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Abstract—For the problem of lossless compression of a mem-
oryless source, we give a detailed, precise characterization of
the best achievable error probability, in the “moderate error
probability” regime. This is the asymptotic setting where the
probability of error decays to zero while at the same time the rate
converges to the entropy at a speed no faster than 1/

√
N . These

results combine some of the essential benefits of earlier analyses
in terms of error exponents and of Gaussian approximation.
Analogous results for the problem of hypothesis testing are also
established.

I. INTRODUCTION

Perhaps the most classical information-theoretic question

is that of determining the best achievable communication

rate while processing large blocks of data. This results in

the determination of the entropy rate and the rate-distortion

function of a random source, and of the capacity of a noisy

channel; see, e.g., [1] and references therein. In recent years,

a significant amount of effort has been devoted to the ex-

amination of the best possible “second order” performance,

namely to the development and analysis of finer asymptotic

(large blocklength) results. One way to categorize these refined

asymptotics is by dividing them into three cases: The small,

moderate and large error probability regimes, respectively. In

the small error probability regime the goal is to minimize the

error probability under a fixed rate constraint. This regime

is classical; it is well-known that the error probability typi-

cally vanishes exponentially fast, and the best possible error

exponent is well-understood in various information-theoretic

scenarios; see, e.g., [1]–[5] and references therein. Moreover,

for the problem of lossless compression of a memoryless

source, the optimal order of the sub-exponential pre-factor is

also known [6], and corresponding results for channel coding

have recently been developed [7]–[10].

In the large error probability regime, one considers a posi-

tive error threshold and the aim is to characterize the fastest

speed at which the rate can approach the ideal asymptotic

limit, with the constraint that error probability does not exceed

this threshold. Several classical problems have been investi-

gated from this perspective, see, e.g., [11]–[23] and references

therein. Indeed, detailed expansions that not only give the

leading term, but also the lower order terms have been reported

in, e.g., [11], [16], [17], [19], [20], [22], [23].

The moderate error probability regime has only been ex-

amined recently; it aims to combine the desired features of

both the large and small probability regimes, by considering

the case where the error probability vanishes and at the same

time the rate approaches the ideal asymptotic limit. E.g., in

the case of lossless compression, we would allow the rate

to approach the entropy at a speed slower than in the large

error probability regime, and investigate the behavior of the

smallest possible error probability. Previous work along these

lines has been described in [24]–[29]. These studies report

that error probability vanishes sub-exponentially fast, and they

characterize the rate of this decay.

Unlike with large and small error probability, little is known

about the lower-order terms in the moderate error probability

regime. In this paper we consider the problem of obtaining

more accurate results in this direction, for the problem of

losslessly compressing a block XN = (X1, X2, . . . , XN ) gen-

erated by a discrete memoryless source {XN} with marginal

distribution p on a finite alphabet X . Our main contribution

is the derivation of a precise asymptotic characterization of

the optimal error probability in the moderate error probability

regime. Specifically, let Pe(p,N, k) denote the smallest achiev-

able probability that the compressed lengths of any lossless

compressor exceed the rate k/N . Let RN denote a sequence

of rates that converge to the entropy H(p) of the source slowly

enough so that RN−H(p) ≥ c/
√
N for some positive constant

c. In Theorem 2.1 we derive an explicit function FN (RN ) and

we show that, asymptotically, Pe(p,N, �NRN�) ≈ FN (RN ).
The function FN (R) is of the form,

FN (R) = G(R, p)
1

N (1+e′
S
(R))/2

e−NeS(R),

where eS(R) is the usual source coding error exponent and

the constant G(R, p) is explicitly identified; see equation (7).

Several consequences of this result are given and discussed

in the following section. For example, this result recovers and

refines the Moderate Deviations Principle (MDP) for this prob-

lem (see Corollary 2.1), which had earlier been established by

other means [24]. We argue that deducing the MDP in this

manner is particularly illuminating (see Remark 2.2). Although

it is not our focus, our result also gives bounds in the large

error probability regime. There it is order optimal, although its
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bounds on the relevant constants are tight only when the error

probabilities are very small (see Corollary 2.2). Note that, both

results stated above, are established in three cases: (i) when

in the definition of Pe(p,N, k) we consider all variable-length

prefix codes; (ii) when the prefix constraint is removed and

we examine all possible injective compressors; (iii) and when

we consider all fixed-length codes.

