
lnn

d ln lnn

)
, as n→ ∞

is necessary to ensure that under the stationary distributions, a new call is
not lost with high probability.

On the other hand if we perform the BDAR* policy (thus ignoring the B
direct links), capacity

B =
ln lnn
ln d

+ o

(
ln lnn
ln d

)
, as n→ ∞

suffices to ensure that under the stationary distribution a new call is not lost
with high probability.
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In the above result and throughout the paper, we say that a limiting
statement holds “with high probability” (abbreviated “whp.”) if it holds
with probability that is at least 1 − 1/nc for some constant c > 0. For
example, when we say that a random variable “Xn = O(lnn) whp.” we
mean that there are positive constants C and c such that Pr(Xn ≤ C lnn) ≥
1 − 1/nc for all n large enough. Similarly, “Xn = o(lnn) whp.” means that
there is a c > 0 such that, for all ε > 0, Pr(Xn ≤ ε lnn) ≥ 1 − 1/nc for all
n large enough.

Note that the result of Theorem 1 is exactly analogous to that obtained
in [10] in the discrete-time case.

2 Analysis of Balanced-Allocation Routing

This section presents the main contribution of this paper, a steady state
analysis of the performance of the BDAR* routing algorithm. The network
is a complete graph with n nodes and N =

(n
2

)
undirected edges. New calls

arrive at Poisson times with rate λ and their durations are exponentially dis-
tributed with mean 1/µ, as described earlier. As it turns out, an important
parameter in the analysis of the network load is the ratio ρ = λ/µ.

2.1 Unbounded capacities

We first analyze the maximum load on edges when the algorithm is used on
a network with unbounded edge capacity, corresponding to B = Bn = ∞.
Consider some ordering of the edges, and let

Γ = {(e, e′) : e, e′ ∈ E, e < e′, e adjacent to e′},

be the set of edge pairs that are adjacent to each other. For every pair of
adjacent edges (e, e′) ∈ Γ, let ce,e′(t) denote the number of calls at time t
that use edges e and e′ (recall that every alternate path consists of two
links). Then the above model induces a continuous-time Markov process
Φ = {Φ(t) : t ≥ 0}, evolving on the state space

Σ = N
N(n−2),

where
Φ(t) = (ce,e′(t))(e,e′)∈Γ.
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For an edge e = (u, v) we define also �e,v(t) to be the number of calls at
time t that use edge e and have node v as an endpoint:

�e,v(t) =
∑

e′: (e′,e)∈Γ, v not
adjacent to e′

ce′,e(t) +
∑

e′: (e,e′)∈Γ, v not
adjacent to e′

ce,e′(t),

and we also define �e(t) to be its combined load at time t, that is,

�e(t) = �e,v(t) + �e,u(t)

=
∑

e′:(e′,e)∈Γ

ce′,e(t) +
∑

e′:(e,e′)∈Γ

ce,e′(t).

Assume that a call arrives at time t on edge e = (u, v). Algorithm
BDAR* selects d nodes uniformly at random with replacement, from V \{u, v}.
Name these nodes {wi} for i = 1, 2, . . . , d, and the corresponding edges
eui = (u,wi) and evi = (wi, v). The call is then assigned to the path (eui , e

v
i )

corresponding to the minimum i satisfying

max{�eu
i ,u(t−), �ev

i ,v(t−)} = min
j=1,2,...,d

max{�eu
j ,u(t−), �ev

j ,v(t−)}.

In the above expression, and throughout the entire paper, f(t−) denotes the
left-side limit of function f at t, namely, limδ↓0 f(t− δ). Note that instead
of selecting the minimum i satisfying the above expression, we can choose
any Markovian rule. Finally, we define

Mv
≥i(t) =

∑
e:e incident to v

(�e,v(t) − i+ 1)+

Lv
≥i(t) =

∑
e:e incident to v

1{�e,v(t)≥i},

where 1E denotes the indicator function of event E , and x+ = max{x, 0}. In
words, Lv

≥i(t) counts the number of edges incident to node v with at least i
calls with v as an endpoint at time t, and Mv

≥i(t) counts the excess above i
at time t on edges incident to v, of calls that have node v as an endpoint.
Trivially we have Lv

≥i(t) ≤Mv
≥i(t).

As we show next, this Markov process has a stationary distribution πn

to which it converges exponentially fast, regardless of the initial state of the
network. We then prove a high probability bound on the maximum load on
any edge in the system under this stationary distribution.

The process Φ evolves on Σ according to the model described above.
This evolution is formalized by the transition semigroup {P t : t ≥ 0} of Φ,
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where P t(c, c′) is simply the probability that Φ is in state c′ at time t given
that it was in state c at time zero, P t(c, c′) = Pr(Φ(t) = c′ |Φ(0) = c).

Our first result shows that Φ has a stationary (or invariant) distribution
to which it converges exponentially fast. It is stated in terms of the “Lya-
punov function” V (x), which is defined as 1+(total number of active calls
in state x ∈ Σ):

V (x) = V ({ce,e′ : (e, e′) ∈ Γ}) = 1 +
∑

(e,e′)∈Γ

ce,e′ , (1)

where ce,e′ counts the number of calls in state x that use edges e and e′.

