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Abstract— Suppose we are allowed to observe two equally noisy
versions of some signal X, where the level of the noise is fixed.
We are given a choice: We can either observe two independent
noisy versions of X, or two correlated ones. We show that,
contrary to what classical statistical intuition suggests, it is often
the case that correlated data is more valuable than independent
data. We investigate this phenomenon in a variety of contexts,
give numerous examples for standard families of channels and
present general sufficient conditions for deciding this dilemma.
One of these conditions draws an interesting connection with the
information-theoretic notion of “synergy,” which has received a
lot of attention in the neuroscience literature recently.

I. INTRODUCTION

The following examples motivate much of our discussion.
A broadcast channel. Consider the problem of commu-

nicating a message to two remote receivers. We are given
two options. Either send the message to two independent
intermediaries and have each of them relay the message to one
of the receivers, or send the message to only one intermediary
and have her re-send the message to the two receivers in two
independent transmissions. Assuming that the two receivers
are allowed to cooperate, which option is more efficient?
Although intuition perhaps suggests that it is preferable to
use two independent intermediaries so that we are not “stuck”
with the noise incurred in the first transmission, in many cases
this intuition turns out to be wrong.

A sampling problem. Suppose we want to test for the
presence of a disease in a certain population, and we do so
by randomly selecting and testing members of the population.
Assuming the test is imperfect (there is a certain chance we
might get a false positive or a false negative), is it better to test
one person twice, or two people, once each? Again, although
it may seem more reasonable to test two people independently,
we find that the opposite is often true.

These questions are formalized as follows; see Fig. 1. We
have two sets of conditional distributions, or channels, P =
(P (y|x)) and Q = (Q(z|y)) on the same alphabet A.

SCENARIO 1. INDEPENDENT OBSERVATIONS. Suppose X
has a given distribution PX(x) on A, let Y1, Y2 be condi-
tionally independent given X , each with distribution P (y|X),
and let Z1 and Z2 be distributed according to Q(z|Y1) and
Q(z|Y2), independently of the remaining variables. In this

case, Z1 and Z2 are two (conditionally) independent, noisy
observations of the variable of interest X .

SCENARIO 2. CORRELATED OBSERVATIONS. Given X as
before, let Y be distributed according to P (y|X), and let
W1, W2 be conditionally independent of X and of one another
given Y , each of them distributed according to Q(z|Y ). In this
case the two noisy observations W1 and W2 are typically not
conditionally independent given X .
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Fig. 1. Independent observations (left) vs. correlated observations (right).

The joint distribution of (X, Z1) is of course the same as
the joint distribution of (X, W1), so there is no difference in
observing Z1 or W1. But the joint distribution of (X, Z1, Z2)
is different from that of (X, W1, W2), so the amount of
information we obtain from the second observation is different
in these two scenarios.

In this note we consider the following question: For a given
pair of channels P and Q and for a fixed “source” distribution
PX , we can choose between the two independent observations
(Z1, Z2) or the two correlated observations (W1, W2). If our
goal is to maximize the mutual information between X and
our observations, which scenario should we pick?

At first glance, it is perhaps natural to expect that the
two (conditionally) independent observations would always
be better. The first goal of this work is to show that this
intuition is often incorrect. We exhibit simple and very nat-
ural examples for which correlated observations provide an
advantage over independent ones. Our second goal is to



investigate the underlying reasons for this phenomenon. For
a variety of channels of interest we derive simple sufficient
conditions, which guarantee that one or the other scenario is
preferable. Moreover, in attempting to understand the “sur-
prising” phenomenon where the second scenario is better –
when the second correlated observation is more valuable than
the second independent observation – we draw a connection
with the statistical phenomenon of “synergy” identified in
neurobiological studies of the brain.

Of course one could choose a figure of merit other than
mutual information – we could ask which if the two scenarios
yields a channel with a higher capacity, or we could compare
the different probabilities of error when estimating X based
on the two different types of observations. We pursue these
and other related questions in a longer version of this work.

Throughout the paper when we say that “correlated ob-
servations are better than independent ones” we mean that
I(X ; W1, W2) > I(X ; Z1, Z2). All logarithms are natural
logarithms with base e, and all familiar information-theoretic
quantities are therefore expressed in nats. All proofs are
omitted here; complete arguments will be presented in the
longer version of this paper.

