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Abstract—For the problem of lossless compression of a mem-
oryless source, we give a detailed, precise characterization of
the best achievable error probability, in the ‘“moderate error
probability” regime. This is the asymptotic setting where the
probability of error decays to zero while at the same time the rate
converges to the entropy at a speed no faster than 1/ V/N. These
results combine some of the essential benefits of earlier analyses
in terms of error exponents and of Gaussian approximation.
Analogous results for the problem of hypothesis testing are also
established.

I. INTRODUCTION

Perhaps the most classical information-theoretic question
is that of determining the best achievable communication
rate while processing large blocks of data. This results in
the determination of the entropy rate and the rate-distortion
function of a random source, and of the capacity of a noisy
channel; see, e.g., [1] and references therein. In recent years,
a significant amount of effort has been devoted to the ex-
amination of the best possible “second order” performance,
namely to the development and analysis of finer asymptotic
(large blocklength) results. One way to categorize these refined
asymptotics is by dividing them into three cases: The small,
moderate and large error probability regimes, respectively. In
the small error probability regime the goal is to minimize the
error probability under a fixed rate constraint. This regime
is classical; it is well-known that the error probability typi-
cally vanishes exponentially fast, and the best possible error
exponent is well-understood in various information-theoretic
scenarios; see, e.g., [1]-[5] and references therein. Moreover,
for the problem of lossless compression of a memoryless
source, the optimal order of the sub-exponential pre-factor is
also known [6], and corresponding results for channel coding
have recently been developed [7]-[10].

In the large error probability regime, one considers a posi-
tive error threshold and the aim is to characterize the fastest
speed at which the rate can approach the ideal asymptotic
limit, with the constraint that error probability does not exceed
this threshold. Several classical problems have been investi-
gated from this perspective, see, e.g., [11]-[23] and references
therein. Indeed, detailed expansions that not only give the
leading term, but also the lower order terms have been reported
in, e.g., [11], [16], [17], [19], [20], [22], [23].
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The moderate error probability regime has only been ex-
amined recently; it aims to combine the desired features of
both the large and small probability regimes, by considering
the case where the error probability vanishes and at the same
time the rate approaches the ideal asymptotic limit. E.g., in
the case of lossless compression, we would allow the rate
to approach the entropy at a speed slower than in the large
error probability regime, and investigate the behavior of the
smallest possible error probability. Previous work along these
lines has been described in [24]-[29]. These studies report
that error probability vanishes sub-exponentially fast, and they
characterize the rate of this decay.

Unlike with large and small error probability, little is known
about the lower-order terms in the moderate error probability
regime. In this paper we consider the problem of obtaining
more accurate results in this direction, for the problem of
losslessly compressing a block XV = (X1, Xo,..., Xn) gen-
erated by a discrete memoryless source { X} with marginal
distribution p on a finite alphabet X. Our main contribution
is the derivation of a precise asymptotic characterization of
the optimal error probability in the moderate error probability
regime. Specifically, let P.(p, IV, k) denote the smallest achiev-
able probability that the compressed lengths of any lossless
compressor exceed the rate k/N. Let Ry denote a sequence
of rates that converge to the entropy H(p) of the source slowly
enough so that Ry —H(p) > ¢/v/N for some positive constant
c. In Theorem 2.1 we derive an explicit function Fiy (Ry) and
we show that, asymptotically, Pe(p, N, [NRx]) ~ Fn(RnN).
The function Fi(R) is of the form,

—Nes(R)

1
Fn(R) = G(R,p)me .

where es(R) is the usual source coding error exponent and
the constant G(R, p) is explicitly identified; see equation (7).
Several consequences of this result are given and discussed
in the following section. For example, this result recovers and
refines the Moderate Deviations Principle (MDP) for this prob-
lem (see Corollary 2.1), which had earlier been established by
other means [24]. We argue that deducing the MDP in this
manner is particularly illuminating (see Remark 2.2). Although
it is not our focus, our result also gives bounds in the large
error probability regime. There it is order optimal, although its
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bounds on the relevant constants are tight only when the error
probabilities are very small (see Corollary 2.2). Note that, both
results stated above, are established in three cases: (i) when
in the definition of P.(p, N, k) we consider all variable-length
prefix codes; (i7) when the prefix constraint is removed and
we examine all possible injective compressors; (7i7) and when
we consider all fixed-length codes.

