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I. THE PRIME NUMBER THEOREM Enter Gauss. According to Apostol [1], in 1792, while in-
Sometime before 300 BC, someone showed that there 8R€Cting tables of prime numbers, Gauss conjectured what has
infinitely many prime numbers — we know this, becausg®Me to be known as the celebragdme number theorem
a proof appears in Euclid’s famouBlements In modern Namely that,
notation, if we writer(n) for the number of primes no greater
thann, we can say that, m(n) ~ log, n’

asn — oo, (5)

m(n) — o0, asn — oo. (1) wherea,, ~ b, means that,, /b, — 1 asn — co. Apparently

Here's a proof, based on the idea of an argument of Chaiﬁﬁ was not ablel to prove It, and- not pecause he was only.15
from 1979 [6]. LetN' be a random integer distributed uniyears old at the time — he kept trying, without success, for quite
formly in {1,2 n}, and write it in its unique prime a while, and only disclosed his conjecture in a mathematical

factorization, letter to Encke, over 50 years later. N
< In fact Gauss (still at 15) suggested that, for finiter(n)
N=pf . pf2..... po (2) is better approximated by the function,

w(n)

X is the largest powek > 0 such thap? divides N. This de-
fines a new collection of random variabl&s, X, ..., X (),
and, sincep;"* divides N, we must have,

wherepy, pa, . .., pr(n) are the primes up ta, and where each () /n dt
1(n) = P
log, t’

2 e

sometimes called théculerian logarithmic integral Since
Li(n) asymptotically varies like:/ log, n, the prime number

2Xi < pZ-Xi < N <n, theorem, henceforth PNT, can also be written,
or, writing log for log,, m(n) ~ Li(n), asn — oo.
Xi <logn, for eachi. () If youre not yet convinced that we should care all that
Now here’s a cool thing: much about howr(n) behaves for large, this should do it:
Arguably the most important problem in mathematics today,
logn = H(N) the Riemann hypothesis, is equivalent to the following refined
= H(X1,Xo,..., Xzm)) version of the PNT: For every > 0,
< HX) A+ HX) o 4 H( X)) w(n) = Li(n) + O(n?+°).
< m(n) log(logn + 1). (4)

. _ . See [2] for more of the history and details.
The second equality comes from the uniqueness of prime

factorization, that is, knowingV is the same as knowing Il. CHEBYSHEV' S ATTEMPT
the values of all theX;; the last inequality comes from (3). .
Therefore The PNT was proved a little more than 100 years after
' 1 Gauss conjectured it, but before talking about proofs (and
m(n) > &7 for all n > 2, attempted proofs), let's note that according to the PNT (5)
log(logn + 1) our earlier estimate (3) was pretty loose. Can we do better?
which not only proves that(n) — oo, but also gives a lower Interestingly, a small modification of our basic argument
bound on howfastit grows with n. in (4) gives a slightly better bound. Suppose that, instead of

This is a tiny glimpse into a very, very long story: A largghe usual prime factorization, we expre§sas,
portion of number_theory —and a very significant pprt_lon of N A Ve Yoim ©)
modern mathematics at large — is devoted to quantifying (1). VR ) Dr(n)

For a long time we've wanted to know: . . -
9 where M > 1 is the largest integer such thaf? divides NV,

How fast, exactly, does(n) — oo, asn grows? and theY; are now binary. Since\/? divides N, we must



have M2 < N < n, or M < +/n, and noting that the I1l. ENTROPY

representation (6) is also unique, arguing as before we get, apnarently, the first person to connect prime-counting ques-

tions with information-theoretic ideas and methods is Patrick
(V) Billingsley. In 1973, he was invited to deliver the prestigious

logn = H
= H(M,Y1,Ys,...,Yom)) “Wald Memorial Lectures” at the IMS Annual Meeting in New
H

< (M) +HY1) + H(Y2) + -+ + HYr(n) York. BiIIinggIey, a p_robabilist, has long been involve_d with
1 entropy and information — and wrote a book [3] about it — and
< 3 logn + m(n), in the years before these lectures it appears he had developed

a strong interest in “probabilistic number theory,” that is, in
which implies thatr(n) > %log n, for all n > 2. This is the application of probabilistic techniques to derive results in
better than (3) but still pretty far from the optimal rate in (5)number theory. In the transcript [4] of his 1973 lectures he

I don’t know how (or if it is possible) to twist this argumemdescribes a beautiful heuristic argument for proving Theorem 1
around further to get more accurate estimates, so let's &ing simple computations in terms of the entropy. It goes like
back to the classical proofs of the PNT. Another early play#his.
in this drama is Chebyshev (the one of the inequality), who Start as before with a random integ&r uniformly distrib-
also gave the PNT a go and, although he didn't succedted between 1 and some fixed> 2, and write it in its unique
in producing a complete proof, he discovered a number pfime factorization (2). What is the distribution of the induced
beautiful results along the way. One of them is the followinggndom variables(;? Let's first look at one of them. Since the

unexpected asymptotic formula: number of multiples op* between 1 and is exactly|n/p¥ |,
we have,
Theorem 1. Chebyshev (1852) [8][7] 1in
Asn — oo, Pr{X; > k} = Pr{N is a multiple ofp}} = - L?ICJ .M
Cn) 2 Z logp log 2, Therefore, for larger,
p<n

1\*
Pr Xz > kl~ | — s

¢ s (Pz)
) i.e., the distribution of eachX; is approximately geometric
Actually Chebyshev came pretty close to proving the PN{yith parameten /p;. Similarly, since the number of multiples

For example, using Theorem 1 in a slightly refined form, r@fpi;pf between 1 and is Ln/ﬁpﬁ’ for the joint distribution
was able to find explicit constants constardis< 1 < B and f X;, X, we find,

ng such that:

k ¢
1 n 1 1
n n Pr{X; >k X-ZK}:{J z() ()
< <B for all n > nyg. L= o ) K
1oge g 71'(”) = 10ge n7 n - no n D; pj i Dj

where the sum is over all primgsnot exceedingu.

