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Abstract—\We develop explicit, general bounds for the prob- steps in the simulation, the estimétg will indeed be close to
ability that the normalized partial sums of a function of a g (F). There are several well-studied approaches in the very
Markov chain on a general alphabet will exceed the steady-state gyiangjve literature on this subject. Partly motivated by this

mean of that function by a given amount. Our bounds combine di - h ider th bl f idi ol
simple information-theoretic ideas together with techniques from ISCcussion, here we consicer the problem or providing simple,

optimization and some fairly elementary tools from analysis. Computable bounds for probabilities of “large deviations” type,
In one direction, we obtain a general bound for the important

class of Doeblin chains; this bound isoptimal, in the sense that 1 nol

in the special case of independent and identically distributed Pr{g ZF(Xi) > Er(F)+ 6}7 (2)
random variables it essentially reduces to the classical Hoeffding i=0

bound. In another direction, motivated by important problems . .
in simulation, we develop a series of bounds in a form which for general classes of Markov chaifiX,, } and functionsr-.

is particularly suited to these problems, and which apply to the Information-theoretic methods have been very influential

more general class of “geometrically ergodic” Markov chains. in the development of asymptotic results as well as non-

asymptotic inequalities for probabilities as in (2). Whigk,, }

are of independent and identically distributed (i.i.d.) random

Wariables, the combinatorial techniques based on the method
. RS _ of types have provided some of the simplest proofs as well

T”UC“O”F under some probability distribution. In pra<_:t|_ce as some of the strongest results [5][6][4]. But in the case

!t Is often th? case .that, al_thougthmay be kpown explicitly, of Markov chains they have been much less successful, their
Its comquatlon is impossible for _aII pracyc_al purposes. F%r licability limited essentially only to the more elementary
example, in areas such as Bayesian statistics, image proc gg

. i . S e of finite state-space Markov chains; see [7] and the
ing, and statistical mechanics, this is the rule rather than t erences therein. This difficulty reflects, to some extent, the

intrinsic limitations of the information-theoretic methods, but
itSis also due to the much greater complexity of the field of
Farge deviations for general Markov chains. For example, the
elegant theorem of Sanov which holds in complete generality

I. INTRODUCTION

A central computational problem in various scientific co
texts is the computation of the expected valig(F') of a

of Markov Chain Monte Carlo (MCMC) techniques. There, th
expectation of interest is estimated by the sample average

1t in the i.i.d. case, requires extremely strong assumptions in
Sn = n ZF(XT;), (1) order to be translated to Markov chains; see Donsker and
=0 Varadhan’s classic results [15], as well as the numerous

where the sequencgX,, ; n > 0} is a Markov chain which counter-examples indicating that such strong assumptions are
is known to have stationary distribution. Usually, under indeed necessary, e.g., [1][3].
appropriate conditions it can be easily verified that the Markov In this work we combine simple information-theoretic
chain {X,} converges to its stationary distribution, and ideas together with techniques from optimization and some
by the law of large numbers we are assured that the samfilgly elementary tools from analysis, to obtain explicit, non-
averages in (1) will indeed converge to the expected valagymptotic bounds for the probabilities (2). In Section Il we
Ex(F) of F underm, asn — oo. Moreover, the central limit derive a natural information-theoretic bound stating that the
theorem provides a rate for this convergence, stating that probability in (2) is always bounded above by the exponential
D of an expression in terms of relative entropy. In Section Il we
Vn[Su — Ex(F)] = N(0, %), specialize to the class of Doeblin chains and give an explicit
whereo? = lim,, =Var(S,) is the asymptotic variance d@f.  bound, and in Section IV we show how information about the
Such asymptotic results may be of limited use if we wamate at which a finite-state chain converges to equilibrium can
to have some sort of guarantee that, after a certain numbetefused to obtain potentially better bounds.



