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I. THE PRIME NUMBER THEOREM

Sometime before 300 BC, someone showed that there are
infinitely many prime numbers – we know this, because
a proof appears in Euclid’s famousElements. In modern
notation, if we writeπ(n) for the number of primes no greater
thann, we can say that,

π(n) →∞, asn →∞. (1)

Here’s a proof, based on the idea of an argument of Chaitin
from 1979 [6]. LetN be a random integer distributed uni-
formly in {1, 2, . . . , n}, and write it in its unique prime
factorization,

N = pX1
1 · pX2

2 · · · · · pXπ(n)

π(n) , (2)

wherep1, p2, . . . , pπ(n) are the primes up ton, and where each
Xi is the largest powerk ≥ 0 such thatpk

i dividesN . This de-
fines a new collection of random variablesX1, X2, . . . , Xπ(n),
and, sincepXi

i dividesN , we must have,

2Xi ≤ pXi
i ≤ N ≤ n,

or, writing log for log2,

Xi ≤ log n, for eachi. (3)

Now here’s a cool thing:

log n = H(N)
= H(X1, X2, . . . , Xπ(n))
≤ H(X1) + H(X2) + · · ·+ H(Xπ(n))
≤ π(n) log(log n + 1). (4)

The second equality comes from the uniqueness of prime
factorization, that is, knowingN is the same as knowing
the values of all theXi; the last inequality comes from (3).
Therefore,

π(n) ≥ log n

log(log n + 1)
, for all n ≥ 2,

which not only proves thatπ(n) →∞, but also gives a lower
bound on howfast it grows with n.

This is a tiny glimpse into a very, very long story: A large
portion of number theory – and a very significant portion of
modern mathematics at large – is devoted to quantifying (1).
For a long time we’ve wanted to know:

How fast, exactly, doesπ(n) →∞, as n grows?

Enter Gauss. According to Apostol [1], in 1792, while in-
specting tables of prime numbers, Gauss conjectured what has
come to be known as the celebratedprime number theorem,
namely that,

π(n) ∼ n

loge n
, asn →∞, (5)

wherean ∼ bn means thatan/bn → 1 asn →∞. Apparently
he was not able to prove it, and not because he was only 15
years old at the time – he kept trying, without success, for quite
a while, and only disclosed his conjecture in a mathematical
letter to Encke, over 50 years later.

In fact Gauss (still at 15) suggested that, for finiten, π(n)
is better approximated by the function,

Li(n) =
∫ n

2

dt

loge t
,

sometimes called theEulerian logarithmic integral. Since
Li(n) asymptotically varies liken/ loge n, the prime number
theorem, henceforth PNT, can also be written,

π(n) ∼ Li(n), asn →∞.

If you’re not yet convinced that we should care all that
much about howπ(n) behaves for largen, this should do it:
Arguably the most important problem in mathematics today,
the Riemann hypothesis, is equivalent to the following refined
version of the PNT: For everyε > 0,

π(n) = Li(n) + O(n
1
2+ε).

See [2] for more of the history and details.

II. CHEBYSHEV’ S ATTEMPT

The PNT was proved a little more than 100 years after
Gauss conjectured it, but before talking about proofs (and
attempted proofs), let’s note that according to the PNT (5)
our earlier estimate (3) was pretty loose. Can we do better?

Interestingly, a small modification of our basic argument
in (4) gives a slightly better bound. Suppose that, instead of
the usual prime factorization, we expressN as,

N = M2 · pY1
1 · pY2

2 · · · · · pYπ(n)

π(n) , (6)

whereM ≥ 1 is the largest integer such thatM2 dividesN ,
and theYi are now binary. SinceM2 divides N , we must



have M2 ≤ N ≤ n, or M ≤
√

n, and noting that the
representation (6) is also unique, arguing as before we get,

log n = H(N)
= H(M,Y1, Y2, . . . , Yπ(n))
≤ H(M) + H(Y1) + H(Y2) + · · ·+ H(Yπ(n))

≤ 1
2

log n + π(n),

which implies thatπ(n) ≥ 1
2 log n, for all n ≥ 2. This is

better than (3) but still pretty far from the optimal rate in (5).
I don’t know how (or if it is possible) to twist this argument

around further to get more accurate estimates, so let’s get
back to the classical proofs of the PNT. Another early player
in this drama is Chebyshev (the one of the inequality), who
also gave the PNT a go and, although he didn’t succeed
in producing a complete proof, he discovered a number of
beautiful results along the way. One of them is the following
unexpected asymptotic formula:

Theorem 1. Chebyshev (1852) [8][7]
As n →∞,

C(n)
4
=

∑
p≤n

log p

p
∼ log n,

where the sum is over all primesp not exceedingn.

