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Abstract — We consider the problem of lossy data compression for data arranged on two-
dimensional arrays (such as images), or more generally on higher-dimensional arrays (such as
video sequences). Several of the most commonly used algorithms are based on pattern matching:
Given a distortion level D and a block of data to be compressed, the encoder first finds a D-
close match of this block into some database, and then describes the data by describing the
position of the match. We consider two idealized versions of this scenario. In the first one, the
database is taken to be a collection of independent realizations of the same size and from the
same distribution as the original data. In the second, the database is assumed to be a single
long realization from the same source as the data. We show that the compression rate achieved
(in either version) is no worse than R(D/2) bits per symbol, where R(D) is the rate-distortion
function. This is proved under the assumptions that (1) the data is generated by a Gibbs
distribution, and (2) the distortion measure is a metric, generalizing the corresponding one-
dimensional bound of Steinberg and Gutman. Using recent large deviations results by Dembo
and Kontoyiannis and by Chi, we are able to give short proofs for the present results.
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1 Introduction

Many types of data encountered in applications are naturally arranged on multi-dimensional
arrays. For example, an m-by-n pixel image can be represented as a two-dimensional array
{Xij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n}, with each Xij denoting the pixel-value at location (i, j).
More generally, we consider collections of data Xu indexed by points u = (u1, u2, . . . , ud) ∈ Zd,
and arranged in a d-dimensional array {Xu ; u ∈ U} for some, usually rectangular, subset
U ⊂ Zd. Typical examples of applications involving multi-dimensional data include image and
video processing, geostatistics, and statistical mechanics.

An important problem in applications is to develop efficient lossy data compression algo-
rithms. For example, a huge amount of effort has been devoted to image and video compression
over the past decade; see [13][4][25] and the references therein. One of the most commonly
used ingredients of compression algorithms used in practice is the idea of pattern matching.
Roughly speaking, this means that, instead of being described directly, certain parts of the data
are described by pointers to locations where approximate versions of the data occur. In image
compression, for example, an 8-by-8 block of an image to be compressed may be described by a
pointer to an earlier part of the image (that has already been encoded) where an approximate
version of the current 8-by-8 block appears. Similarly, in video compression it is common to
describe an entire object in a given frame by describing the position of an approximate version
of that same object in a previous frame.

The wide use of pattern matching in lossy compression is partly due to its intrinsic simplicity,
and also has been motivated by the great practical success of the family of Lempel-Ziv algo-
rithms for lossless compression. Constantinescu and Storer [6][7] have introduced extensions of
the Lempel-Ziv algorithm for lossy image compression, and, more recently, Szpankowski and his
collaborators [2][1] have developed numerous practical algorithms for image and video compres-
sion, producing extensive experimental results that demonstrate their performance. Moreover,
one of the important features of many video compression algorithms is motion-compensation,
an idea often implemented using pattern matching; see [25] and the texts [13][22] for details.

Despite the practical significance of pattern matching-based compression algorithms for
multi-dimensional data, little has been rigorously established regarding their performance.1

Thus motivated, we consider two idealized versions of this problem and we analyze the com-
pression performance of two simple compression algorithms that we hope capture some of the
essential elements of the corresponding practical schemes.

Suppose that data is generated by a random field X = {Xu ; u ∈ Zd} on the integer lattice
Zd, taking values in a finite alphabet A. Let C(n) denote the d-dimensional integer cube with
side length n,

C(n)
4
= {u = (u1, u2, . . . , ud) ∈ Zd ; 1 ≤ uj ≤ n, for all j}. (1)

Given a block of data xn 4
= {xu ; u ∈ C(n)} generated by X, the encoder’s task is to find

1As far as we know there are no rigorous results, with the exception of [1] where a theoretical analysis is given
but only for the corresponding one-dimensional model.
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an efficient approximate representation of xn by a different block yn ∈ And
. More precisely, we

require that the distortion ρn(xn, yn) between xn and its representation yn does not exceed some
predetermined limit D (assuming that ρn is a single-letter distortion measure – see Section 2 for
precise definitions).

Next we describe two idealized compression algorithms based on pattern matching.