Finally in Section V we briefly describe a series of assocprinciple [15]. It states that, under appropriate conditions on
ated extensions of these results and discuss their applicatitmes Markov chain and o', asn — oo we have,
to more general simulation settings.

n—1

~ i 1
[I. A GENERAL INFORMATION-THEORETICBOUND —log PI{ ZF(Xi) z ”C} ~ ”%fH(WHW ©P), @
=0

Consider a discrete-time Markov chafiX,, ; n > 0} with L , - o )
values in the state spack For simplicity we concentrate hereWhe“,a the |qf|mum ";‘ over aII_ bivariate distributiof with
in the case whent is countable. The distribution dfX,,} is marginalsW* and W= that satisfy
determingd'by its initial staté, =29 € A a}nd'its transition W=W? & Eyi(F) > e
kernel P(i,j) = P;; = PH{X,, = j|X,—1 =i}, 4,5 € A. We
write P, for the distribution of the chain conditional on theThe above proposition gives a non-asymptotic version of the
initial state X, = z, andE,. for the corresponding expectation.upper bound in (4), and offers an elementary “explanation”
The relative entropy between two probability distributionfor the Donsker-Varadhan rate function.
P,Q on Ais defined as usual b§f (P[|Q) = 3=, 4 Pilog §-.
Pinsker's inequality relates the relative entropy to the [1l. D OEBLIN CHAINS

distance; for any?, Q, Next we go on to obtain a nontrivial large deviations

bound by establishing a lower bound on the relative entropy
appearing in Proposition 1. In this section we concentrate on
what is probably the “nicest” class of general-alphabet Markov
chains. These are the chains that converge to equilibrium
IP—Qll =2 sup |P(E) - Q(E)| =Y _|Pi — Qil. exponentially fast, uniformly in the initial condition. This is
EcA i€A formalized by requiring thaf X,,} has a unique stationary
We begin with a simple and somewhat striking observaticg'\smbuuon” such that
due to Csisar [5]. It states that the probability any event ,; _ sup | P"(z,-)—7|| — 0 exponentially fast ag — oo.

can be expressed as the exponential of a relative entropy. The
proof is immediate from the definitions.

H(PIQ) > L1P - Q2. 3)

where theL!-norm is twice the total variation distance,

In fact this is equivalent to the seemingly weaker condition
Lemma 1. (CsISZAR’SLEMMA) Let p be an arbitrary prob- that there exists some > 1 for which d,, < 2. An important

ability distribution on any probability space, afélany event and very useful feature of Doeblin chains is that, whether
with p(E) > 0. Let p|, denote the conditional distributionor not a given chain belongs to this class, can be readily

plz(-) =p(-NE)/p(E). Then: verified via “Doeblin’s minorization condition.” This states
B that there exists an integet > 1, ana > 0 and a probability
—logp(E) = H(pl, |lp). distribution p on A such that

Next we obtain a general upper bound for the probability
of deviations of the partial sums dfX,, }. Its proof, relying

on little more than the above lemma and Jensen’s inequalifee [13] for a detailed discussion. Additional motivation for
'_?h'nSp"edl?y an argument used by Caisin the proof of [S, considering Doeblin chains is given in Remark 3 below.
eorem 1].

P™(x,E) > ap(F), forallze A, EC A. (5)

- ) o Theorem 1. Suppose the Markov chaifiX, } satisfies the
Proposition 1. For any functionF” : A — R which is bounded pgepiin condition (5) and has stationary distribution For

above, any > 0 and any initial conditionx € A, we have any bounded functiod : A — R and anye > 0 we have,

n—1
n—1
~logPu{ Y0 F(X0) 2 nef = (n = DHW|W © P) log P, { S"F(X,) = Ex(F)] > ne}
=0
=0
whereW is a bivariate distribution o x A with marginals c = 11 « 3 12
Wl and W2, W @ P is simply the bivariate distribution = 9 [ﬁef n— 1} ’

WloP)(z,y) = W(z)P(x,y), and wherdV'!, W? satisfy, _ _
( @) (@)P(z,9) y as long as > 1+ 3mF/(«e), whereF = sup,, |F(z)|.