] ] so X, and X; are approximately independent. The same
~ The PNT was finally proved in 1896 by Hadamard andyqument works for any finite sub-collection of th&; }. This
independently and almost simultaneously, by de laédll intuition, that we can think of the{X;} as approximately
Pousin. Both proofs were mathematically “heavy,” relying opgependent geometrics, was well known for at least a few

the use of Hadamard's theory of integral functions applied {gcades before Billingsley’s lectures; see, e.g., Kac's classic
the Riemann zeta functioq(s); see [2] for details. In fact, gem [11].

for quite some time it was believed that no elementary prOOfBiIIingsIey’s insight was to bring the entropy into play.

would ever be found, and G.H. Hardy in a famous lecture ®ompining the initial steps of our basic argument (4) with

the Mathematical Society of Copenhagen in 1921 [5] went §% observation that thel; are approximately independent
far as to suggest thaif“anyone produces an elementary proo&eometrics,

of the PNT ... he will show that ... it is time for the books to

be cast aside and for the theory to be rewritten. logn = H(N)
The announcement by Selberg and &&din 1948 that = H(X1,Xo,..., Xrm))
they had actually found such an elementary proof came as x(n)
a big surprise to the mathematical world and caused quite a ~ Z H(X) 8)
sensation; see [10] for a survey. What's particularly interesting Py

for us, is that Chebyshev’s result in Theorem 1 was used lo 1

explicitly in their proof. > { gq — log (1 - ];)}, ©)
Thus motivated, we now discuss an elegant way to prove

Theorem 1 using only elementary ideas from informatiowhere in the last step we simply substituted the well-known

theory and basic probability. [9] formula for the entropy of a geometric with parametgp.

Q




And since for largep the summands in (9) behave like

1 1
o8P O(f),

p p
from (9) we get the heuristic estimate,

Cln) = Z log p

p<n

V. EPILOGUE

It is very satisfying that elementary information-theoretic
tools can produce optimal asymptotic estimates in number
theory, like the lower bound (11) corresponding to Cheby-
shev’s Theorem 1. In fact, from the actual result we derived
in (10) it's easy to also deduce finiterefinements of this

lower bound, like e.g.,
It Wo_uld certainly be nice to have an agtual information- C(n) > ﬁlogn — 235, foralln > 16.
theoretic proof of Theorem 1 along those lines — Billingsley 125

suggests so too — but the obvious strategy doesn’t work, or atUnfortunately, it is not clear how to reverse the inequalities
least | wasn't able to make it work. The problem is that thim the above proof to get a corresponding upper bound on
approximation of the distribution of thgX;} by independent C(n). Nevertheless, a different information-theoretic argument

~ logn, for largen.

geometrics is not accurate enough to turn the twd Steps

in (8) and (9) into rigorous bounds. That's the bad news. But

there’s also good news.

IV. AN INFORMATION THEORETICPROOF

does work, and shows that,
DR
p<n

for all n > 2; see [12].

logn + 2log 2,

AS it ums out, itis possible to give an elementary Two final remarks before closing. First, although Biilingsley

information-theoretic proof of Theorem 1, albeit using som
what different arguments from Billingsley’s. Here's the more-

beautiful-half of the proof; for the other half see [12].

Proof thatC(n) is asymptotically> log n. The starting point
is again our basic argument in (4):

(n)
logn = H(N) = H(X1,Xs,..., Xpm)) < > H(X,).
=1

Since the distribution of an integer-valued random variable
with meany > 0 is maximized by the entropy

AN
h(p) = (p+1)log(p + 1) — plog
of a geometric with the same mean, if we write= E(X)
for the mean ofX;, then,
w(n)
logn < Z h(pi)-

=1

But from the distribution ofX; as expressed in (7) it is easy [4]

to get some useful information abou:

wi=S Pr{X, =k} <Y (pi)’“ _1/p

E>1 k>1 40 1-1/pi
Therefore, sincé(y) is an increasing function, we obtain,

ih( 1/pi )

1- 1/1%‘

>[5 s (1))
and that’s basically it.

p<n
Since the summands above behave h‘?«gé? for largep, an
easy exercise in elementary calculus gives,

lim inf C(n)

n— 00 1ogn

logn <

(10)

>1

ju )

11)

as claimed. O

A [3] does not produce any information-theoretic propés
se, he does go in the “opposite” direction: He uses probabilistic
techniques and results about the primes to compute the entropy
of several relevant collections of random variables.

And lastly, we mention that in Li and \dnyi's text [13],
an elegant argument is given for a more accurate lower bound
on ©(n) than those we saw above. Using ideas and results
from algorithmic information theory, they show that(n)
asymptotically grows at least as fast ;n)z- The proof,
which they attribute to unpublished work by P. Berman (1987)
and J. Tromp (1990), is somewhat involved, and uses tools
very different to those developed here.
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