Theorem 2. Assume that the BDAR* algorithm is used on a network with n
nodes, each of which has infinite capacity. Then the induced Markov process
Φ has a unique invariant distribution πn, and, moreover, for any initial state
x ∈ Σ, the distribution of Φ(t) converges to πn exponentially fast, namely,
there is a constant γ < 1, such that

sup
y
|P t(x, y) − πn(y)| ≤ V (x)γt, for all t ≥ 0 and all x ∈ Σ.

Proof. Our proof uses the Lyapunov drift criterion for the exponential er-
godicity of a continuous time Markov process [13, 5, 14]. To state our main
tool we recall a few definitions, adapted to our case of countable state space.

The generator A of the process Φ is a linear operator on functions F :
Σ → R defined by

AF (x) = lim
h↓0

E(F (Φ(h)) |Φ(0) = x) − F (x)
h

whenever the above limit exists for all x ∈ Σ. The explosion time of Φ is
defined as

ζ = sup
n
Jn,

where
J0 = 0, Jn+1 = inf{t ≥ Jn : Φ(t) �= Φ(Jn)}

(J0, J1, . . . are the jump times of the Markov process). We say Φ is nonex-
plosive if Pr(ζ = ∞|Φ(0) = x) = 1 for any starting state x.

The following theorem follows from the more general results in [14, 5],
specialized to the case of a continuous-time Markov process with a countable
state space.
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Theorem 3. [14, 5] Suppose a Markov process evolving on a countable state
space that is nonexplosive, irreducible (with respect to the counting measure
on Σ) and aperiodic. If there exists a finite set C ⊂ Σ, constants b < ∞,
β > 0 and a function V : Σ → [1,∞), such that,

AV (x) ≤ −βV (x) + b1C(x) x ∈ Σ , (2)

then the process is positive recurrent with some invariant probability measure
π, and there exist constants γ < 1, D <∞ such that

sup
y
|P t(x, y) − π(y)| ≤ DV (x)γt, for all t ≥ 0 and all x ∈ Σ.

It is easy to verify that the process is ψ-irreducible and aperiodic, with
the maximal aperiodicity measure ψ being the counting measure on Σ.1 Also
the process is nonexplosive since the number of new calls in a given interval
has a Poisson distribution with a finite mean, therefore the probability of
infinite number of transitions in a finite interval is 0.

To show that the drift criterion (2) can be satisfied, we use the Lya-
punov function V (x)=1+(total number of active calls in state x) defined in
Equation (1) above.

In order to compute AV we notice that when a new call enters the
system, it increases the loads of two edges by 1, hence the value of V by
1, and when a call terminates the value of V decreases by 1. Therefore,
new calls are generated with rate λN and calls are terminated at a rate
µ(V (x) − 1). The probability that in a time interval h there are 2 or more
new calls or terminations of calls is o(h).2 Using these observations we can
compute AV :

AV (x) = lim
h↓0

V (x) + λN · h− µ · (V (x) − 1) · h+ o(h) − V (x)
h

= λN − µV (x) + µ.

We define

C =
{
x ∈ Σ : V (x) <

2λ
µ
N + 2

}
,

which is clearly finite, and in order to analyze the drift condition we distin-
guish between the following two cases:

1This follows along the lines of the arguments in Chapters 4 and 5 of [15]. In particular,
note that all sets {y} ∈ Σ are ν1-small and P 1(x, y) > 0 for all x, y ∈ Σ so that in fact Φ
is irreducible and strongly aperiodic.

2Here and in the next expression with the notation o(h) we mean that f is o(h) if

limh→0
f(h)

h
= 0. In the rest of the text o(n) has the usual meaning.
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• x ∈ C:

AV (x) = λN − µV (x) + µ ≤ −µV (x)
2

+ λN + µ

• x ∈ Σ\C:

AV (x) = λN − µV (x) + µ ≤ µV (x)
2

− µV (x) = −µV (x)
2

.

Thus, the drift condition holds for β = µ/2 and b = λN + µ.

Having shown the existence of an invariant limiting distribution πn, we
now analyze the maximum load on the edges under this distribution.

Theorem 4. Consider a network with n nodes, and let πn be the invariant
distribution of the induced Markov process under the BDAR* policy with
unbounded edge capacity. Under πn, the maximum number of calls in any
edge is bounded whp. by

2 ln lnn
ln d

+ o

(
ln lnn
ln d

)
, as n→ ∞.

Proof. In order to compute the maximum edge load under the stationary
distribution, we start observing the system at some time point and study
its transient behavior; we then use the results to deduce the properties
of the invariant distribution. In particular, we show that there exists a
T = O

(
n ln ln n

ln d

)
, such that for any state of the system at time τ−T that has

sufficiently large probability (we will be more precise later), whp. at time τ
the maximum number of calls on any edge is

2 ln lnn
ln d

+ o

(
ln lnn
ln d

)
.