Actually Chebyshev came pretty close to proving the PNT.
For example, using Theorem 1 in a slightly refined form, he
was able to find explicit constants constantsA < 1 < B and
n0 such that:

A
n

loge n
≤ π(n) ≤ B

n

loge n
, for all n ≥ n0.

The PNT was finally proved in 1896 by Hadamard and,
independently and almost simultaneously, by de la Vallée-
Pousin. Both proofs were mathematically “heavy,” relying on
the use of Hadamard’s theory of integral functions applied to
the Riemann zeta functionζ(s); see [2] for details. In fact,
for quite some time it was believed that no elementary proof
would ever be found, and G.H. Hardy in a famous lecture to
the Mathematical Society of Copenhagen in 1921 [5] went as
far as to suggest that “if anyone produces an elementary proof
of the PNT ... he will show that ... it is time for the books to
be cast aside and for the theory to be rewritten.”

The announcement by Selberg and Erdös in 1948 that
they had actually found such an elementary proof came as
a big surprise to the mathematical world and caused quite a
sensation; see [10] for a survey. What’s particularly interesting
for us, is that Chebyshev’s result in Theorem 1 was used
explicitly in their proof.

Thus motivated, we now discuss an elegant way to prove
Theorem 1 using only elementary ideas from information
theory and basic probability.

III. E NTROPY

Apparently, the first person to connect prime-counting ques-
tions with information-theoretic ideas and methods is Patrick
Billingsley. In 1973, he was invited to deliver the prestigious
“Wald Memorial Lectures” at the IMS Annual Meeting in New
York. Billingsley, a probabilist, has long been involved with
entropy and information – and wrote a book [3] about it – and
in the years before these lectures it appears he had developed
a strong interest in “probabilistic number theory,” that is, in
the application of probabilistic techniques to derive results in
number theory. In the transcript [4] of his 1973 lectures he
describes a beautiful heuristic argument for proving Theorem 1
using simple computations in terms of the entropy. It goes like
this.

Start as before with a random integerN uniformly distrib-
uted between 1 and some fixedn ≥ 2, and write it in its unique
prime factorization (2). What is the distribution of the induced
random variablesXi? Let’s first look at one of them. Since the
number of multiples ofpk

i between 1 andn is exactlybn/pk
i c,

we have,

Pr{Xi ≥ k} = Pr{N is a multiple ofpk
i } =

1
n

⌊
n

pk
i

⌋
. (7)

Therefore, for largen,

Pr{Xi ≥ k} ≈
(

1
pi

)k

,

i.e., the distribution of eachXi is approximately geometric
with parameter1/pi. Similarly, since the number of multiples
of pk

i p`
j between 1 andn is bn/pk

i p`
jc, for the joint distribution

of Xi, Xj we find,

Pr{Xi ≥ k, Xj ≥ `} =
1
n

⌊
n

pk
i p`

j

⌋
≈

(
1
pi

)k (
1
pj

)`

,

so Xi and Xj are approximately independent. The same
argument works for any finite sub-collection of the{Xi}. This
intuition, that we can think of the{Xi} as approximately
independent geometrics, was well known for at least a few
decades before Billingsley’s lectures; see, e.g., Kac’s classic
gem [11].

Billingsley’s insight was to bring the entropy into play.
Combining the initial steps of our basic argument (4) with
the observation that theXi are approximately independent
geometrics,

log n = H(N)
= H(X1, X2, . . . , Xπ(n))

≈
π(n)∑
i=1

H(Xi) (8)

≈
∑
p≤n

[ log p

p− 1
− log

(
1− 1

p

)]
, (9)

where in the last step we simply substituted the well-known
[9] formula for the entropy of a geometric with parameter1/p.



And since for largep the summands in (9) behave like

log p

p
+ O

(1
p

)
,

from (9) we get the heuristic estimate,

C(n) =
∑
p≤n

log p

p
≈ log n, for largen.