The potential utility of these results for practically approxi-

mating the fundamental limit Pe(p,N, k) at finite blocklengths

N will be examined in future work.

II. MAIN RESULTS

Let {XN} be a memoryless source with marginal dis-

tribution p on the finite alphabet X . A fixed-to-variable

lossless source code for blocks xN = (x1, x2, . . . , xN ) ∈
XN of length N generated by the source {XN}, is a pair

(fN , φN ) where the encoder is an injective function fN :
XN → {0, 1}∗ := {∅, 0, 1, 00, 01, 10, 11, . . .} and the decoder

φN : {0, 1}∗ → XN is such that φN (fN (xN )) = xN for

all xN . Similarly, given positive integers N, k, an N -to-k
fixed-to-fixed source code (gN , ϕN ): consists of an encoder

gN : XN → {0, 1}k and a decoder ϕN : {0, 1}k → XN .

For any N, k and any source distribution p, the best achiev-

able compression performance at finite blocklengths N can be

described in terms of the following fundamental limits:

Pe,1(p,N, k) := minPr
{
�(fN (XN )) ≥ k

}
, (1)

Pe,2(p,N, k) := minPr
{
�(fN (XN )) ≥ k

}
, (2)

Pe,3(p,N, k) := minPr
{
ϕN (gN (XN )) 
= XN

}
. (3)

The minima in (1), (2) and (3) above are over all variable-

length compressors, all prefix-free variable-length compres-

sors, and all fixed-length compressors, respectively, where �(a)
denotes the length of a binary string a ∈ {0, 1}∗.

As shown in [23, Theorem 1], for any N, k with k <
N log2 |X | and any source distribution p, we have the fol-

lowing simple relationships:

Pe,3(p,N, k) ≤ Pe,1(p,N, k) = Pe,2(p,N, k + 1). (4)

To avoid trivialities, in the sequel we assume that p has

full support and that it is not the uniform distribution on

X . The varentropy of the source is defined (in nats) as

σ2(p) := Varp(− ln p(X)). Note that our assumption that

p is not uniform is equivalent to the requirement that the

varentropy is nonzero.

Recall that the source coding error exponent is defined, for

any R ∈ [H(p), ln |X |], is,

eS(R) := min
q : H(q)≥R

D(q||p),

where the entropy and relative entropy are defined (in nats) as

usual

We are now in a position to state our main result; its proof

is given in Section III.

Theorem 2.1: Consider a sequence of rates {RN} such that

the difference τN = RN − H(p) converges to zero slowly

enough that τN ≥ c/
√
N for some constant c > 0. Then for

each i = 1, 2, 3, we have:

lim sup
N→∞

Pe,i(p,N, �NRN�)
FN (RN )

≤ 1, (5)

lim inf
N→∞

Pe,i(p,N, �NRN�)
FN (RN )

≥ 1−
√

σ2(p)

e
lim sup
N→∞

1

τN
√
N

, (6)

where,

FN (R) :=
e−NeS(R)

[
2πNσ2(γ(R), p)

]−0.5(1+e′S(R))

γ(R)(1− γ(R))e′
S
(R)

, (7)

with γ(R) :=
e′S(R)

1+e′
S
(R) , where e′S(R) denotes the derivative of

eS(·) at R.

Remark 2.1: In the sequel, it will

be evident that we actually have,

limN→∞
(
(1− γ(RN ))

√
2πσ2(γ(RN ), p)

)−e′S(RN )

= 1, for

RN as given in Theorem 2.1. We include this term to have

a better finite N characterization, which might be useful in

future studies.

Next, we examine the consequences of Theorem 2.1 under

more detailed assumptions on the rate sequence {RN}. The

following two corollaries are proved in Section III.

Corollary 2.1: Consider a sequence of rates {RN} such

that the difference τN = RN −H(p) is positive and converges

to zero slowly enough that
√
NτN → ∞ as N → ∞. Then

for each i = 1, 2, 3, we have:

lim
N→∞

ln Pe,i(p,N, �NRN�)
τ2NN

= − 1

2σ2(p)
. (8)

Remark 2.2: Theorem 2.1 sheds light on the following fact.