In Section II we look at the simplest case of binary channels.
In Section III we consider a more general class of finite-
alphabet channels called Potts channels, and in Section IV we
offer some general results valid for arbitrary channels. There
we introduce the concept of “synergy,” we discuss its relevance
in this setting, and we show that the existence of synergy is
a sufficient condition for our “surprising” phenomenon – for
the correlated observations (W1, W2) to carry more informa-
tion about X than the independent observations (Z 1, Z2). In
Section V we give general results on the presence or absence
of synergy for Gaussian channels.

Note that various related issues have been examined in
the literature. The idea of synergy implicitly appears in
[6][3][4][9]; for connections with neuroscience see [1][8]; the
relationship of some related statistical issues with von Neu-
mann’s problem of computation in noisy circuits is examined
in [2]; some analogous problems to those treated here for large
tree networks are considered in [7].

II. BINARY CHANNELS

Example 1. Suppose P is the Z-channel with parameter δ ∈
(0, 1), denoted Z(δ), and Q is the binary symmetric channel
with parameter ε ∈ (0, 1/2), denoted BSC(ε); see Figure 2.

X�

0�

1�

0�

1�

Y�

1-�δ�

1�

δ� Y�

0�

1�

0�

1�

Z�ε�

1�-�ε�

1�-�ε�
ε�

Fig. 2. The Z(δ) channel and the BSC(ε) channel.

This setting can be interpreted as a simple model for the
sampling problem described in the Introduction: The root
variable X is equal to 1 if a disease is present in a certain pop-
ulation, and it is 0 otherwise. Suppose our prior understanding

is that X is Bernoulli(p), i.e., the prior probability that the
disease is not present is (1− p), and the prior probability that
it is present is p, in which case a proportion (1−δ) > 0 of the
people are infected. If the disease is not present then we will
certainly pick a healthy individual, otherwise the probability
we will pick an infected individual is (1 − δ). Moreover, we
suppose that in testing the selected individuals, the probability
of either a false positive or a false negative is ε.

With the (fairly realistic) parameters p = 1/2, (1−δ) = .02
and ε = .1, direct calculation shows that testing one individual
twice is more valuable than testing two people, once each, so
that correlated observations are better than independent ones,
or, formally, I(X ; W1, W2) > I(X ; Z1, Z2).

In fact, as we show next, this phenomenon occurs for a wide
range of parameter values.

Proposition 1. (Binary Asymmetric Channels) Suppose that
X ∼ Bernoulli(p), P is the Z(δ) channel and Q is the BSC(ε)
channel, where the parameters are in the range p ∈ (0, 1),
δ ∈ (0, 1), ε ∈ (0, 1/2). For all p ∈ (0, 1):

(i) For all ε ∈ (0, 1/2) there exists δ small enough such
that independent observations are better, i.e. there exists
δ∗ such that δ ∈ (0, δ∗) implies I(X ; W1, W2) <
I(X ; Z1, Z2).

(ii) For all ε ∈ (0, 1/2) there exists δ large enough so that
correlated observations are better, i.e., there exists δ ∗ such
that δ ∈ (δ∗, 1), implies I(X ; W1, W2) > I(X ; Z1, Z2).

(iii) For any δ ∈ (0, 1) there exists ε small enough such that
independent observations are better, i.e., there exists ε∗

such that ε < ε∗ implies I(X ; W1, W2) < I(X ; Z1, Z2).
(iv) For δ > 2p

2p+1 , correlated observations are better for large
enough ε, and for δ < 2p

2p+1 independent observations are
better for large enough ε: For δ > 2p

2p+1 , there exists ε1

such that ε > ε1 implies I(X ; W1, W2) > I(X ; Z1, Z2),
whereas, for δ < 2p

2p+1 there exists ε2 such that ε > ε2

implies I(X ; W1, W2) < I(X ; Z1, Z2).

The following three diagrams show three numerical exam-
ples that illustrate the result of the proposition quantitatively.
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Fig. 3. Lighter color indicates regions in the δ-ε plane where the correlated
observations are more informative for three different values of p.



The above proposition says that, in the particular case where
P is Z(δ) and Q is BSC(ε), correlated observations are better
than independent ones only when δ is large enough, that is,
when the first channel P is highly non-symmetric. On the other
extreme, in the following proposition we show that when P
and Q are both BSCs then correlated observations are never
better than independent ones.