The potential utility of these results for practically approxi-
mating the fundamental limit P (p, N, k) at finite blocklengths
N will be examined in future work.

II. MAIN RESULTS

Let {Xn} be a memoryless source with marginal dis-
tribution p on the finite alphabet X. A fixed-to-variable
lossless source code for blocks xV = (z1,z9,...,2x) €
XN of length N generated by the source {Xy}, is a pair
(fn,®n) where the encoder is an injective function fy :
XN — {0,1}* := {0,0,1,00,01,10,11,...} and the decoder

~n : {0,1}* — XN is such that ¢n(fn(xN)) = xV for
all xV. Similarly, given positive integers N,k, an N-to-k
fixed-to-fixed source code (gn,pn): consists of an encoder
gn : XN — {0,1}* and a decoder py : {0,1}F — &N,

For any IV, k and any source distribution p, the best achiev-
able compression performance at finite blocklengths N can be
described in terms of the following fundamental limits:

Per(p, N, k) i= minPr{((fy(X") >k}, (1)
Pea(p. N.K) = minPr {{(/x(X") >k}, @
P.3(p, N, k) := min Pr {QDN(QN(XN)) ] XN} )

The minima in (1), (2) and (3) above are over all variable-
length compressors, all prefix-free variable-length compres-
sors, and all fixed-length compressors, respectively, where ¢(a)
denotes the length of a binary string a € {0,1}*.

As shown in [23, Theorem 1], for any N,k with & <
Nlog, |X| and any source distribution p, we have the fol-
lowing simple relationships:

Pes(p, N, k) <Pei1(p,N,k) =Pea(p, N E+1). (4)

To avoid trivialities, in the sequel we assume that p has
full support and that it is not the uniform distribution on
X. The varentropy of the source is defined (in nats) as
0?(p) := Var,(—Inp(X)). Note that our assumption that
p is not uniform is equivalent to the requirement that the
varentropy is nonzero.

Recall that the source coding error exponent is defined, for
any R € [H(p),In|X|], is,

es(R) =

min

D ;
,omin (qllp)

where the entropy and relative entropy are defined (in nats) as
usual

We are now in a position to state our main result; its proof
is given in Section III.

Theorem 2.1: Consider a sequence of rates { Ry } such that
the difference 7v = Ry — H(p) converges to zero slowly

enough that 7y > ¢/ V/N for some constant ¢ > 0. Then for
each i = 1,2, 3, we have:

Pe,i(p7 N, I—NRN—‘)

lim su <1, 5
Neson Fn(Ry) - ©)
. Pe,i(p7N7 [NRN—‘)
e (&)
a*(p) .. 1
>1-— lim su , (6)
€ N—>oop TN\/N
where,
e—Nes(R) [27TNO’ ),p)] —0.5(1+eg(R))
FN(‘R) = e (R ) (7)
V(R)(L = ~(R))S
with v(R) := 1%541(%1)%)’ where e (R) denotes the derivative of
es(-) at R. ‘
Remark 2.1: In the sequel, it will
be evident that we actually have,
—es(Bn)
limpy o0 ((1 —v(Rn))V2m02(v(RN),p) S 1, for

Ry as given in Theorem 2.1. We include this term to have
a better finite N characterization, which might be useful in
future studies.

Next, we examine the consequences of Theorem 2.1 under
more detailed assumptions on the rate sequence {Ry}. The
following two corollaries are proved in Section III.

Corollary 2.1: Consider a sequence of rates {Ry} such
that the difference 7y = Ry —H(p) is positive and converges
to zero slowly enough that N7y — oo as N — oco. Then
for each i = 1, 2, 3, we have:

lnPe,i(paNa [NRN]) - _ 1

li .
S 202(p)

N —oc0 TJQVN

®)

Remark 2.2: Theorem 2.1 sheds light on the following fact.
If we use the crude approximation P.;(N,R) =~ e~ Nes(F)
and formally apply the scaling of Corollary 2.1, we obtain
the correct answer given in (8). Yet if we use the seemingly
more-accurate approximation Pe;(N,R) =~ e "™ " which
is suggested by the results of Csiszdr and Longo [6] on
the small error probability regime, we do not. The reason is
that the constant that is ignored in the second approximation
diverges as R approaches H(p), and this exactly cancels
the 1/ V/N factor. Existing MDP proofs (including [26] for
channel coding) obscure this fact, while Theorem 2.1 brings
it to the surface.