The high level idea is the following. We partition the time period T into
ln lnn
lnd + o

(
ln ln n
ln d

)
periods of length O(n). Roughly, we argue that at the end

of the i-th period, whp., for each node, the number of incident edges with
load greater than i is at most 2αi. The αi’s decrease doubly exponentially,
so at the end of the last period we will be able to deduce that there are no
edges with more than ln lnn

lnd load towards each direction, whp. The challenge
is to handle the dependencies, as the number of calls during some period
depends on the number of calls of the previous periods. We now proceed
with the details.
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We first define the sequence of values {αi}, which decrease doubly expo-
nentially:

ακ =
(n− 2)ρ

κ
where κ = eρ · d−1

√
2ρ · 4d

αi =
2ρ · 4d · αd

i−1

(n− 2)d−1
for i > κ and αi−1 ≥ 1

4
· d

√
25
ρ

(n− 2)d−1 · lnn

αi∗ = 50 ln n i∗ is the smallest i for which αi−1 <
1
4
· d

√
25
ρ

(n− 2)d−1 · lnn
αi∗+1 = 10

Solving the recurrence we get for κ ≤ i < i∗,

αi+κ = (2ρ · 4d)
di−1
d−1 ·

(ρ
κ

)di

(n − 2) =
1

d−1
√

2ρ · 4d
·
[
ρ · d−1

√
2ρ · 4d

κ

]di

(n− 2)

=
1

d−1
√

2ρ · 4d
· n− 2
edi ,

(3)

and since i∗ is the smallest integer satisfying

αi∗−1 <
1
4
· d

√
25
ρ

(n− 2)d−1 · lnn,

we get after some calculations

i∗ =
ln lnn
ln d

+ o

(
ln lnn
ln d

)
.

Next we define T = n(i∗−κ+3) = O
(
n ln lnn

lnd

)
and an increasing sequence

of points in time: let tκ−1 = τ − T and for i ≥ κ, ti = ti−1 + n, so that the
end of the last period, ti∗+2, is the current time τ .

Let E denote the event “at time tκ−1 = τ−T there are at most (1+ε)Nρ
calls in the system,” for some constant ε > 0, and let

Ci = {∀v ∈ V, t ∈ [ti, τ ] : Lv
≥i(t) ≤ 2αi}.

We show by induction that for i = κ, . . . , i∗ + 1

Pr(Ci | E) ≤ 2i
n2
. (4)

Initially we prove the following lemma, which we use throughout the proof.

10



Lemma 1. Let A and B be events such that Pr(B) ≥ 1 − n−c for some
constant c, for n large enough. Then for any constant ζ > 0 we have

Pr(A |B) ≤ (1 + ζ)Pr(A),

for sufficiently large n.

Proof. We have

Pr(A |B) =
Pr(A,B)
Pr(B)

≤ Pr(A)
Pr(B)

≤ 1
1 − n−c

Pr(A) ≤ (1 + ζ)Pr(A).

Now we examine the base case of Relation 4. Let Cv
i be the event

Cv
i = {∀t ∈ [ti, τ ] : Lv

≥i(t) ≤ 2αi},
and J v be the event “no more than 2λ(n − 1)T calls are generated with
node v as an endpoint during [τ −T, τ ].” We need to bound the probability
of J v, so we prove the following lemma.

Lemma 2. For sufficiently large n, we have

Pr(J v | E) < n−4.

Proof. Node v has n − 1 incident links, on each of which new calls are
generated according to a Poisson process with rate λ, independently of the
other links. Therefore, the number of new calls with v as an endpoint
during T steps is distributed according to a Poisson(λ(n − 1)T ). So by
applying a Chernoff bound for the Poisson distribution3 we get that

Pr(J v) ≤ e−λ(n−1)T (eλ(n − 1)T )2λ(n−1)T

(2λ(n − 1)T )2λ(n−1)T

= e−λ(n−1)T+2λ(n−1)T+2λ(n−1)T ln(λ(n−1)T )−2λ(n−1)T ln(2λ(n−1)T )

= e−λ(n−1)T (2 ln 2−1)

< n−4,

for sufficiently large n. To complete the proof, we use the fact that the
number of new calls during [τ − T, τ ] is independent of event E .

3Assume that X is distributed according to a Poisson distribution with rate λ. Then
(see for example [19, page 416])

Pr(X ≥ i) ≤ e−λ(eλ)i

ii
.
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We now have

Pr(Cκ | E) ≤ nPr(Cv
κ | E)

≤ nPr(Cv
κ | J v, E) + nPr(J v | E).

(5)

By Lemma 2, the second term is bounded by n ·n−4, and we now bound
the first term. Conditioning on J v, we have at most 2λ(n − 1)T new jobs
during [tκ−1, τ ], say at times {t̂j , j = 1, 2, . . . }. Define also t̂0 = tκ. Then

Pr(Cv
κ | J v, E) ≤

2λ(n−1)T∑
j=0
t̂j≥tκ

Pr(Lv
≥κ(t̂j) > 2ακ | J v, E). (6)

Let us compute the number of calls in the system with node v as an
endpoint at time t̂j . These calls can be separated to calls that were in
the system before time tκ−1 (let x be their number), and calls that arrived
after tκ−1 (say y).