Proposition 2. (Binary Symmetric Channels) Suppose that
X ∼ Bernoulli(p), and P and Q are BSCs with parameters ε1

and ε2, respectively. Then for any choice of the parameters
p ∈ (0, 1), ε1 ∈ (0, 1/2), ε2 ∈ (0, 1/2), independent
observations are always at least as good as correlated ones,
i.e., I(X ; Z1, Z2) ≥ I(X ; W1, W2).

Roughly speaking, Proposition 1 says that the “surprising”
phenomenon (correlated observations being better than inde-
pendent ones) only occurs when the first channel P is highly
non-symmetric, and Proposition 2 says that it never happens
for symmetric channels. This may seem to suggest that the
surprise is caused by this lack of symmetry, but as we show
in the following section, when the alphabet is not binary, we
can still get the surprise with perfectly symmetric channels.

III. THE POTTS CHANNEL

A natural generalization of the BSC to a general finite
alphabet A with m ≥ 3 elements is the Potts(α) channel
defined by the conditional probabilities W (i|i) = α for all
i ∈ A, and W (j|i) = β = 1−α

m−1 for all i �= j ∈ A, where the
parameter α is in (0, 1); see Figure 4.

X�

1�

2�

1�

Y�

β�

m�

2�

m�

α�

β�

β� β�

β�

·�
·�
·�

·�
·�
·�

α�

α�

Fig. 4. The Potts channel with parameter α on an alphabet of size m.

Proposition 3. (Potts Channels) If the root X is uniformly
distributed and both P and Q are Potts channels with the same
parameter α, then there exist 0 < α∗ < α∗ < 1 such that:

(i) For all α > α∗, independent observations are better that
correlated ones, i.e., I(X ; Z1, Z2) > I(X ; W1, W2).

(ii) For all α < α∗, correlated observations are better that
independent ones, i.e., I(X ; Z1, Z2) < I(X ; W1, W2).

IV. ARBITRARY CHANNELS AND SYNERGY

Next we investigate general conditions, under which the
surprising phenomenon of getting more information from
correlated observations than from independent ones occurs.

Since the distributions of (X, Z1) and of (X, W1) are the
same, the amount of information obtained from the first sample
is the same in both scenarios, I(X ; Z1) = I(X ; W1). So

the surprise will occur only if the second correlated sample
is more valuable than the second independent one, namely
if I(X ; W2|W1) > I(X ; Z2|Z1). But since Z1 and Z2 are
conditionally independent given X , we always have

I(X ; Z2|Z1) ≤ I(X ; Z2) = I(X ; W2),

and therefore a sufficient condition for the surprise is that

I(X ; W2|W1) > I(X ; W2).

This says that the information I(X ; W2|W1) we obtain about
X from the second observation W2 given W1, is greater than
the information I(X ; W2) = I(X ; W1) obtained from the
first observation; in other words, W2 not only contains no
“redundant” information, but it somehow “collaborates” with
W1 in order to give extra information about X . This idea is
formalized in the following definition.

Definition. Consider three jointly distributed random vari-
ables (X, V1, V2). We define the synergy between them as,

S(X, V1, V2) = I(X ; V2|V1) − I(X ; V2),

and we say that the random variables X, V1, V2 are synergetic
whenever S(X, V1, V2) > 0.

The concept and the term synergy as defined here are
borrowed from the neuroscience literature; see, e.g., [8]. There,
X represents some kind of sensory stimulus, for example an
image, and the observations V1, V2 represent the response of
two neurons in the brain, for example in the primary visual
cortex. In [8] the amount of synergy between V 1 and V2 is
defined as the amount of information (V1, V2) jointly provide
about X , minus the sum of the amounts of information they
provide individually:

S(X, V1, V2) = I(X ; V1, V2) − I(X ; V1) − I(X ; V2). (1)

A simple application of the chain rule for mutual information
shows that this is equivalent to our definition. Similarly, by
the chain rule we also have that the synergy is circularly
symmetric in its three arguments. Alternatively, the synergy
can be expressed in terms of entropies as:

S(X, V1, V2) = −H(X, V1, V2)
+H(X, V1) + H(X, V2) + H(V1, V2)
−H(X)− H(V1) − H(V2). (2)

Proposition 4. (General Channels and Synergy) Let X have
an arbitrary distribution PX , and P , Q be two arbitrary finite-
alphabet channels. If the synergy S(X, W1, W2) is positive,
then the correlated observations are better than the independent
ones, I(X ; W1, W2) > I(X ; Z1, Z2). More generally, the
correlated observations are better than the independent ones
if and only if S(X, W1, W2) > −I(Z1; Z2).