Remark 2.3: Corollary 2.1 gives a complete MDP for all
three types of compressors, and in particular it recovers the
MDP for fixed-length lossless source coding result! in [24].

Corollary 2.2: Fix some b > 0 consider the rates Ry :=

IThe result of [24] is actually for source coding with side information,
which subsumes the fixed-length lossless source setting.
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H(p)+7n, with 7y := ()}, For each i = 1,2, 3 we have
e—b2/2
lim sup Pe,i(p7 Na ’—NRN-D S B (9)
N—o00 7'('b2
e—b/2 1
liminf P, ;(p, N, [NR > 1-— . (10)
it D) > S (1= )

Remark 2.4: The subsequential limits in (9) and (10) are
both equal to Q(b), where Q(-) is the Gaussian Q-function,
because of the fact that the second-order term in the best
achievable compression rate is #Qfl(e) [23]. Thus, this
result is order optimal, but it does not determine the relevant
constant exactly. It is close, however. Indeed, the right-hand
side of (9) is a commonly-used upper bound on Q(b), and the
ratio of the two bounds tends to one as b tends to infinity.

III. PROOFS

Boldface letters denote vectors, regular letters with sub-
scripts denote their elements, capital letters represent random
variables, lowercase letters denote their individual realizations.
For a finite set X', P(X) is the set of all probability mass
functions on X, Uy is the uniform distribution on X, and p”
denotes the N-fold product distribution of p € P(X) on XV,

We shall prove binary hypothesis testing results that will
be used to prove the results of Section II. To this end, let
X be an arbitrary finite set, and take P # @Q € P(X) to
be arbitrary distributions of full sup}gort For any A € R and

e X, let Qx(x) := (I)JI(Z;QAQ(Z)A,andU (\P,Q) =

z€EX

VarQ [In(Q(X)/P(X))|. Note that, since P # Q we have
o?(-,P,Q) € R* on R. Also, let o (P Q) = 0*(0,P,Q).

Deﬁne en(A) :=mingpv).pd)0)<a D(Q||P), for A > 0.

Further, for A € (0,D(P||Q)], let n(A) := 1_‘:&2’3)' ,

ej;(A) denotes the derivative of ey(-) at A, and,

where

e—Nen(A) [27TN02(77(A),P, Q)] —0.5(1+[ef(A)])

1(A) (1 —n(A)) D]

Consider any N € Z*. Let PY and Q" denote the null
and alternate hypothesis, respectively. For any (potentially
randomized) binary hypothesis test T, «(Tw) and S(Ty)
denotes type-I (P probability of the event that the test
decides Q%) and type-II (QV probability of the event that
the test decides PV) error probability, respectively.

Theorem 3.1: Consider a positive sequence {{y} with
Env = Q(1/VN), éEx = o(1). Let Ay :=D(P||Q) —

(i) There exists a sequence of deterministic hypothesis tests,
{Tn}, such that 3(Ty) < e~ N4~ for all N and:

JN(A) =

a(Ty)
7JN(AN) <1.

(i) For any sequence of (potentially randomized) hypothesis
tests {Tw} with B(Ty) < e~ VA~ for all N, we have:

a(Tn) (P, Q)
l}wgof N(AN) €

lim sup
N—o00

Y

>1-

lim Sup

N—o0 NV

An outline of the proof of Theorem 3.1 given in the
Appendix. The following corollaries are easy consequences
of Theorem 3.1, once one notes that

CH(AN) i 1
which can be verified via Lemma A.2.
Corollary 3.1: Consider a positive sequence {&y} with
En = o(1), limy_s00 EyVN = 00. Let Ay := D(P||Q) —
(i) There exists a sequence of deterministic hypothesis tests,
{Tn}, such that 3(T) < e~N4~ for all N and:

Oé(TN) < 1

&N T 20%(P.Q)

(i1) For any sequence of (potentially randomized) hypothesis
tests {Tw} with B(Tx) < e V4N for all N, we have:

S 73 2&3 Q)
a ’

Remark 3.1: Corollary 3.1 gives a complete MDP for the
binary hypothesis testing problem, which is new” to the best
of our knowledge.