In order to compute x, we can notice that each of the x calls remains
in the system until time t̂j with probability e−µ(t̂j−tκ−1). Since t̂j ≥ tκ =
tκ−1 + n, the probability that a such call survives is bounded by e−nµ. So,

Pr(x > 0 | E) ≤ (1 + ε)Nρe−nµ <
1
n7
,

and we conclude that conditioning on event E , x = 0 with probability at
least 1 − n−7, for sufficiently large n.

In order to bound y, the number of calls arrived after time point tκ−1,
we prove the following lemma.

Lemma 3. Consider a period Π and a given node v. The number of calls
having node v as an endpoint that were generated during Π and are in the
system at the end of Π is distributed according to a Poisson distribution with
rate bounded by ρ(n− 1), independently of E.

Proof. Let ∆ be the duration of the period Π, and let Y be a random variable
counting the number of calls that were generated during Π, had v as an
endpoint and are in the system at the end of Π. Node v has n− 1 incident
links on each of which new calls are generated with rate λ, independently
of each other. The duration of each call is exponentially distributed with
parameter µ. This process is an infinite server Poisson queue [18, page 18] in
which the number of calls at the end of the period is distributed according
to a Poisson distribution with rate

λ(n− 1)∆p
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where

p =
∫ ∆

0

e−µ(∆−x)

∆
dx =

1
µ∆

(
1 − e−µ∆

) ≤ 1
µ∆

.

So Y is distributed according to a Poisson distribution with rate at most
λ(n − 1)/µ = ρ(n − 1). Notice also that since Y does not depend on any
event prior of Π, the distribution of Y conditioned on E is still Poisson with
the same rate.

By applying this lemma, we have that y is bounded by a Poisson(ρ(n−
1)). So, from the Chernoff bound, we conclude that y ≤ 2ρ(n − 2) with
probability at least 1 − n−7, for sufficiently large n.

The probability that at time t̂j there are more than 2ρ(n− 2) calls with
node v as an endpoint is bounded by

Pr(x > 0 ∨ y > 2ρ(n− 2) | E),

which, using the previous facts, can be bounded by 2n−7.
Notice now that if node v has fewer than 2ρ(n− 2) calls at time t̂j , then

Lv
≥κ(t̂j) ≤ 2ρ(n− 2)

κ
= 2ακ.

Hence, for all t̂j ≥ tκ we have

Pr(Lv
≥κ(t̂j) > 2ακ | E) ≤ 2n−7,

and by making use of Lemma 1, we get

Pr(Lv
≥κ(t̂j) > 2ακ | J v, E) ≤ 2 · 2n−7 ≤ 4n−7. (7)

Combining Relations (5), (6), (7), Lemma 2, and the fact that T =
O(n2), we get that

Pr(Cκ | E) ≤ n · (2λ(n − 1) + 1) · n2 · 4n−7 + n · n−4 ≤ n−2,

for large enough n, which completes the base case (i = κ) of Relation (4).
For the induction step we assume that

Pr(Ci−1 | E) ≤ 2(i − 1)
n2

. (8)

Assume now that at time t a new call enters the system. Then the call is
routed through an edge with (new) load greater or equal to i if in all the d
alternative paths at least one of the two edges had load at least i− 1. More
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concretely, let G denote the event “a new call is generated at time t with v
as an endpoint,” and let u be the other endpoint and (wj , j = 1, . . . , d) be
the intermediate nodes of the queried alternative paths.

We then have

Pr(Mv
≥i(t) > Mv

≥i(t−) |Φ(t−),G)
≤ Pr(Mv

≥i(t) > Mv
≥i(t−) ∨Mu

≥i(t) > Mu
≥i(t−) |Φ(t−),G)

≤ Pr(∀j ∈ {1, . . . , d} : �(v,wj)(t−) ≥ i− 1 ∨ �(u,wj)(t−) ≥ i− 1 |Φ(t−),G)

≤
(
Lv
≥i−1(t−) + Lu

≥i−1(t−)
n− 2

)d

,

therefore,

Pr(Mv
≥i(t) > Mv

≥i(t−) | E ,G,∀z ∈ V : Lz
≥i−1(t−) ≤ 2αi−1)

≤
(

2 · 2αi−1

n− 2

)d �
= qi. (9)

Notice that for i = κ+ 1, . . . , i∗ we have

qi ≤ αi

2ρ(n − 2)
. (10)

We now define
Fi = {∀v ∈ V : Mv

≥i(ti) < αi}

and prove Lemmata 4 and 6, that allow us to conclude that Pr(Ci | E) ≤ 2i
n2

,

and establish Relation (4).

Lemma 4. Under the inductive hypothesis

Pr(Fi | Ci−1, E) ≤ n−2.