Although the statement above is given for finite-alphabet
channels, the same result holds channels on arbitrary alpha-
bets. Motivated by Proposition 4, we now look at three simple
examples, and determine conditions under which synergy does
or does not occur.



Example 2. Maximal Binary Synergy. Consider three
binary variables (X, V1, V2), where we think of V1 and V2

as noisy observations of X and we assume that (X, V1) has
the same distribution as (X, V2). This covers all the scenarios
considered in Section II. Under what conditions is the synergy
S(X, V1, V2) maximized? We have,

S(X, V1, V2) = I(V1; V2|X) − I(V1; V2)
= H(V1|X) − H(V1|X, V2) − I(V1; V2)
≤ 1,

with equality if and only if H(V1|X) = 1 and H(V1|X, V2) =
I(V1; V2) = 0, that is, if and only if the three variables are
pairwise independent, they all have Bernoulli(1/2) distribution,
and any one of them is a deterministic function of the other
two. This can be realized in essentially only one way: X and
V1 are independent Bernoulli(1/2) random variables, and V 2 is
their sum modulo 2. In that case the maximal synergy is also
intuitively obvious: The first observation is independent of X
and hence entirely useless, but the second one is maximally
useful (given the first), as it tells us the value of X exactly.

Example 3. Frustration in a Simple Spin System. Matsuda
in [5] presented a simple example which exhibits an interesting
connection between the notion of synergy and the phenom-
enon of “frustration” in a physical system. In our notation,
let X, V1, V2 denote three random variables with values in
A = {+1,−1}. Physically, these represent the directions of
the spins of three different particles. Assume that their joint
distribution is given by the Gibbs measure

Pr(X = x, V1 = v1, V2 = v2) =
1
Z

eα(xv1+xv2+v1v2),

where Z = Z(α) = 2e3α + 6e−α is the normalizing constant,
and α is a parameter related to the temperature of the system
and the strength of the interaction between the particles. When
α is positive, then the preferred states of the system – i.e.,
the triplets (x, v1, v2) that have higher probability – are those
in which each pair of particles has the same spin, namely
x = v1 = v2 = +1 and x = v1 = v2 = −1. Similarly, when
α is negative the preferred states are those in which the spins
in each pair are different; but this is of course impossible
to achieve for all three pairs simultaneously. In physics,
this phenomenon where the preferred local configurations are
incompatible with the global state of the system is referred to
as “frustration.”

A cumbersome but straightforward calculation shows that
the synergy S(X, V1, V2) can be calculated explicitly to be,

2 log(Z(α)/8) +
6(e3α + e−α)

Z(α)
log

[ 2eα

e3α + e−α

]
,

which is plotted as a function of α in Figure 5. We observe that
the synergy is positive exactly when the system is frustrated,
i.e., when α is negative.

Example 4. Gaussian Additive Noise Channels. Suppose
X is a Gaussian signal and V1, V2 are observations obtained
through additive Gaussian noise channels. Specifically, we
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Fig. 5. The synergy of the spin system in Example 3 as a function of α.

assume that the total noise power between X and each V i

is fixed at some value N , but that we can control the degree
of the dependence between the two observations,

V1 = X + rZ0 + sZ1

V2 = X + rZ0 + sZ2,

where Z0, Z1, Z2 are independent N(0, N) variables which
are also independent of X ∼ N(0, 1), the parameter r ∈ [0, 1]
is in our control, and s is chosen so that the total noise power
stays constant, i.e., r2 + s2 = 1. See Figure 6.
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Fig. 6. The additive Gaussian noise setting of Example 3.

How should we choose the parameter r in order to maximize
the information I(X ; V1, V2)? Taking r = 0 corresponds to
independent observations, taking 0 < r < 1 gives correlated
observations as in the second scenario, and the extreme case
r = 1 gives the same observation twice V1 = V2.

The covariance matrix of (X, V1, V2) is easily read off of the
above description, and the mutual information I(X ; V1, V2)
can be calculated explicitly to be,

I(X ; V1, V2) =
1
2

log
[
1 +

2
N(1 + r2)

]
,

which is obviously decreasing in r. Therefore the maximum is
achieved at r = 0, meaning that here independent observations
are always better. Therefore, Proposition 4 implies that we
never have positive synergy for any r.