I. Shannon Codebook. Suppose that the data Xn = {Xu ; u ∈ C(n)} from X is to
be compressed with distortion D or less, and let Pn denote the distribution of Xn. We
assume that a codebook

Y n(i) , i ≥ 1

consisting of independent and identically distributed (i.i.d.) realizations from the distribu-
tion Pn is available to both the encoder and decoder. Let Wn denote the position i of the
first element Y n(i) of the codebook that matches Xn with distortion D or less,

Wn = inf{i ≥ 1 : ρn(Xn, Y n(i)) ≤ D}, (2)

with the convention that Wn =∞ if no such match exists. Then the encoder can describe
Xn to the decoder with distortion no more than D by describing the position Wn of
this match. This is a simple variation on Shannon’s original random code [23], with the
important difference that the codebook distribution is taken to be the same as the source
distribution.

II. Fixed Database Coding. Next we describe a d-dimensional lossy version of the Fixed-
Database Lempel-Ziv (FDLZ) algorithm; cf. [27]. Here we assume that an infinitely long

database Y∞ 4
= {Yu ; uj ≥ 1 for all j} is available to both the encoder and decoder,

and that Y∞ has the same distribution as the source. Given Xn to be compressed, the
encoder looks for the smallest index m such that Xn appears with distortion D or less as
a (contiguous) sub-block of Y m. Let W ′

n denote the smallest such m,

W ′
n = inf{m ≥ n : ρn(Xn, Ỹ n) ≤ D for some Ỹ n ⊂c Y

m}, (3)

where Ỹ n ⊂c Y
m means that Ỹ n is a contiguous sub-block of Y m, and again with the

convention that W ′
n = ∞ if no such m exists. The encoder can then give a D-accurate

description of Xn to the decoder by describing the coordinates of the location where the
above match first occurs.

Because the database distribution in I and II above is taken to be the source distribution,
we naturally expect that the compression performance of both of these schemes will be strictly
suboptimal: In order to achieve the rate-distortion function of X, the database should have the
optimal reproduction distribution; see [28] and [9] for extensive discussions on this issue.

Our main result (Theorem 1 in Section 3) states that, although suboptimal, the compression
rate achieved by either of these schemes in no worse than R(D/2) bits per symbol. That is, to
achieve the optimal rate we may need to allow for twice as much distortion, but no more. This
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result generalizes the corresponding bound of Steinberg and Gutman [24] for one-dimensional
sources. Theorem 1 is shown to hold for the class of all ergodic Gibbs fields – see Section 3 for
the precise definition, and a discussion of this class of random fields. The proof we give here
is completely different from that of the one-dimensional result in [24], and it uses recent large
deviations results from [5] and [9].

For comparison, we recall that Steinberg and Gutman’s result [24] was stated in the case
of a coding scenario similar to II above, except that matches were found in non-overlapping
blocks si that their waiting time W ′′

n was the smallest m such that ρn(Xn
1 , Y

mn+n
mn+1 ) ≤ D. In

[24] it is shown that, assuming the source is “totally ergodic,” the asymptotic rate achieved in
this scenario is bounded above by R(D/2), in probability. Methods similar to those used in
[24] can also be applied in the case of random fields to obtain corresponding bounds, but our
purpose here is to show that conceptually simple proofs can be given if one relies on the recent
large deviations results of [5] and [9], following the trend of a lot of the recent literature in
rate-distortion theory; see [28][30][9] and the references therein.

In Section 2 we collect several background results about lossy data compression of random
fields, and Section 3 contains our main result described above, together with its proof.

2 Lossy Data Compression on Random Fields

As the data source, we consider a random field X = {Xu ; u ∈ Zd} indexed by points u =
(u1, u2, . . . , ud) on the integer lattice Zd, d ≥ 2, and taking values in a finite set, the source
alphabet A. For any subset U ⊂ Zd of size |U |, we write XU for the block of random variables
{Xu ; u ∈ U}, and similarly xU = {xu ; u ∈ U} ∈ A|U | for a realization of XU . We denote the
distribution of XU by PU , and write P for the measure describing the distribution of the entire
random field X. For v, w ∈ Zd with vi ≤ wi for all i, we let [v, w] denote the rectangle

[v, w]
4
= {u ∈ Zd : vi ≤ ui ≤ wi for all i},

and we write C(n) for the d-dimensional cube C(n) = [(1, . . . , 1), (n, . . . , n)] defined as in (1).
Let Â denote a finite reproduction alphabet. Given ρ : A × Â → [0,∞), for every finite

U ⊂ Zd the single-letter distortion measure ρU on A|U | × Â|U | is defined by

ρU (xU , yU )
4
=

1
|U |

∑
u∈U

ρ(xu, yu), xU ∈ A|U |, yU ∈ Â|U |. (4)

For simplicity we write Xn = XC(n) and ρn(xn, yn) = ρC(n)(xC(n), yC(n)). We also make the
usual assumption that for all x ∈ A there is a y ∈ Â such that ρ(x, y) = 0.