If we use the crude approximation Pe,i(N,R) ≈ e−NeS(R)

and formally apply the scaling of Corollary 2.1, we obtain

the correct answer given in (8). Yet if we use the seemingly

more-accurate approximation Pe,i(N,R) ≈ e−NeS(R)√
N

, which

is suggested by the results of Csiszár and Longo [6] on

the small error probability regime, we do not. The reason is

that the constant that is ignored in the second approximation

diverges as R approaches H(p), and this exactly cancels

the 1/
√
N factor. Existing MDP proofs (including [26] for

channel coding) obscure this fact, while Theorem 2.1 brings

it to the surface.

Remark 2.3: Corollary 2.1 gives a complete MDP for all

three types of compressors, and in particular it recovers the

MDP for fixed-length lossless source coding result1 in [24].

Corollary 2.2: Fix some b > 0 consider the rates RN :=

1The result of [24] is actually for source coding with side information,
which subsumes the fixed-length lossless source setting.
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H(p)+τN , with τN :=
√

σ2(p)
N b. For each i = 1, 2, 3 we have:

lim sup
N→∞

Pe,i(p,N, �NRN�) ≤ e−b2/2

√
2πb2

, (9)

lim inf
N→∞

Pe,i(p,N, �NRN�) ≥ e−b2/2

√
2πb2

(
1− 1√

eb2

)
. (10)

Remark 2.4: The subsequential limits in (9) and (10) are

both equal to Q(b), where Q(·) is the Gaussian Q-function,

because of the fact that the second-order term in the best

achievable compression rate is

√
σ2(p)
N Q−1(ε) [23]. Thus, this

result is order optimal, but it does not determine the relevant

constant exactly. It is close, however. Indeed, the right-hand

side of (9) is a commonly-used upper bound on Q(b), and the

ratio of the two bounds tends to one as b tends to infinity.

III. PROOFS

Boldface letters denote vectors, regular letters with sub-

scripts denote their elements, capital letters represent random

variables, lowercase letters denote their individual realizations.

For a finite set X , P(X ) is the set of all probability mass

functions on X , UX is the uniform distribution on X , and pN

denotes the N -fold product distribution of p ∈ P(X ) on XN .

We shall prove binary hypothesis testing results that will

be used to prove the results of Section II. To this end, let

X be an arbitrary finite set, and take P 
= Q ∈ P(X ) to

be arbitrary distributions of full support. For any λ ∈ R and

x ∈ X , let Q̃λ(x) :=
P (x)1−λQ(x)λ∑

z∈X P (z)1−λQ(z)λ
, and σ2(λ, P,Q) :=

VarQ̃λ
[ln(Q(X)/P (X))]. Note that, since P 
= Q, we have

σ2(·, P,Q) ∈ R
+ on R. Also, let σ2(P,Q) := σ2(0, P,Q).

Define eH(A) := minQ̂∈P(X ) : D(Q̂||Q)≤A D(Q̂||P ), for A ≥ 0.

Further, for A ∈ (0,D(P ||Q)], let η(A) :=
|e′H(A)|

1+|e′H(A)| , where

e′H(A) denotes the derivative of eH(·) at A, and,

JN (A) :=
e−NeH(A)

[
2πNσ2(η(A), P,Q)

]−0.5(1+|e′H(A)|)

η(A)(1− η(A))|e′H(A)| .

Consider any N ∈ Z
+. Let PN and QN denote the null

and alternate hypothesis, respectively. For any (potentially

randomized) binary hypothesis test TN , α(TN ) and β(TN )
denotes type-I (PN probability of the event that the test

decides QN ) and type-II (QN probability of the event that

the test decides PN ) error probability, respectively.

Theorem 3.1: Consider a positive sequence {ξN} with

ξN = Ω(1/
√
N), ξN = o(1). Let AN := D(P ||Q)− ξN .

(i) There exists a sequence of deterministic hypothesis tests,

{TN}, such that β(TN ) ≤ e−NAN for all N and:

lim sup
N→∞

α(TN )

JN (AN )
≤ 1. (11)

(ii) For any sequence of (potentially randomized) hypothesis

tests {TN} with β(TN ) ≤ e−NAN for all N , we have:

lim inf
N→∞

α(TN )

JN (AN )
≥ 1−

√
σ2(P,Q)

e
lim sup
N→∞

1

ξN
√
N

.

An outline of the proof of Theorem 3.1 given in the

Appendix. The following corollaries are easy consequences

of Theorem 3.1, once one notes that

lim
N→∞

eH(AN )

ξ2N
=

1

2σ2(P,Q)
,

which can be verified via Lemma A.2.