Proof. First we apply Lemma 3 for the interval Π = [tκ−1, ti−1] and we
deduce that the number of calls with v as an endpoint that were generated
during Π and remained until time ti−1 follows a Poisson distribution with
mean bounded by ρ(n − 1). Hence, with a Chernoff bound, we get that
with probability at least 1 − n−3 there are at most 2ρ(n − 1) such calls. If
we condition on event E , then the total number of calls in the system at
time ti−1 with node v as an endpoint is at most

(1 + ε)Nρ+ 2ρ(n − 1)

14



with probability at least 1−n3. The probability that each of these calls stays
in the system until time ti is bounded by e−nµ (recall that ti − ti−1 = n),
so the probability, conditioned on the event E , that some of the calls that
were in the system up to time ti−1 and had v as an endpoint, stays in the
system until time ti is bounded by

n−3 + [(1 + ε)Nρ+ 2ρ(n − 1)]e−nµ < 2n−3

for sufficiently large n. By applying Lemma 1 and making use of the in-
duction hypothesis (Equation (8)) we deduce that the probability that some
of those calls stay in the system conditioned on the events Ci−1 and E is
bounded by 4n−3. To analyze the number of the remaining calls that were
created during the period [ti−1, ti], we make use of Lemma 5 which completes
the proof of this one.

Lemma 5. Consider a period Π and a given node v. Conditioning on Ci−1

and E, the number of new calls that increased Mv
≥i when they were generated,

and remained until the end of Π is less than αi, with probability at least
1 − n−7.

Proof. Let Y be the number of calls that were generated during Π, had v as
an endpoint and are in the system at the end of Π. By applying Lemma 3
we get that conditioned on E , Y follows a Poisson distribution with rate
bounded by ρ(n− 1).

Let now Z be the number of calls in the system at the end of Π whose
arrival resulted in the increase of Mv

≥i. Denote with Hk the event {Y = k}
and let {t̃j}k

j=1 be the time of the arrival of the j-th call that exists in the
system at the end of Π. We can then write

Pr(Z > r | E , Ci−1) =
∑

k

Pr(Z > r | E , Ci−1,Hk) ·Pr(Hk | E , Ci−1).

We now fix k and we consider the random variables {Zj}k
j=1, where

Zj = 1 if Mv
≥i(t̃j) > Mv

≥i(t̃j−)
and ∀z ∈ V : Lz

≥i−1(t̃j−) ≤ 2αi−1.

From Relation (9) we get that

Pr(Zj = 1 | E) ≤ qi,
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so, since (induction hypothesis (4)) Pr(Ci−1 | E) ≥ 1 − 2(i − 1)/n2, we can
apply Lemma 1 and get

Pr(Zj = 1 | E , Ci−1) ≤ (1 + ζ)qi, (11)

for some constant ζ (say 0.05), independently of all the previous Zj . Notice
now that conditioning on events Ci−1, and Hk, we have

Z =
k∑

j=1

Zj.

Hence

Pr(Z > r | E , Ci−1) =
∑

k

Pr


 k∑

j=1

Zj > r

∣∣∣∣∣ E , Ci−1,Hk


 ·Pr(Hk | E , Ci−1).

Again by Lemma 1, we get

Pr(Hk | E , Ci−1) ≤ 2Pr(Hk | E).

So by the fact that the distribution of Y conditioned on E is Poisson with
rate at most ρ(n− 1), and by Relation (11), we can finally conclude that

Pr(Z > r | E , Ci−1) ≤ 2
∑

k

Pr(Binomial(k, (1 + ζ)qi) > r) ·Pr(Poisson(ρ(n− 1)) = k)

≤ 2Pr(Poisson((1 + ζ)ρqi(n− 1)) > r).

We now distinguish the following two cases:

Case 1: For i ≤ i∗, by using Equation (10) we get that (1 + ζ)ρqi(n − 1) ≤
1.1αi/2 for ζ = 0.05, and by applying the Chernoff bound, we get that
the probability that the number of calls is higher than αi is bounded
by

2
e−

1.1αi
2 (e1.1αi

2 )αi

ααi
i

≤ 2e−0.147αi .

For i < i∗ we have from the definition of αi

2e−0.147αi = 2e
−0.147

2ρ·4dαd
i−1

(n−2)d−1

≤ 2e
−0.147

2ρ·4d 1
4d

25
ρ (n−2)d−1 lnn

(n−2)d−1

= 2e−0.147·50 lnn

= o

(
1
n7

)
,
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while for i = i∗ we get

e−0.147αi = 2e−0.147·50 lnn

= o

(
1
n7

)
.

Case 2: For i = i∗ + 1, using Equation (9) we get that the parameter of the
Poisson distribution is

(1+ζ)ρqi(n−1) ≤ (1+ζ)
4d · αd

i−1

(n − 2)d
ρ(n−1) = (1+ζ)

(4 · 50 ln n)d

(n − 2)d
ρ(n−1),

and with the Chernoff bound we get that the probability that the
number of calls is higher than αi∗+1 = 10 is o(1/n7).

Lemma 6. Under the inductive hypothesis

Pr(Ci | Fi, Ci−1, E) ≤ n−2.

Proof. First we compute

Pr(Fi, Ci−1 | E) = Pr(Ci−1 | E) · Pr(Fi | Ci−1, E)

≥
(

1 − i− 1
n2

)
·
(

1 − 1
n2

)
,

by Relation (8) and Lemma 4, so

Pr(Fi, Ci−1 | E) ≥ 1 − 1
n
.