For every rectangle U ⊂ Zd, the rate-distortion function of XU , is defined, for all D ≥ 0, as

RU (D)
4
= inf I(XU ;YU ),

where I(XU ;YU ) denotes the mutual information (in bits) between XU and YU , and the infimum
is taken over all jointly distributed (XU , YU ) with values in A|U |× Â|U |, such that XU ∼ PU and
E[ρU (XU , YU )] ≤ D.
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Let {Un} be an increasing sequence of rectangles in Zd such that Un → Zd, i.e., Un ⊂ Un+1

for all n, and ∪n≥1Un = Zd. The rate-distortion function of X is defined by

R(D) = lim
n→∞

1
|Un|

RUn(D)

whenever this limit exists and is independent of the choice of the sequence {Un}.
For U ⊂ Zd and v ∈ Zd we let v + U denote the translate

v + U
4
= {v + U : u ∈ U}.

The random field X is said to be stationary if XU and Xv+U have the same distribution, for all
v ∈ Zd and all finite U ⊂ Zd. The rate-distortion function exists for all stationary random fields,
as can be easily seen by an application of the multi-dimensional subadditivity lemma; see, e.g.,
[29, Lemma 5.2.1]. A direct proof is also given in [16].

The operational significance of R(D) comes from the fact that it characterizes the best achiev-
able performance of lossy compression algorithms. Specifically, we consider the general class of
variable-rate/variable-distortion codes. Such a code for XU is defined as a triplet (BU , qU , ψU )
where:

(a) BU is subset of Â|U |, called the codebook;

(b) qU : A|U | → BU is the quantizer;

(c) ψU : BU → {0, 1}∗ is a uniquely decodable representation of the elements of BU by finite-
length binary strings.

The compression performance of such a code (BU , qU , ψU ) is described by its length function

`U (xU ) = length of [ψU (qU (xU ))] bits.

Coding Theorem. Let X be a stationary random field.
(⇐) For any finite rectangle U ⊂ Zd and any code (BU , qU , ψU ) with expected distortion

D = E[ρU (XU , qU (XU ))], we have

E[`U (XU )] ≥ RU (D) ≥ |U |R(D) bits.

(⇒) If X is also ergodic,2 then for every D > 0 and any ε > 0 there is a sequence of codes
(BC(n), qC(n), ψC(n)) on And

, n ≥ 1, such that

E[ρn(Xn, qC(n)(X
n))]→ D as n→∞, (5)

2Ergodicity here means that the group of translations {Tu ; u ∈ Zd} acts on (AZd

,AZd

, P) in an ergodic

manner, where A is the set of subsets of A and AZd

denotes the product σ-field generated by finite-dimensional
cylinders; see [17] for details.
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and also
`C(n)(xn)

nd
≤ R(D) + ε, bits per symbol,

for all xn ∈ And
and all n.

The proof of this theorem is a rather technical but straightforward extension of the corre-
sponding one-dimensional argument. A proof outline is given in [16], where a somewhat stronger
statement is given for the direct coding theorem: Instead of (5), it is shown that

Pr{ρn(Xn, qC(n)(X
n)) > D} → 0, as n→∞.

Although the existence of R(D) and the validity of the coding theorem have been implicitly
assumed for a while by various authors, it appears that these statements have not explicitly
appeared in the literature before. As far as we know, the most complete account of what is
known in this area is summarized by Berger, Shen and Ye in [3] and in Ye and Berger’s recent
monograph [29].

3 Pattern Matching: Main Results

In this section we state and prove our main result described in the introduction.
From now on we assume that the source and reproduction alphabets are the same, A = Â,

and that the distortion measure ρ is a metric on A, i.e., ρ(x, y) = ρ(y, x), it satisfies the triangle
inequality, and ρ(x, y) = 0 if and only if x = y. This of course implies that, for each finite
U ⊂ Zd, the corresponding single-letter distortion measure ρU defined in (4) is also a metric.