Corollary 3.1: Consider a positive sequence {ξN} with

ξN = o(1), limN→∞ ξN
√
N =∞. Let AN := D(P ||Q)−ξN .

(i) There exists a sequence of deterministic hypothesis tests,

{TN}, such that β(TN ) ≤ e−NAN for all N and:

lim sup
N→∞

lnα(TN )

ξ2NN
≤ − 1

2σ2(P,Q)
. (12)

(ii) For any sequence of (potentially randomized) hypothesis

tests {TN} with β(TN ) ≤ e−NAN for all N , we have:

lim inf
N→∞

lnα(TN )

ξ2NN
≥ − 1

2σ2(P,Q)
. (13)

Remark 3.1: Corollary 3.1 gives a complete MDP for the

binary hypothesis testing problem, which is new2 to the best

of our knowledge.

Corollary 3.2: Fix some b ∈ R
+ and define AN :=

D(P ||Q)− ξN with ξN :=
√

σ2(P,Q)
N b.

(i) There exists a sequence of deterministic hypothesis tests,

{TN}N≥1, with β(TN ) ≤ e−NAN for all N and:

lim sup
N→∞

α(TN ) ≤ lim sup
N→∞

JN (AN ) =
e−b2/2

√
2πb2

. (14)

(ii) For any sequence of (potentially randomized) hypothesis

tests {TN} with β(TN ) ≤ e−NAN for all N , we have

lim inf
N→∞

α(TN ) ≥ lim inf
N→∞

JN (AN )×(
1−

√
σ2(P,Q)

e
lim sup
N→∞

1

ξN
√
N

)

=
e−b2/2

√
2πb2

(
1− 1√

eb2

)
. (15)

Comments similar to those made in Remark 2.4 also apply

to Corollary 3.2.

Next, we prove the results in Section II by invoking the

previous hypothesis testing results with Q = UX and P = p.

To that end, let {τN} be such that τN = Ω(1/
√
N), τN = o(1)

and τN ∈ R
+. Define RN := H(p)+ τN and rN := RN + ζN

such that |ζN | = O(1/N). We note that,

lim
N→∞

FN (RN )

FN (rN )
= 1, (16)

whose proof is omitted due to space restrictions.

First, we prove Theorem 2.1 using Theorem 3.1. In light

of (4), it suffices to prove (5) (resp. (6)) for Pe,2(N, �NRN�)
(resp. Pe,3(N, �NRN�)). The former (resp. latter) follows by

applying item (i) (resp. (ii)) of Theorem 3.1 with AN =

2The moderate deviations result in [29] refers to a different setup.
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ln |X | − RN + ln 2
N − ln(1−e−NRN+ln 2)

N (resp. AN = ln |X | −
RN − ln 2

N ) and recalling (16).

To prove Corollary 2.1, let RN be as given in the statement

of the corollary. From (4), it suffices to check,

lim sup
N→∞

ln Pe,2(p,N, �NRN�)
τ2NN

≤ − 1

2σ2(p)
,

lim inf
N→∞

ln Pe,3(p,N, �NRN�)
τ2NN

≥ − 1

2σ2(p)
.

The former (resp. latter) inequality follows by applying item

(i) (resp. (ii)) of Corollary 3.1 with AN = ln |X | − RN +
ln 2
N − ln(1−e−NRN+ln 2)

N (resp. AN = ln |X | −RN − ln 2
N ).

We conclude with the proof of Corollary 2.2. To this end,

fix some b ∈ R
+ and define τN :=

√
σ2(p)
N b and RN :=

H(p) + τN . Note that to prove (9), it suffices to check,

lim sup
N→∞

Pe,2(p,N, �NRN�) ≤ e−b2/2

√
2πb2

, (17)

by (4). Equation (17) follows from (5) and invoking the

equality in (14) with P = p, Q = UX and AN = ln 2−RN .

Similarly, to prove (10), it suffices to check

lim inf
N→∞

Pe,3(p,N, �NRN�) ≥ e−b2/2

√
2πb2

(
1− 1√

eb2

)
, (18)

due to (4). Eq. (18) follows from (6) and applying the equality

in (15) with P = p, Q = UX and AN = ln 2−RN .