V. GENERAL GAUSSIAN CHANNELS

Example 5. The General Symmetric Gaussian Case. Sup-
pose (X, V1, V2) are arbitrary (jointly) Gaussian random vari-
ables such that (X, V1) and (X, V2) have the same distribution.
When is the synergy S(X, V1, V2) maximized? As we will see,
the synergy is positive if and only if the correlation between
the two observations is either negative or positive but small
enough.

Without loss of generality we may take all three random
variables to have zero mean. In the most general case, the
covariance matrix of (X, V1, V2) can be written in the form,

K =


 σ2 α α

α τ2 β
α β τ2




for arbitrary positive variances σ2, τ2, and for α ∈ (−στ, στ),
β ∈ (−τ2, τ2). In order to ensure that K is positive definite
(so that it can be a legitimate covariance matrix) we also need
to restrict the parameter values so that det(K) > 0, which
reduces to the relation,

τ2 + β >
2α2

σ2
. (3)

Using the expression in (2), where the entropies now are inter-
preted as differential entropies, the synergy can be evaluated
by a straightforward calculation,

S(X, V1, V2) =
1
2

log
{ (τ2 + β)(σ2τ2 − α2)2

σ2τ4[σ2(τ2 + β) − 2α2]

}
.

Solving the inequality S(X, V1, V2) > 0 we obtain that we
have synergy if and only if

β <
α2τ2

2σ2τ2 − α2
, (4)

which means that we have synergy if and only if β is negative
(but still not “too” negative, subject to the constraint (3)) or
small enough according to (4).

Example 6. A Gaussian Example with Asymmetric Obser-
vations. We take X and the observations V1, V2 to be jointly
Gaussian, all with unit variances and zero means. We assume
that the correlation between the two observations remains
fixed, but we let the correlation between X and each V i vary
in such a way that it is split between the two:

E(XV1) = λρ and E(XV2) = (1 − λ)ρ.

We also assume that λ ∈ (0, 1) is a parameter we can control,
that ρ ∈ (−1, 1) is fixed, and we define ρ > 0 by ρ2 + ρ2 =
1. By symmetry, we can restrict attention to the range λ ∈
(0, 1/2].

Our question here is to see whether the asymmetry in
the two observations (corresponding to values of λ �= 1/2)
increases the synergy or not. Before proceeding with the
answer we look at the two extreme points.

For λ = 0 we see that X and V1 are independent N(0, 1)
variables, and their joint distribution with V2 can be described
by V2 = ρX + ρV1. In this case the mutual information

I(X ; V2) is some easy to calculate finite number, whereas
the conditional mutual information I(X ; V2|V1) is infinite,
because X and V2 are deterministically related given V1.
Therefore the synergy

S(X, V1, V2) = I(X ; V2|V1) − I(X ; V2) = ∞.

At the other extreme, when λ = 1/2 we have a symmetric
distribution as in the previous example, with σ 2 = τ2 = 1,
α = ρ/2 and β = ρ. Therefore, here we only have synergy
when β = ρ is negative or small enough, i.e., when the
correlation between the two observations is either negative or
small enough. Specifically, substituting the above parameter
values in condition (4) we see that we have symmetry if and
only if ρ satisfies ρ3 + ρ2 + 7ρ < 1, i.e., if and only if
−1 < ρ < 0.13968 . . ..

The fact that the synergy is infinite for λ = 0 and reduces
to a reasonable value (which may or may not be positive)
at λ = 1/2 suggests that perhaps the asymmetry in some
way “helps” the synergy, and that the synergy may in fact be
decreasing with λ. As it turns out, this is “almost” true:

Proposition 5. (Asymmetric Gaussian Observations) Sup-
pose that (X, V1, V2) are jointly Gaussian as described above.
Let

ε = 1 −
√

8(
√

5/4 − 1) ≈ 0.02826.

(i) If ρ ∈ (−1, 1− ε) then the synergy is decreasing in λ for
all λ ∈ (0, 1/2).

(ii) If ρ ∈ (1 − ε, 1) then the synergy is decreasing for λ ∈
(0, λ∗) and increasing for λ ∈ (λ∗, 1/2), where

λ∗ = λ∗(ρ) =
1
2

[
1 −

√
1 − 4ρ

ρ2

]
.
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