2

(W —W2| < — & Ewi(F)>c— — Remarks.

h B P 1) Note that, if {X,} is a sequence of i.i.d. random
wherea = sup,¢ 4 F'(). variables with common distribution, then the Doeblin

A more general version of Proposition 1 is given in Propo- condition holds withm = o« = 1 andp = w, and the
sition 2 in Section V so we postpone its proof until then. bound of Theorem 1 reduces to
Remark. The classical extension of Sanov's theorem to n—1re¢ 3 72
Markov chains is Donsker and Varadhan's large deviations ) [f T 1}



This is essentially identical to the classical HoeffdingPROOF We first consider the case = 1. Define the positive

bound [9], operatorsC' and D by C;; = ap; and D = P — C. Observe
n/en2 that each row ofD sums to(1 — «) so that|D| = 1 — «,
*g(f) ’ and also that we havéC' = 0 and §PC = 0. Therefore,
which is known to be tight in the i.i.d. case. 0P? = P(C'+ D) = dPD, and hence
2) Theorem 1 improves upon a recent result of Glynn and |6(I — P*)P*| = ||6(I — P*)D¥|
Ormoneit [8] by a factor of 2 in the exponent. The < (1—a)ks( — PY)). (6)

proof technique of [8] is completely different, relying on
martingale methods and a generalization of Hoeffding®ow, for anyx we have
original argument [9}. (I — P?*) = (I — P*) 4+ P*(I — P"),

3) Although Doeblin chains form a very restricted sub-class o . .
of all ergodic chains, it is perhaps the most natural cla§8 multiplying byé on the left, taking norms, and using (6),
to consider in terms of large deviations properties. To |57 — P?*)|| < |6(I — P*)||+ |6P*(I — P*)|
see that, recall that Bryc and Dembo [3] have provided a < (141 =a)M)|5 - PY)|
counter-example of a stationary Doeblin chain for which - '
the regular large deviations principle fails to hold withApplying this inductively we obtain,
any rate function. Moreover, if it were possible to obtain n—1
meaningful exponential bounds as in the theorem above,  ||5(1 — P*")|| < [|6(1 — P)| JT (1 + (1 - @)?)
with exponents that were independent of the initial k=0
condition, this would mean that_ the ergodic theorer@o passing to the limit as — oo yields
would hold for all bounded functions uniformly in the .
initial condition, a fact which is known tanply that the I6(1 — )| = 5] < |61 — P)|| H(l +(1—a)?),
chain is Doeblin [13]. E—0

_ To proceed with the proof we need to introduce some noigy this gives the required bound upon observing that that the
tion. We identify functionsf : A — R by the corresponding gpove infinite product equals/a. To see this, observe that
(infinite-dimensional) column vectos= (f;) and probability e ,th partial product [fromk = 0 to k = (n — 1)] consists
measuresy by the corresponding row vectors = ();  of the first2"~! terms of the geometric series i — ).
similarly, an arbitrary finite signed measyren A is simply a Finally, for the casem > 1, note that by the previous

row vector wit.h'finiteL1 norm, i.e., withy ", | ;| < oo. Recall_ argument we havéls(I — P™)|| > «|d]|. To complete the
that the transition kerne(F;;) or any other (not necessarily roof it will suffice to show that for each

positive) infinite matrix(Q,;) acts on functionsf : A — R 1
on the right and on signed measugesn A on the left by: |o(1 — P)|| > E||5(I — PH)]. (7)

(Qf)i = ZQijfj and (pQ); = Z#iQij~ To that end, let3, = ||6(I — P*)||. Since||P|| = 1, we have
J [

B = [l6(1 - P*)P|

16(1 — PE*) = 8(1 — P)

16(1 = PE+Y) || = [|lo(1 — P)]|

The operator norm of) is defined as
QI = sup > [Qisl,
J

and the convergence parametkr defined above can be ex-1-€ Sk = Bk+1 — (1, implying that 8.1 < (k + 1)4,. This

pressed ad,, = ||P" —II|, where the kernell corresponding establishes our claim (7) and completes the proof. O

to the stationary distributiom is defined byll;; = ;. _PROOF OFTHEOREM 1. From Proposition 1, it suffices to
The first technical step is to establish a quantitative versigf, that

of the following fact: If the chain{X,,} converges to station- 1 ae 3 12

arity quickly andd is a finite signed measure with total mass HW|W'e P)> = [i - ] , (8)

d(A) =0, then||6(1 — P)|| cannot be much smaller thaa||. ) 2 ”_lF " ! ) o

This can be thought of as an upper bound on the operayg;peneverw = (W,;) is a bivariate distribution satisfying

v

norm of the fundamental kernel of the chain. Wt oW < 2 )
Lemma 2. If the chain{X,,} satisfies the Doeblin condition - n-1
(5), then for any finite signed measufesuch thatj(A) = 0, and Ewi(F) > e+ Ep(F)— b (10)