For the data source X = {Xu ; u ∈ Zd} we assume that it is a stationary and ergodic Gibbs
field. The class of Gibbs fields contains most of the random field models used in applications,
including essentially all Markov random fields [14, Section 2.2]. See [14][26] for examples of
applications in the areas of image processing and image analysis. Moreover, Gibbs fields are, in
a certain sense, “dense” within the class of all stationary random fields [18].

Formally, Gibbs fields are defined in terms of stationary, summable, interaction potentials.
An interaction potential is a collection of functions {HU}, where, for each finite U ⊂ Zd, HU is
a function HU : A|U | → R. The interaction potential {HU} is called stationary if, for all U and
all v ∈ Zd, the functions HU and Hv+U coincide on A|U |. And {HU} is called summable if the
following series is finite, ∑

U :0∈U

max
xU∈A|U|

|HU (xU )| <∞,

where the sum is taken over all finite subsets U of Zd containing the origin 0 = (0, . . . , 0). The
random field X is a Gibbs field with interaction potential {HU}, if for every finite U ⊂ Zd the
conditional distribution PU |Uc of XU given XUc can be written as

PU |Uc(xU |xUc) = Z−1 exp

− ∑
V : V ∩U 6=∅

HV (xV )

 ,
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for any configuration (xu ; u ∈ Zd) ∈ AZd
, where the sum is over all finite V ⊂ Zd such that

V ∩ U 6= ∅, and Z = Z(U, xUc) is simply the normalization constant. The existence of Gibbs
fields for a given interaction potential {HU} is well-known; see, e.g., [12][14].

Next we recall the two pattern-matching compression algorithms from the introduction.
Suppose that X is a stationary and ergodic Gibbs field with distribution P on the alphabet A.
We write, as before, Xn for the block of random variables {Xu ; u ∈ C(n)}, and let Pn denote
the distribution of Xn.

I. Shannon Codebook. Suppose that an infinite codebook {Y n(i) ; i ≥ 1} is available to
both the encoder and decoder, where the Y n(i) are i.i.d. blocks of random variables, each
with distribution Pn, and generated independently from Xn. Given the data Xn to be
compressed, and given a distortion level D, the encoder searches the codebook for the first
Y n(i) that matches Xn with distortion D or less. Let Wn denote the position of this first
match (see (2)). Then the encoder describes Xn to the decoder (with distortion no more
than D) by describing Wn; the decoder can read Y n(Wn) from the database, obtaining a
D-close version of Xn. This description can be given using

`n(Xn) = logWn +O(log logWn) bits, (6)

cf. [11], where ‘log’ denotes the logarithm taken to base 2.

II. Fixed Database Coding. Alternatively, suppose that an infinitely long database Y∞ =
{Yu ; uj ≥ 1 for all j} is available to the encoder and decoder, where Y∞ has the same
distribution as the source X and is independent of X. Here, the encoder looks for the
side-length m of the smallest cube C(m) such that Y m = YC(m) contains a D-close version
of Xn as a contiguous sub-block. Let W ′

n denote this smallest m (see (3)). The encoder
then describes the position (within C(m)) where Xn appears with distortion no greater
than D. Since each coordinate of this position is no larger than W ′

n, this can be done using

`′n(Xn) = d logW ′
n +O(log logW ′

n) bits. (7)

Our main result, given next, states that in both of these versions the asymptotic compression
rate achieved is no worse that R(D/2) bits per symbol. Recall that the rate-distortion function
R(D) is equal to zero for D greater than

Dmax
4
= min

y∈A
E[ρ(X0, y)].
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Theorem 1. Let X be a stationary ergodic Gibbs field. For any D ∈ (0, Dmax) the compression
rate achieved by algorithm I satisfies

lim sup
n→∞

1
nd

`n(Xn) ≤ R(D/2) bits per symbol, (8)

with probability one. If, in addition, the φ-mixing coefficients of X satisfy

lim sup
n→∞

∞∑
j=1

(j + 1)d−1φnd(jn) <∞,

then for any D ∈ (0, Dmax) the compression rate achieved by algorithm II also satisfies

lim sup
n→∞

1
nd

`′n(Xn) ≤ R(D/2) bits per symbol, (9)

with probability one.