So, by Lemma 1 we get

Pr(J v | Fi, Ci−1, E) ≤ 2Pr(J v | E)

and finally, by using Lemma 2, we conclude

Pr(J v | Fi, Ci−1, E) ≤ 2n−4. (12)

Hence, we can get

Pr(Ci | Fi, Ci−1, E) ≤ n · Pr(Cv
i | Fi, Ci−1, E)

≤ n · Pr(Cv
i | J v,Fi, Ci−1, E) + n ·Pr(J v | Fi, Ci−1, E)

(13)
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We have a bound for the second term, so we want to bound the first one.
For that, we write (recall that {t̂j} are the times of the arrivals of the new
calls with node v as an endpoint)

Pr(Cv
i | J v,Fi, Ci−1, E) ≤ Pr(∃t̃ ∈ [ti, τ ] : Lv

≥i(t̃) > 2αi | J v,Fi, Ci−1, E)
≤ Pr(∃t̃ ∈ [ti, τ ] : Mv

≥i(t̃) > 2αi | J v,Fi, Ci−1, E)

≤
2λ(n−1)T∑

j=1
t̂j≥ti

Pr(Mv
≥i(t̂j) > 2αi | J v,Fi, Ci−1, E)

(14)

Conditioning on event Fi, we have Mv
≥i(t̂j) > 2αi only if Mv

≥i increased by
at least αi during the interval [ti, t̂j ]. Therefore, by applying Lemmata 1, 4,
and 5, we get

Pr(Mv
≥i(t̂j) > 2αi | Fi, Ci−1, E) <

2
n7
.

we combine this result with Relation (12) and Lemma 1 and we have

Pr(Mv
≥i(t̂j) > 2αi | J v,Fi, Ci−1, E) <

4
n7
. (15)

If we combine Relations (13), (14), and (15), we get the result.

Having proven Lemmata 4 and 6 we can now show that Pr(Ci | E) ≤
2i/n2:

Pr(Ci | E) = Pr(Ci | Ci−1, E) ·Pr(Ci−1, E)

+ Pr(Ci | Ci−1, E) · Pr(Ci−1, E)

≤ Pr(Ci | Ci−1, E) +
2(i − 1)
n2

= Pr(Ci | Ci−1,Fi, E) · Pr(Fi | Ci−1, E)

+ Pr(Ci | Ci−1,Fi, E) · Pr(Fi | Ci−1, E) +
2(i− 1)
n2

≤ 1
n2

+
1
n2

+
2(i− 1)
n2

=
2i
n2

We have therefore shown that the event Ci∗+1 holds whp., which implies
that for every node v, after the (i∗+1)-th period, there will be no more than
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2αi∗+1 = 20 incident edges with load more than i∗ + 1. We will now bound
the probability that in the next interval ([ti∗+1, ti∗+2], the last interval of T )
there will be an incident edge of v with load more than i∗ + 3, conditioning
on the event Ci∗+1. For this to happen, we must have at least 2 new calls
to be routed using one of the 20 highly loaded edges. The probability that
two specific new calls use these edges is at most(

20 + 20
n− 2

)2d

= O

(
1
n4

)
, (16)

since d ≥ 2. The expected number of calls with v as an endpoint is λ(n−1)n,
since (n−1) links are connected to v in each of which new calls are generated
with rate λ, while the total length of the interval is n. This implies that
whp. there will be O(n2) new calls in the whole period. By combining this
fact with Equation (16), applying Lemma 1, and summing for all the nodes
we conclude that at the end of period T there will be no edges with load
more than i∗ + 3 whp.

We now consider the stationary distribution πn, and show that under it

Pr
(
�max ≤ ln lnn

ln d
+ o

(
ln lnn
ln d

))
= 1 − o

(
1
n

)
.

where
�max = max

e=(u,v)∈E
max{�e,u, �e,v}

denotes the maximum number of calls on any edge, in the stationary regime.
(�e,u is the number of calls with u as an endpoint routed through edge e in the
stationary regime.) Recall that Φ(t) is the state of the system at time t, and
consider the following partitioning of the state space, Σ, of the underlying
Markov process:

• S1 =
{
x : V (x) ≤ (1 + ε)Nρ, �max ≤ ln lnn

ln d
+ o

(
ln lnn
ln d

)}
,

that is, states in which the total number of calls in the system is at
most (1 + ε)Nρ, and the maximum load is at most ln ln n

ln d + o
(

ln ln n
ln d

)
.

• S2 =
{
x : V (x) ≤ (1 + ε)Nρ, �max >

ln lnn
ln d

+ Ω
(

ln lnn
ln d

)}
,

that is, states in which the total number of calls in the system is at
most (1+ε)Nρ, and the maximum load is higher than ln ln n

ln d +Ω
(

ln lnn
lnd

)
.

19



• S3 = {x : V (x) > (1 + ε)Nρ} ,
that is, states in which the total number of calls in the system is higher
than (1 + ε)Nρ.