It would certainly be nice to have an actual information-
theoretic proof of Theorem 1 along those lines – Billingsley
suggests so too – but the obvious strategy doesn’t work, or at
least I wasn’t able to make it work. The problem is that the
approximation of the distribution of the{Xi} by independent
geometrics is not accurate enough to turn the two “≈” steps
in (8) and (9) into rigorous bounds. That’s the bad news. But
there’s also good news.

IV. A N INFORMATION THEORETICPROOF

As it turns out, it is possible to give an elementary
information-theoretic proof of Theorem 1, albeit using some-
what different arguments from Billingsley’s. Here’s the more-
beautiful-half of the proof; for the other half see [12].

Proof thatC(n) is asymptotically≥ log n. The starting point
is again our basic argument in (4):

log n = H(N) = H(X1, X2, . . . , Xπ(n)) ≤
π(n)∑
i=1

H(Xi).

Since the distribution of an integer-valued random variableX
with meanµ > 0 is maximized by the entropy

h(µ)
4
= (µ + 1) log(µ + 1)− µ log µ

of a geometric with the same mean, if we writeµi = E(Xi)
for the mean ofXi, then,

log n ≤
π(n)∑
i=1

h(µi).

But from the distribution ofXi as expressed in (7) it is easy
to get some useful information aboutµi:

µi =
∑
k≥1

Pr{Xi ≥ k} ≤
∑
k≥1

( 1
pi

)k

=
1/pi

1− 1/pi
.

Therefore, sinceh(µ) is an increasing function, we obtain,

log n ≤
n∑

i=1

h
( 1/pi

1− 1/pi

)
=

∑
p≤n

[ log p

p− 1
− log

(
1− 1

p

)]
, (10)

and that’s basically it.
Since the summands above behave likelog p

p for largep, an
easy exercise in elementary calculus gives,

lim inf
n→∞

C(n)
log n

≥ 1, (11)

as claimed. �

V. EPILOGUE

It is very satisfying that elementary information-theoretic
tools can produce optimal asymptotic estimates in number
theory, like the lower bound (11) corresponding to Cheby-
shev’s Theorem 1. In fact, from the actual result we derived
in (10) it’s easy to also deduce finite-n refinements of this
lower bound, like e.g.,

C(n) ≥ 86
125

log n− 2.35, for all n ≥ 16.

Unfortunately, it is not clear how to reverse the inequalities
in the above proof to get a corresponding upper bound on
C(n). Nevertheless, a different information-theoretic argument
does work, and shows that,∑

p≤n

log p

p
≤ log n + 2 log 2,

for all n ≥ 2; see [12].
Two final remarks before closing. First, although Biilingsley

in [3] does not produce any information-theoretic proofsper
se, he does go in the “opposite” direction: He uses probabilistic
techniques and results about the primes to compute the entropy
of several relevant collections of random variables.

And lastly, we mention that in Li and Vitányi’s text [13],
an elegant argument is given for a more accurate lower bound
on π(n) than those we saw above. Using ideas and results
from algorithmic information theory, they show thatπ(n)
asymptotically grows at least as fast asn

(log n)2 . The proof,
which they attribute to unpublished work by P. Berman (1987)
and J. Tromp (1990), is somewhat involved, and uses tools
very different to those developed here.
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[7] P.L. Chebychev. Ḿemoire sur les nombres premiers.J. de Math. Pures
Appl., 17:366–390, 1852.

[8] P.L. Chebychev. Sur la totalité des nombres premiers inférieursà une
limite donńee. J. de Math. Pures Appl., 17:341–365, 1852.

[9] T.M. Cover and J.A. Thomas.Elements of Information Theory. J. Wiley,
New York, 1991.

[10] H.G. Diamond. Elementary methods in the study of the distribution of
prime numbers.Bull. Amer. Math. Soc. (N.S.), 7(3):553–589, 1982.

[11] M. Kac. Statistical Independence in Probability, Analysis and Num-
ber Theory. Published by the Mathematical Association of America.
Distributed by John Wiley and Sons, Inc., New York, 1959.

[12] I. Kontoyiannis. Some information-theoretic computations related to
the distribution of prime numbers. Preprint, available online at:
http://aps.arxiv.org/abs/0710.4076 , November 2007.

[13] M. Li and P. Vit́anyi. An Introduction to Kolmogorov Complexity and
its Applications. Springer-Verlag, New York, second edition, 1997.