Corollary 3.2: Fix some b € RT and define Ay :=

D(PI|Q) — & with &y = /ZEDp,

(i) There exists a sequence of deterministic hypothesis tests,
{TN}NZL with B(TN) < e~NAN for all N and:

lim

lim sup (12)

N—o0

ninf =y

13)

e—b?/2
limsupa(Ty) < limsup Jy(Ax) = . 14
msupa(ly) < lmsup Jv(dy) = oms (19

(i) For any sequence of (potentially randomized) hypothesis
tests {Tw} with B(Ty) < e V4N for all N, we have

liminf o(Tw) > liminf Jy(An) %
N—o0 N—o0

2
(1 [P
e

N—oc0

1
EnVN

—b%/2 1
=—(1-——|. (15)

V2rh? ( Veb? )

Comments similar to those made in Remark 2.4 also apply
to Corollary 3.2.

Next, we prove the results in Section II by invoking the
previous hypothesis testing results with Q = Uy and P = p.
To that end, let {7y } be such that 7y = Q(1/v/N), 7v = o(1)
and 7y € RT. Define Ry := H(p) + 7y and ry := Ry + (N
such that |(x| = O(1/N). We note that,

F
lim ~N(RN)

= 17
N —o0 FN(T’N)

(16)
whose proof is omitted due to space restrictions.

First, we prove Theorem 2.1 using Theorem 3.1. In light
of (4), it suffices to prove (5) (resp. (6)) for P. o(N, [NRy])
(resp. Pe 3(N, [NRy1)). The former (resp. latter) follows by
applying item (i) (resp. (ii)) of Theorem 3.1 with Ay =

2The moderate deviations result in [29] refers to a different setup.
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In|X| — Ry + 22 w (resp. Ay =
Ry 1r12) and recalhng (16).

To prove Corollary 2.1, let Ry be as given in the statement
of the corollary. From (4), it suffices to check,

In|X| —

. hlPeQ(pan ’—NRN-D 1
lim su : < - ,
N_mop %N —  202%(p)

InP.s3(p, N, [N 1
lim inf — 3P 5 [NAN]) D YIR
N—oo T~ N 202(p)

The former (resp. latter) inequality follows by applying item

(i) (resp. (ii)) of Corollary 3.1 with Ay = In|X| — Ry +
In2 111(1*8_NRN+1H2) _ In2
N - ————x— (tesp. Ay =In|X| — — %)

We conclude with the proof of Corollary 2.2. To this end,

fix some b € RT and define 7y := \/#b and Ry =
H(p) + 7n. Note that to prove (9), it suffices to check,

b2 /2

e

limsup P, ,N,INR < , a7
N—>ocp e,2(p |— N—I) v27rb2

by (4). Equation (17) follows from (5) and invoking the
equality in (14) with P=p, @ =Uy and Ay =In2 — Ry.
Similarly, to prove (10), it suffices to check

efb2/2 (1 1 ) a18)
> - )
TV 2mb? Veb?

due to (4). Eq. (18) follows from (6) and applying the equality
in (15) with P=p, Q = Uy and Ay =1n2 — Ry.

lim inf P. 5(p, N, [NRn])
N—o00

APPENDIX

We start with a concentration result that will be used
repeatedly; its proof, which is omitted due to space restric-
tions, resembles Dembo-Zeitouni’s proof of exact asymptotics
theorem of Bahadur-Rao (cf. [30, Theorem 3.7.4]) with the
main difference that the proof of Lemma A.l uses Berry-
Esseen theorem (e.g. [31, Theorem III.1]) whereas the proof
of [30, Theorem 3.7.4] uses Berry-Esseen expansion (e.g. [32,
pg. 538-540]). This difference enables us to prove a result
that is valid for all n € Z™ at the expense of slightly looser
constants.

Let {Z;} be independent and identically distributed random
variables with law g, such that Var[Z;] > 0. Let A(-)
(resp. A*()) denote the log-moment generating function (resp.
Fenchel-Legendre transform) of Z; (resp. A(-)). Assume the
existence of some ¢ € R and a corresponding 7(q) € R™
such that: (i) There exists a neighborhood of 7(q) where
A(-) < oo; and (i) A'(n(q)) = q. Define the “tilted”
probability measure via d’fj”:’)( ) = en@F M) T =

Zi— L L
ﬁy and m3(77(Q)) L /’Ln(q)HTl' } Set t(a,q) =

an(q )/ 27A"(n(q)) for any a > 1.