We have shown that

Pr(Φ(τ) ∈ S2 |Φ(τ − T ) ∈ S1 ∪ S2) = o

(
1
n

)
and we can easily show that

Pr(Φ(τ) ∈ S3 |Φ(τ − T ) ∈ S1 ∪ S2) = o

(
1
n

)
Moreover, in the stationary distribution the number of calls in the system
has a Poisson distribution with parameter Nρ. Hence by using the Chernoff
bound ∑

i∈S3

(πn)i = o

(
1
n

)

Then we have ∑
i∈S2∪S3

(πn)i =
∑
i∈S2

(πn)i +
∑
i∈S3

(πn)i

The second term is o(1/n), while for the first one∑
i∈S2

(πn)i =
∑

j

Pr(Φ(τ) ∈ S2 |Φ(τ − T ) = j) · (πn)j

=
∑

j∈S1∪S2

Pr(Φ(τ) ∈ S2 |Φ(τ − T ) = j) · (πn)j

+
∑
j∈S3

Pr(Φ(τ) ∈ S2 |Φ(τ − T ) = j) · (πn)j

=
∑

j∈S1∪S2

(πn)j · o
(

1
n

)
+ o

(
1
n

)
= o

(
1
n

)

Therefore ∑
i∈S2∪S3

(πn)i = o

(
1
n

)

which implies that ∑
i∈S1

(πn)i = 1 − o

(
1
n

)

and completes the proof of Theorem 4.
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2.2 Bounded Capacities

In this section we use the analysis of the BDAR* algorithm for unbounded
capacities to compute the bandwidth requirement B (< ∞) that ensures
that a new call is not lost whp.

Theorem 5. Assume that all the edges have capacity 3B circuits, which can
be a function of n. Then if we perform the BDAR* policy, capacity

B =
ln lnn
ln d

+ o

(
ln lnn
ln d

)
, as n→ ∞

ensures that under the stationary distribution a new call is not lost whp.

Proof. The result for finite B follows from the proof of Theorem 4, which
concerns unbounded capacity. Since the Markov process is finite and ape-
riodic there exists a stationary distribution. Moreover, the analysis for the
unbounded case still holds for finite B as long as B ≤ i∗ + 1.

A new call between nodes u and v will be rejected if in all the d choices,
either the edge incident to node u is used in routing i∗ + 1 = ln lnn/ ln d+
o(ln lnn/ ln d) calls with node u as an endpoint, or the edge incident to
node v is used in routing i∗ + 1 calls with node v as an endpoint. With
probability at least 1− o(n−1), for each node, the number of incident edges
with load at least i∗ + 1 is at most 2αi∗+1. Therefore the probability for a
call to be rejected is no more than

o

(
1
n

)
+
(

2αi∗+1 + 2αi∗+1

n− 2

)d

= o

(
1
n

)

since αi∗+1 = 10.

3 Lower Bound on the Performance of the DAR
Algorithm

To demonstrate the advantage of the balanced-allocation method we prove
here a lower bound on the maximum channel load when requests are routed
using the DAR algorithm. This bound shows an exponential gap between
the capacity required by the balanced-allocation algorithm and the capacity
required by the standard DAR algorithm for the same stream of inputs.

Recall from Section 1.1 that we consider a complete network of n nodes
and N =

(n
2

)
edges. Requests for connections between a given pair arrive

according to a Poisson process with rate λ, the duration of a connection has
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an exponential distribution with expectation 1/µ. Edges have capacities
of 3B circuits, B are used for direct connections, and the remaining 2B are
used for alternative routes with the capacity reserved for alternative routes
furthermore split into two, so that B circuits are used for alternate paths
with one node of the edge as an endpoint and B for calls with the other
node as an endpoint.

Theorem 6. Assume that all the edges have capacity 3B circuits, which can
be a function of n. Then if we perform the DAR policy, capacity

B = Ω

(√
lnn

d ln lnn

)
, as n→ ∞

is necessary to ensure that under the stationary distribution a new call is
not lost whp.

Proof. We will compute a lower bound on the probability P = P (B), that
a request arriving at an arbitrary time t is rejected.

We consider first the probability P1 that the new call is not routed
through the direct link. The process of routing calls through the direct
link is an M/M/B/B loss system (Poisson arrival, exponential service time,
B servers—corresponding to the B direct links, up to B customers in the
system—corresponding to up to B calls that can be routed through the
direct links). Applying Erlang’s loss formula (e.g., [9]),

P1 =
(λ/µ)B

B!

(
B∑

i=0

(λ/µ)B

i!

)−1

≥ e−λ/µ (λ/µ)B

B!
. (17)

Since the arrival is Poisson, it is independent of the state of the queue
at the time of arrival, hence the probability that a given pair (v,w) had a
request during interval Π = [t− 1, t] that could not be routed by the direct
link is

Palternate = (1 − e−λ)P1.

Next we lower bound the probability P2, that a request, generated at
time t, and failed to use the direct link e = (v, z), fails also to be routed by an
alternative path (i.e., all the d attempts to find a non-saturated alternative
path do not succeed). In fact we will restrict our discussion to the probability
that in each of these d routes the first edge (v, ui) on the alternate route
was saturated for alternate paths with endpoint v (Figure 1).

In order to estimate the probability P2, we compute a lower bound for
the probability P (ei, t), that an arbitrary edge ei = (v, ui) was carrying, at
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Figure 1: A call is generated at by edge e at time t.

time t, B alternate paths with endpoint v (and thus blocked for any other
alternate path starting at v). For this we study the evolution of the system
during period Π = [t− 1, t]. We will lower bound the probability P (ei, t) by
the probability that at some point during the interval Π the edge carried B
alternate paths with endpoint v, and that none of these paths terminated
during this interval.