APPENDIX

We start with a concentration result that will be used

repeatedly; its proof, which is omitted due to space restric-

tions, resembles Dembo-Zeitouni’s proof of exact asymptotics

theorem of Bahadur-Rao (cf. [30, Theorem 3.7.4]) with the

main difference that the proof of Lemma A.1 uses Berry-

Esseen theorem (e.g. [31, Theorem III.1]) whereas the proof

of [30, Theorem 3.7.4] uses Berry-Esseen expansion (e.g. [32,

pg. 538–540]). This difference enables us to prove a result

that is valid for all n ∈ Z
+ at the expense of slightly looser

constants.

Let {Zi} be independent and identically distributed random

variables with law μ, such that Var[Z1] > 0. Let Λ(·)
(resp. Λ∗(·)) denote the log-moment generating function (resp.

Fenchel-Legendre transform) of Z1 (resp. Λ(·)). Assume the

existence of some q ∈ R and a corresponding η(q) ∈ R
+

such that: (i) There exists a neighborhood of η(q) where

Λ(·) < ∞; and (ii) Λ′(η(q)) = q. Define the “tilted”

probability measure via
dμ̃η(q)

dμ (z) := eη(q)z−Λ(η(q)), Ti :=
Zi−q√
Λ′′(η(q))

, and m3(η(q)) := Eμ̃η(q)
[|T1|3]. Set t(a, q) :=

aη(q)m3(η(q))
√
2πΛ′′(η(q)) for any a ≥ 1.

Lemma A.1: For any n ∈ Z
+ and a > 1,

e−nΛ∗(q)[1 + η(q)
√
2πΛ′′(η(q))m3(η(q))]

η(q)
√
2πnΛ′′(η(q))

≥

Pr

[
1

n

n∑
i=1

Zi ≥ q

]
≥ e−nΛ∗(q)e−t(a,q)

(
1− 1

a

)
(1 + t(a, q))

η(q)
√
2πnΛ′′(η(q)){

1− [1 + (1 + t(a, q))2]

(1 + t(a, q))η(q)
(
1− 1

a

)√
enΛ′′(η(q))

}
.

Define Λ0(λ) := lnEP

[
eλ ln

Q(X)
P (X)

]
and Λ1(λ) := Λ0(1 −

λ), λ ∈ R and let Λ∗i (·) be the Fenchel-Legendre transform

of Λi, i = 0, 1. The following properties are easy to verify:

Lemma A.2: For any A ∈ (0,D(P ||Q)]:

(i) There exists a unique η(A) ∈ [0, 1), such that

Λ′0(η(A)) = eH(A)−A and Λ′1(1−η(A)) = A− eH(A).

(ii) Λ∗0(eH(A)−A) = eH(A) and
η(A)

1−η(A) = |e′H(A)|.
(iii) Λ∗1(A− eH(A)) = A.

(iv) η′(A) =
e′H(A)−1
Λ′′0 (η(A)) .

Lemma A.3: For any A ∈ (0,D(P ||Q)):

(i) Λ∗ ′0 (eH(A)−A) = η(A), Λ∗ ′1 (A− eH(A)) = 1− η(A).
(ii) Λ∗ ′′0 (eH(A)−A) = Λ∗ ′′1 (A− eH(A)) = 1

Λ′′0 (η(A)) .

Outline of the Proof of Theorem 3.1: First, define,

m0,3(λ) := EQ̃λ

[∣∣∣∣ln Q(X)

P (X)
− EQ̃λ

[
ln

Q(X)

P (X)

]∣∣∣∣
3
]
,

m1,3(λ) := EQ̃λ

[∣∣∣∣ln P (X)

Q(X)
− EQ̃λ

[
ln

P (X)

Q(X)

]∣∣∣∣
3
]
,

ti(A, a) := a(i+ (−1)iη(A))mi,3(η(A))
√
2πσ2(η(A), P,Q)

for any i ∈ {0, 1}, λ ∈ R, a ∈ R
+ and A ∈ (0,D(P ||Q)).

To prove (i), fix δ ∈ R
+ and define rN := AN − εN with,

εN :=
1

N
ln

(
(1− η(AN ))

√
2πNΛ′′0(η(AN ))

(1 + δ)(1 + t1(AN , 1))

)
.