-1
Write W;; = W} Q,; for some transition kernef). Applying

INote also that result of [8] upon which we improve is actually state(Fi)mSkerS mequa“ty (3),
slightly incorrectly there; there should have been an extra factor of 2 in the 1 1 2
estimate of the norm of the functiog there, which translates to an extra H(WHW ®© P) > {Z Wi |Pij - ng\ , (11)

factor of 1/2 in the exponent they finally obtain. ij

(0%
— > —|4]|.
[6(1 = P)| = m||5||

N



but V. SIMULATION

wiPr-Q) = wWrP-w? Here we very briefly sketch some related results that are
= W'P-W'4n—aP— (W2-Wh motivated by problems in computer simulation. Recall [13]
— S(I—P) - (WE W) that an irreducible, aperiodic chainX,,} with values in the
- ’ countable alphabetl is geometrically ergodidf there exists
whereé = 7 — W, Taking norms and using Lemma 2, a functionV : A — [1, 00), positive constants, b and a finite

ZVVHPM — Qi WP = Q)| setS C A such that
i ElV(X1)|Xo = 2] < (1-0)V(x) +bls(z).  (13)

@ 1 2
E”(SH —we=wol. (12) Although Doeblin chains are a subset of geometrically ergodic
But from the two assumptions (9) and (10) we have the boungfgains, in many applications where detailed quantitative results
W' —W?| <2/(n—1)and are sought, it is useful to find such a “Lyapunov functidn”
b satisfying (13) even if the chain is Doeblin or finite-valued.
Now suppose we are simulating a geometrically ergodic
Markov chain{X,} with stationary distributionr, and we

Y

\%

e < Ewi(F)— E«(F)+

n—1

< |Ewi(F) — Er(F)| + F plan to estimate the expected vallg(F') of a given function
_ n—1 F which is is dominated by (in the sense thatF'(z)| <
< |6|IF + F . CV (z) for all z € A, for some constant’). We select a finite
o n— set of statesB C A for which we can find an accurate lower
Substituting these in (12) yields bound on the probabilityr(B), and define
S WHP = Qyl = e ——(2+a/m) U(z) = V(z) - BV(X1)|Xo = 1], =€ 4;
r mF n—1
! e 3 observe that the mean éf underr equals zero.
> —=e— —, Our main result here is an explicit exponential upper bound
mF n—1 . . . L .
. ) ) . for the following conditional probability, for any positive u:
and combining with (11) gives (8) as required. |
n—1 n—1
IV. FINITE-STATE CHAINS PE{Z[F(XZ-) — E.(F)] > ne ‘ S UX)| <,
Every finite state chain which is ergodic — equivalently, =0 =0
irreducible and aperiodic — satisfies Doeblin’s condition. But X, € B}
in many important special cases much more in known about

the speed at which the chain converges to equilibrium, i.e., therhe idea is that we sequentially calculate the values of the
rate at whichd,, — 0; see [2] for a starting point. In thosepartial sums ofF and of U. If it at some point it turns out
cases it may be possible to get more accurate large deviatighigt the partial sums of/ are absolutely bounded hy and
bounds by utilizing this knowledge. This is made precise iyat at that point the chain is in some stateBn then our

the following theorem. See [11][10] for earlier related work.gound gives a precise qualitative guarantee on the probability
Theorem 2. Suppose{X, } is an ergodic finite-state chainthat the partial sums of interest are withinof E,(F). If

(or, more generally, a Doeblin chain) and I&t denote its that guarantee is satisfactory, we stop; if not, we continue and
L' convergence parameter as before. Then the series repeat the above process.