The second requirement is easy to evaluate. Since the calls have expo-
nential duration with parameter µ, every call that is on edge ei at time t−1,
or that is created during Π, will stay in the system until time t with prob-
ability at least e−µ, and all the calls do not terminate in that interval with
probability at least e−µB .

Let Ci be the event “during the interval Π, B different pairs (v,w1), . . . , (v,wB)
try to use edge ei = (v, ui) as a first choice for alternate path, and for each
of these pairs the edge (ui, wj) (the second edge in the alternate path) was
not blocked.” Then,

P (ei, t) ≥ Pr(Ci)e−µB .

The difficulty in computing Pr(Ci) is bounding the probability that the
second edge on the alternate path is not blocked. The following lemma
simplifies this computation.

Lemma 7. Let D be the event “there is a vertex u �= v that during the
interval Π was the center node for more than c1d

(
λ
µ + λ

)
(n − 1) alternate
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paths with no endpoint in v.” Then,

Pr(D) ≤ e−c2n,

for some constants c1, c2 > 0.

Proof. There are
(
n−1

2

)
possible pairs of vertices not containing v. For each

pair the number of active calls at time t−1 is bounded by a Poisson random
variable with parameter λ/µ. The number of new calls between a given pair
during the interval is bounded by Poisson random variable with parameter
λ.

Fix a vertex u. The probability that a given call uses u as a center vertex
in an alternate path is bounded by d/(n − 2), independently of other calls.
Thus, the number of alternating paths through u is stochastically dominated
by a Poisson distribution with parameter λ

(
1 + 1

µ

)
dn−1

2 . Applying the
Chernoff bound for u and summing over all n− 1 vertices gives the lemma.

There can be no more than B alternate paths with endpoint v that use
a vertex w as a center node. Thus, conditioning on the event D, no more
than c1d

(
λ
µ + λ

)
(n − 1) + B alternate paths use any vertex w �= v during

the interval Π, and thus, during any time in that interval no more than
1
B

(
c1d
(

λ
µ + λ

)
(n− 1) +B

)
edges adjacent to w are blocked for alternating

paths using w as a center node.
Focusing back on the edge ei = (v, ui), there is a set Wi of vertices such

that the edge from ui to w ∈ Wi is not blocked for an alternate path with
endpoints v and w ∈ Wi throughout the interval Π. Conditioned on D, we
have |Wi| ≥ αn for some constant α > 0.

We can compute

Pr(Ci | D) ≥
(
αn

B

)(
Palternate · 1

n− 2

)B (
1 − Palternate · 1

n− 2

)αn−B

= e−O(B2 ln B−B2 ln(λ/µ)). (18)

The above follows from the fact that there are at least αn edges (v,w), w ∈
Wi, that can create a call during Π with probability Palternate, and select
as a first choice for alternate path the path v − ui − w. Note that in the
computation we consider no more than one communication request for each
pair of vertices (v,w), w ∈Wi, in order to avoid further dependencies.
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Consider now a request that arrives at time t with endpoint v. The
probability that the direct link for that request is blocked is P1.

For simplicity, label the d alternative paths that the call generated at
time t (between nodes v and z) as v−ui−z, i = 1, 2, . . . , d, and let Ei be the
event “the i-th alternative path (v − ui − z) is blocked.” We want to lower
bound the probability P2 = Pr(E1, E2, . . . , Ed) that the request generated at
time t that failed to use the direct link, fails to use all the d alternate paths.
Then

P2 ≥ Pr(C1, C2, . . . , Cd) · e−dµB

≥ Pr(C1, C2, . . . , Cd | D) · Pr(D) · e−dµB

≥ (1 − e−c2n) · e−dµB ·
d∏

j=1

Pr(Cj | D, C1, . . . , Cj−1).

Let us try to compute Pr(Cj | D, C1, . . . , Cj−1). Let

Ui = {w ∈Wi : v − ui − w became an active alternate path during Π}
and

Wi = Wi−1\Ui−1 = W1\
i−1⋃
j=1

Uj.

Notice that if the calls (v−ui−w) do not terminate during Π, we have |Ui| =
B, so as long as dB = o(n), conditioned on D, there exists a constant α such
that |Wi| ≥ αn, for all i = 1, . . . , d. We can repeat the calculation of (18)
and get that

Pr(Cj | D, C1, . . . , Cj−1) = e−O(B2 lnB−B2 ln(λ/µ)),

since a call in Wi is generated, fails to use a direct route, and uses the
alternate path v − ui − z, independently of events C1, . . . , Ci−1. So, finally,
we get that

P2 = e−O(dB2 lnB−dB2 ln(λ/µ)).

Putting everything together we conclude that the probability that the
call generated at time t is rejected is at least

P1 · P2 ≥ e−O(dB2 ln B−dB2 ln(λ/µ)).

Therefore, in order to guarantee that a new call is not lost whp., the
bandwidth must be at least

B = Ω

(√
lnn

d ln lnn

)
.
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