Consider large enough N s.t. rN ∈ R
+. Define,

AN :=

{
xN ∈ XN :

1

N
ln

PN (xN )

QN (xN )
≥ rN − eH(rN )

}
,

and consider a deterministic hypothesis test that decides P if

the observed sequence is in AN and decides Q otherwise. Let,

αN := PN {Ac
N} and βN := QN {AN} .

Combining Lemma A.1 with Lemma A.2 (iii), it can be shown,

βN ≤ e−NrN
[1 + t1(rN , 1)]

(1− η(rN ))
√

2πNΛ′′0(η(rN ))
≤ e−NAN ,

for N large enough, so the type-II error constraint is satisfied.

And using Lemma A.1 again,

αN ≤ e−NΛ∗0(eH(rN )−rN ) [1 + t0(rN , 1)]

η(rN )
√
2πNΛ′′0(η(rN ))

. (19)

We can show that lim supN→∞
αN

JN (AN ) ≤ 1 by combining

Lemmas A.2 and A.3 with (19), giving item (i) of the theorem.
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We conclude with the proof of item (ii). Fix some

δ ∈ R
+ and a > 1. Further, consider a sufficiently

large N such that both AN ∈ (0,D(P ||Q)) and δN :=[
1− [1+(1+t1(AN ,a))2]

(1+t1(AN ,a))(1−η(AN ))(1− 1
a )
√

eNΛ′′0 (η(AN ))

]
> 0. Define

εN :=
1

N
ln

(
(1 + δ)(1− η(AN ))

√
2πNΛ′′0(η(AN ))

e−t1(AN ,a)
(
1− 1

a

)
(1 + t1(AN , a))δN

)
.

Also, let ε̃N := εN
(
1 + 1

N

)
, rN := AN − εN and r̃N :=

AN − ε̃N . Consider sufficiently large N such that r̃N > 0 and

let AN be as before, but with this rN .

Combining Lemma A.1 with Lemma A.2 (iii) it can be

shown that, for large enough N , βN > e−NAN , which implies

that this test violates the type-II error constraint. Since it is a

likelihood ratio test, this violation can only improve the type-I

error probability of the best test that satisfies the constraint,

therefore the type-I error probability αN gives a lower bound

on the type-I error probability of the best feasible test. Hence,

in order to conclude the proof, we bound αN below.

By applying Lemma A.1 once more, we have,

αN ≥
e−NΛ∗0(eH(r̃N )−r̃N )e−t0(r̃N ,a)

(
1− 1

a

)
(1 + t0(r̃N , a))

η(r̃N )
√
2πNΛ′′0(η(r̃N ))

×{
1− [1 + (1 + t0(r̃N , a))2]

(1 + t0(r̃N , a))η(r̃N )
(
1− 1

a

)√
eNΛ′′0(η(r̃N ))

}
.

Using Lemma A.2 and A.3, it can be verified that this implies

lim infN→∞ αN

JN (AN ) ≥ 1 −
√

σ2(P,Q)
e lim supN→∞

1
ξN
√
N

,

which implies item (ii) of the theorem.
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Finite Blocklength Regime,” IEEE Trans. Inform. Theory, vol. IT–56,
pp. 2307–2359, May 2010.
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[19] V. Kostina and S. Verdú, “Fixed-Length Lossy Compression in the Finite
Blocklength Regime,” IEEE Trans. on Information Theory, vol. IT 58,
pp. 3309–3338, June 2012.

[20] P. Moulin, “The log-volume of optimal constant-composition codes for
memoryless channels, within O(1) bits,” in Proc. 2012 IEEE Int. Symp.
Inf. Theory, Boston, MA, July 2012.
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[23] I. Kontoyiannis and S. Verdú, “Lossless Data Compression at Finite
Blocklengths.” Available from: http://arxiv.org/pdf/1212.2668v1.pdf.

[24] J. Chen, D.-k. He, A. Jagmohan and L. A. Lastras-Montaño, “On
the Redundancy-Error Tradeoff in Slepian-Wolf Coding and Channel
Coding,” in Proc. 2007 IEEE Int. Symp. Inf. Theory, June 2007,
pp. 1326–1330.

[25] D.-k He, L. A. Lastras-Montaño, E.-h. Yang, A. Jagmohan and J. Chen,
“On the Redundancy of Slepian–Wolf Coding,” IEEE Trans. on Inform.
Theory, vol. IT 55, pp. 5607–5627, December 2009.
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