Recall that the (non-uniform) φ-mixing coefficients of a stationary random field X with
distribution P are defined by

φ`(k) = sup{|P(B|A)− P(B)| : B ∈ σ(XU ), A ∈ σ(XV ), P(A) > 0
|U | ≤ `, |V | <∞, d(U, V ) ≥ k}

where σ(XU ) denotes the σ-field generated by the random variables XU , U ⊂ Zd, and the
distance d(U, V ) between two subsets of Zd is defined as

d(U, V )
4
= inf

u∈U, v∈V
max
1≤i≤d

|ui − vi|.

Note that the mixing condition (9) is satisfied by a large class of Gibbs fields. For example,
it can be easily verified that (9) holds for all Markov random fields that satisfy Dobrushin’s
uniqueness condition; see [12, Section 8.2] or [14, Section 2.1], and also [10] or [20, Chapter 6]
for more detailed discussions of the coefficients φ`(k) and their properties.

3.1 Proof

First we consider the algorithm of version I. The result in (8) will be proved in two steps.

Step 1. We will show that

`n(Xn) = ndR(P,P, D) + o(nd) a.s., (10)

where, for any two stationary measures P and Q on AZd
(equipped with the natural product

σ-field), the rate-function R(P,Q, D) is defined as in [9] by

R(P,Q, D) = lim
n→∞

Rn(Pn, Qn, D),
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whenever this limit exists, where Qn denote the C(n)-marginals of Q on And
, and the rate-

functions Rn(Pn, Qn, D) are defined as

Rn(Pn, Qn, D) = inf
Vn

1
nd
H(Vn‖Pn ×Qn),

with H(Vn‖V ′
n) denoting the relative entropy (in bits) between Vn and V ′

n, and with the infimum
taken over all joint distributions Vn on And × And

such that the first marginal of Vn is Pn and
EVn [ρn(Xn, Y n)] ≤ D.

From (6) we observe that, asymptotically, the main contribution to `n(Xn) will come from
the term (logWn). Repeating the “strong approximation” argument as in the proof of [15,
Theorem 8] or [28, Lemma 1], we easily get that

logWn = − logPn(B(Xn, D)) +O(log n) a.s., (11)

where B(Xn, D) denotes the distortion-ball of radius D around Xn,

B(xn, D) =
{
yn ∈ And

: ρn(xn, yn) ≤ D
}
, xn ∈ AZd

.

Further, [5, Theorem 1] states that for almost every infinite realization (xu ; u ∈ Zd) of X, the
random variables {ρn(xn, Y n)} satisfy a large deviations principle with a deterministic, convex
rate-function. In view of this, [9, Theorem 25] implies that

− logPn(B(Xn, D)) = ndR(P,P, D) + o(nd) a.s. (12)

Now let us check that D lies in the range within which we can indeed apply this theorem: Since
we assumed that D < Dmax, and Dmax is obviously bounded above by EP1×P1 [ρ(X,Y )], we
have D < EP1×P1 [ρ(X,Y )]. Moreover, taking Vn(xn, yn) = Pn(xn)I{yn=xn} in the definition of
Rn(Pn, Pn, D) yields

Rn(Pn, Pn, D) ≤ 1
nd
H(Xn)

where H(Xn) denotes the entropy of Xn (in bits). This implies that, for all n, we have
Rn(Pn, Pn, D) ≤ log |A|, and, therefore, if we define

D
(∞)
min

4
= inf{D ≥ 0 : sup

n≥1
Rn(Pn, Pn, D) <∞},

then D
(∞)
min = 0, and so we have D > D

(∞)
min . We have thus shown that

D
(∞)
min < D < EP1×P1 [ρ(X,Y )],

so that [9, Theorem 25] applies.
Combining (11) with (12) and substituting in (6), yields (10) and completes the proof of

step 1.

8



Step 2. Here we show that

R(P,P, D) ≤ R(D/2). (13)

Letting Rn(D/2) denote RC(n)(D/2), an easy calculation (see equation (13) in [15]) shows that,
for all n ≥ 1,

Rn(D/2) = inf
Qn

Rn(Pn, Qn, D/2)

where the infimum is over all probability measures Qn on And
. This infimum is always achieved,

although not necessarily uniquely, by some Q∗n, so that Rn(D/2) = Rn(Pn, Q
∗
n, D/2); cf. [15,

Proposition 2]. Moreover, by [15, Proposition 1] the infimum in the definition of Rn(Pn, Q
∗
n, D/2)

is achieved by some V ∗
n such that

EV ∗
n

[ρn(Xn, Y n)] ≤ D/2, (14)

so that, in fact,
Rn(D/2) = H(V ∗

n ‖Pn ×Q∗n).