> >0 dn converges and for any bounded functibn A — R It is somewhat remarkable that it is possible to extablish a
and anye > 0 we have, large deviations upper bound at this level of generality, since
n—1 even the standard asymptotic large deviations principle may

log Pm{ Z[F(Xi) —7(F)] > ne} well fail for unbounded functions of geometrically ergodic
i=0 chains, as for example for the simple nearest neighbor random

n—1r1 ¢ 3 72 walk on the nonnegative integers wiff{x) = x.
2 {ﬁ Cn— 1} ’ The proof of this inequality proceeds in two steps. First we
as long as: > 1 + 3dF /e, whereF = sup, | F(z)]. obtain an information-theoretic upper bound for the probability

c%f interest in terms of relative entropy; this is done in Propo-
) ; Fition 2 below. Then we apply Pinsker’s inequality as in the
Theorem 1, with Lemma 2 replaced by the following I'(_:‘mmatl)'eginning of the proof of Theorem 1 above, and we bound the

Their proofs are omitted. . : . i
. . resulting expression from below by calculating a tight lower
Lemma 3. Under the assumptions of Theorem 2 for any finitg,nq on its minimum. This is achieved by constructing an

signed measuré such thaty(4) = 0 we have: appropriate linear program and considering its dual. Similar
151 — P)|| > EW\ tools are used to obtain worst-case exponential bounds for
—d"" constrained problems in the i.i.d. case in [14].

The proof of Theorem 2 is exactly analogous to that



Proposition 2. Let Fi,Fs,...,F, be an arbitrary finite where the bivariate measuf& and its first marginaW1 are,
collection of function fromA to R and B be an arbitrary
Zu

subset ofA. For any initial conditionz € A and nonnegative
constants:y, ¢, ..., cn, We have,
This combined W|th (14) gives the required bound, and it only
—log Pﬁ{ Z Fj( remains to verify thatV’ satisfies the stated properties Indeed,
since the second marginal & is W2 = Lo S0ttt
2 (n—1HW|W'e P), their difference gV —W?2 = £ —4", and since thd.!-norm
is bounded by 2 it follows thatW' — W?2|| < 2/(n —1).
Finally, by the definition ofi¥’! and the evenf, for any j

W——Zu”“ and W' =

n—1

) > nc; forall j, andX,_, € B

whereW is a bivariate distribution o x A whose marginals
W andW? satisfy,

we have thatEy (F;) is given by
2
”Wl o WQH < n—1 1 n—1
not b; n—lZEui(Fj) :Ez{n 1ZFj(Xi71)‘E}
and Ey:(Fj) > c¢j——2 . for all j, =1 ) =1
e B 1< P £ [F(Xn1)|
whereb; := sup, g Fj(z). - [ﬁ Z J } N T{ ‘ }
PROOFE Fix an initial statex € A. Let p denote the measure bj
on A" induced by the distribution ofX]) ' conditioned = T U
on {X, = =z}, write E for the event of interestf ACKNOWLEDGMENTS

;) > ne; for all j, and X,,_, € B}, and lety,

{Ti Fi(x
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—long{"'} > H(pnllp)-

Writing u,, andp as products of conditional distributions,

(14)

(g1 = ma(zo)pa(wi|wo) - pn(@n1lg )
p(xg 1) = (5w(.’110)P(.'1?1|J)0)"'P(l‘n_l‘l‘n_g), [1]

the relative entropy in (14) can be expanded, 2]

n—1

Hlpnllp) =32 3 H (i1 Gl DIPClai) ) (™.
i (4]
(5]
(6]

(7]

Letting 1! denote the one-dimensional marginalgf corre-
sponding tar;_1, andy®*+! denote two-dimensional marginal
corresponding tdx;_1,x;), we can expandi (u.,||p) as

n—1
>3 H (s Gl IPCli) ) (i)
=1 oyt 8]

which, using the joint convexity of the relative entropy in its[o]
two arguments, is bounded below by

(10]
n—1
>3 H(per Cr)|1PCae) i) O
1_11901 1 [12]
_ ZH(Mi’i+1||Ni @P). [13]
i=1

(14]
Using the joint convexity ofd again,

n—1

1 i i 15
Hullp) = (0= 1) Y —H(u | op)
i=1 [16]

> (n=1DHW|W' o P),

wish to thank Andrew Barron for a stimulating conversation
on the large deviations properties of Markov chains.
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