Lemma A.1: For any n € Z%t and a > 1,

=" D1+ n(q)y/2xA (n(q))ms (n(0)]
n(q)\/2mnA"(1(q)) -

1 n e—nA*(Q) —t(a,q) (1 1) (1 + t( ))
r|— ZiZq| > -
[Z B TN o)
{1_ [1+ (1+t(a,q))? }
(1+t(a,q))n(q) (1 = £) /enA"(n(q))

Define Ag(\) := InEp '™ 709 | and A1(\) == Ap(1 —
A), A € R and let Af(-) be the Fenchel-Legendre transform
of A;, i =0, 1. The following properties are easy to verify:

Lemma A.2: For any A € (0,D(P||Q)]:

(i) There exists a unique n(A) € [0,1), such that
Ap(1(A)) = en(4) — A and A;(1 — n(A)) = A—eu(A).
(ii) Aj(en(A) — A) = en(A) and "“334) = |e;{<A>|
(i) AJ(A—en(A)) = A.
@) 7'(4) = K-

Lemma A.3: For any A € (0,D(P||Q)):

() Ag'(en(A) —A) =n(A), AT"(A —en(A4)) =1 —n(A).
(i) AF"(en(A) — A) =A1"(A—en(A)) = m.
Outline of the Proof of Theorem 3.1: First, define,

e Q0 g [ e
mo’g()\) = EQA ’hl m — EQA |: n P()():| ] )
e [P g [, PN
ml’g()\) = EQA ’ Hm _EQA |:IIC?()():| ] )
tZ(A, (l) = a(Z + (_l)ln(A my, 3 \/27T02 Q)

forany i € {0,1}, A€ R,a e R* and A € (0,D(P||Q)).
To prove (i), fix 6 € R" and define ry := Ay — ey with,

o e L (= n(AN)) V27 NAG (n(An))
NN (14 6)(1+t1(An, 1)) '

Consider large enough N s.t. ry € RT. Define,
1, PN

Ay = {x cexN: —In
NN (N)
and consider a deterministic hypothesis test that decides P if
the observed sequence is in Ay and decides @) otherwise. Let,

ay =PV {AS) and By = QY {An}.
Combining Lemma A.1 with Lemma A.2 (iii), it can be shown,
[+ t1(rw, 1) < -NA
(1 =n(ry))/2rNAG(n(rn)) — ’

for N large enough, so the type-II error constraint is satisfied.
And using Lemma A.1 again,

>ry — eH(rN)} ,

By <e Ny

[1 + to(TN, 1)]
0(rn)\/2eNAG (n(ry))
We can show that limsupy_, m <1 by combining
Lemmas A.2 and A.3 with (19), giving item (i) of the theorem.

CYN S e*NAS(eH(TN)fTN)

19)
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We conclude with the proof of item (ii). Fix some
§ € RY and @ > 1. Further, consider a sufficiently
large N such that both Ay € (0,D(P||Q)) and oy =

_ 14+(14+41 (A 0))?]
(Tt ) (L —n(An) (1- 3 )JeNagianyy | O Define

1 (1490 = n(An) V2N AT (AN))
NN T e ntna) (1 1) (14 t1(An, a))on

a

Also, let €y = ey (1—|— %), ry ‘= Ay — ey and 7y =
AN — €. Consider sufficiently large N such that 7y > 0 and
let Ax be as before, but with this ry.

Combining Lemma A.1 with Lemma A.2 (iii) it can be
shown that, for large enough N, S > e~ VA~ which implies
that this test violates the type-II error constraint. Since it is a
likelihood ratio test, this violation can only improve the type-I
error probability of the best test that satisfies the constraint,
therefore the type-I error probability a gives a lower bound
on the type-I error probability of the best feasible test. Hence,
in order to conclude the proof, we bound « below.

By applying Lemma A.1 once more, we have,

e~ Mo len(Tn) =) e=to("va) (1 — LY (1 4 ¢4(7n, @)
n(Fn) /2 NAG(1n(7y))
1+ (1+to(Fn,a))?
(1 +to(7n, a))n(Fn) (1 = 3) /eNAF(n(7n))
Using Lemma A.2 and A.3, it can be verified that this implies

an >

.. 2(p, .
hm.mf{\f_m.o %“Z 1 - ,/@hmsum\/_,OO ﬁ,
which implies item (ii) of the theorem.
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