Therefore, in order to prove (13) it suffices to show that, for any n,

Rn(Pn, Pn, D) ≤ H(V ∗
n ‖Pn ×Q∗n). (15)

We do this by constructing a triplet (Xn, Zn, Ŷ n) such that Xn ∼ Pn, and Xn and Ŷ n are
conditionally independent given Zn.3 Specifically, let Vn denote the conditional distribution of
Y n given Xn induced by V ∗

n , and assume that the conditional distribution of Zn given Xn is
Vn. Similarly, let ←−V n denote the conditional distribution of Xn given Y n induced by V ∗

n , and
assume that the conditional distribution of Ŷ n given Zn us ←−V n. Then we obviously have that
the three marginals of (Xn, Zn, Ŷ n) are Pn, Q∗n and Pn, respectively.

Let µn denote the joint distribution of all three (Xn, Zn, Ŷ n), and write νn for the joint
distribution of (Xn, Ŷ n). Observe that

Eνn [ρn(Xn, Ŷ n)]
(a)

≤ Eµn [ρn(Xn, Zn) + ρn(Zn, Ŷ n)] (16)
= 2EV ∗

n
[ρn(Xn, Y n)] (17)

(b)

≤ D, (18)

where (a) follows since ρn is a metric, and (b) follows from (14). Since the first marginal (in
fact both marginals) of νn is Pn, we have

Rn(Pn, Pn, D) ≤ H(νn‖Pn × Pn). (19)
3After this paper was submitted for publication, the Associate Editor kindly pointed out to us that a very

similar argument was independently discovered by Zamir and Rose in [30] and used to give an alternative proof
of the Steinberg-Gutman result in one dimension.
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But expanding νn as an average over all possible values of Zn, we get

H(νn‖Pn × Pn) = EPn [H(νn(·|Xn)‖Pn(·))]

=
∑
xn

Pn(xn)
[
H

(∑
znVn(zn|xn)←−V n(·|zn)

∥∥∥Pn(·)
)]

(a)

≤
∑

xn,zn

Pn(xn)Vn(zn|xn)H(←−V n(·|zn)‖Pn(·))

= EQ∗
n
[H(←−V n(·|Zn)‖Pn(·))]

= H(V ∗
n ‖Pn ×Q∗n),

where (a) follows from the convexity of relative entropy [8, Theorem 2.7.2]. Combining this with
(19) gives (15), and, as discussed above, proves (13) and completes the proof of step 2. Finally
combining steps 1 and 2 yields (8).

The proof of the corresponding result (9) for version II of the algorithm is similar, only
requiring a modification to step 1 (step 2 is just a formal inequality, having nothing to do with
whether the underlying compression algorithm is the one from version I or II). Proceeding as
before with W ′

n in place of Wn, instead of the “strong approximation” argument invoked above
now we need to appeal to [9, Theorem 26], stating that

d logW ′
n = − logPn(B(Xn, D)) +O(log n) a.s.

This combined with (7) and with (12), gives us that

`′n(Xn) = ndR(P,P, D) + o(nd) a.s.,

and combining this with step 2 completes the proof of (9), and hence of the theorem. 2

Finally, we make a few brief remarks about the history of the method of proof above. First,
in the one-dimensional case, the idea of considering distortion balls for approximate string
matching in the context of lossy data compression was first employed by  Luczak and Szpankowski
in [21]; soon after that, Yang and Kieffer [28] evaluated the limiting rate R(P,Q, D) using
large deviations techniques. They only consider Markov codebook distributions, a class more
restricted than the “totally ergodic” distributions of Steinberg and Gutman, but their results
are more precise and more general in that they actually identify the limiting rate exactly, rather
than deriving an upper bound. The same strategy was followed in Step 1 of the above proof.

Approximate pattern matching for compression of random fields seems to have first been
considered in [9], which also contains a review of the corresponding one-dimensional results.
The strong-approximation theorem of [9] combined with the large deviations results of Chi [5]
form the basis of Step 1 of our proof, and, as mentioned earlier, Step 2 is similar to an argument
in [30].
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