
Relative Entropy and Exponential Deviation Bounds
for General Markov Chains

I. Kontoyiannis
Div of Applied Mathematics
& Dpt of Computer Science

Brown University
Providence, RI 02912, USA

Email: yiannis@dam.brown.edu

L.A. Lastras-Montãno
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Abstract— We develop explicit, general bounds for the prob-
ability that the normalized partial sums of a function of a
Markov chain on a general alphabet will exceed the steady-state
mean of that function by a given amount. Our bounds combine
simple information-theoretic ideas together with techniques from
optimization and some fairly elementary tools from analysis.
In one direction, we obtain a general bound for the important
class of Doeblin chains; this bound isoptimal, in the sense that
in the special case of independent and identically distributed
random variables it essentially reduces to the classical Hoeffding
bound. In another direction, motivated by important problems
in simulation, we develop a series of bounds in a form which
is particularly suited to these problems, and which apply to the
more general class of “geometrically ergodic” Markov chains.

I. I NTRODUCTION

A central computational problem in various scientific con-
texts is the computation of the expected valueEπ(F ) of a
function F under some probability distributionπ. In practice
it is often the case that, althoughπ may be known explicitly,
its computation is impossible for all practical purposes. For
example, in areas such as Bayesian statistics, image process-
ing, and statistical mechanics, this is the rule rather than the
exception; see [2][12][16] and the references therein.

One of the most common solutions to this problem is the use
of Markov Chain Monte Carlo (MCMC) techniques. There, the
expectation of interest is estimated by the sample average

Sn =
1
n

n−1∑
i=0

F (Xi), (1)

where the sequence{Xn ; n ≥ 0} is a Markov chain which
is known to have stationary distributionπ. Usually, under
appropriate conditions it can be easily verified that the Markov
chain {Xn} converges to its stationary distributionπ, and
by the law of large numbers we are assured that the sample
averages in (1) will indeed converge to the expected value
Eπ(F ) of F underπ, asn →∞. Moreover, the central limit
theorem provides a rate for this convergence, stating that

√
n
[
Sn − Eπ(F )

] D−→ N(0, σ2),

whereσ2 = limn
1
nVar(Sn) is the asymptotic variance ofF .

Such asymptotic results may be of limited use if we want
to have some sort of guarantee that, after a certain number of

steps in the simulation, the estimateSn will indeed be close to
Eπ(F ). There are several well-studied approaches in the very
extensive literature on this subject. Partly motivated by this
discussion, here we consider the problem of providing simple,
computable bounds for probabilities of “large deviations” type,

Pr
{ 1

n

n−1∑
i=0

F (Xi) ≥ Eπ(F ) + ε
}

, (2)

for general classes of Markov chains{Xn} and functionsF .
Information-theoretic methods have been very influential

in the development of asymptotic results as well as non-
asymptotic inequalities for probabilities as in (2). When{Xn}
are of independent and identically distributed (i.i.d.) random
variables, the combinatorial techniques based on the method
of types have provided some of the simplest proofs as well
as some of the strongest results [5][6][4]. But in the case
of Markov chains they have been much less successful, their
applicability limited essentially only to the more elementary
case of finite state-space Markov chains; see [7] and the
references therein. This difficulty reflects, to some extent, the
intrinsic limitations of the information-theoretic methods, but
it is also due to the much greater complexity of the field of
large deviations for general Markov chains. For example, the
elegant theorem of Sanov which holds in complete generality
in the i.i.d. case, requires extremely strong assumptions in
order to be translated to Markov chains; see Donsker and
Varadhan’s classic results [15], as well as the numerous
counter-examples indicating that such strong assumptions are
indeed necessary, e.g., [1][3].

In this work we combine simple information-theoretic
ideas together with techniques from optimization and some
fairly elementary tools from analysis, to obtain explicit, non-
asymptotic bounds for the probabilities (2). In Section II we
derive a natural information-theoretic bound stating that the
probability in (2) is always bounded above by the exponential
of an expression in terms of relative entropy. In Section III we
specialize to the class of Doeblin chains and give an explicit
bound, and in Section IV we show how information about the
rate at which a finite-state chain converges to equilibrium can
be used to obtain potentially better bounds.



Finally in Section V we briefly describe a series of associ-
ated extensions of these results and discuss their applications
to more general simulation settings.

II. A G ENERAL INFORMATION-THEORETICBOUND

Consider a discrete-time Markov chain{Xn ; n ≥ 0} with
values in the state spaceA. For simplicity we concentrate here
in the case whenA is countable. The distribution of{Xn} is
determined by its initial stateX0 = x0 ∈ A and its transition
kernelP (i, j) = Pij = Pr{Xn = j|Xn−1 = i}, i, j ∈ A. We
write Px for the distribution of the chain conditional on the
initial stateX0 = x, andEx for the corresponding expectation.

The relative entropy between two probability distributions
P,Q on A is defined as usual byH(P‖Q) =

∑
i∈A Pi log Pi

Qi
.

Pinsker’s inequality relates the relative entropy to theL1-
distance; for anyP,Q,

H(P‖Q) ≥ 1
2
‖P −Q‖2, (3)

where theL1-norm is twice the total variation distance,

‖P −Q‖ = 2 sup
E⊂A

|P (E)−Q(E)| =
∑
i∈A

|Pi −Qi|.

We begin with a simple and somewhat striking observation
due to Csisźar [5]. It states that the probability ofany event
can be expressed as the exponential of a relative entropy. The
proof is immediate from the definitions.

Lemma 1. (CSISZÁR’ S LEMMA ) Let p be an arbitrary prob-
ability distribution on any probability space, andE any event
with p(E) > 0. Let p|

E
denote the conditional distribution

p|
E
(·) = p(· ∩ E)/p(E). Then:

− log p(E) = H(p|
E
‖p).

Next we obtain a general upper bound for the probability
of deviations of the partial sums of{Xn}. Its proof, relying
on little more than the above lemma and Jensen’s inequality,
is inspired by an argument used by Csiszár in the proof of [5,
Theorem 1].

Proposition 1.For any functionF : A → R which is bounded
above, anyc > 0 and any initial conditionx ∈ A, we have

− log Px

{ n−1∑
i=0

F (Xi) ≥ nc
}
≥ (n− 1)H(W‖W 1 � P ),

whereW is a bivariate distribution onA×A with marginals
W 1 and W 2, W 1 � P is simply the bivariate distribution
(W 1�P )(x, y) = W 1(x)P (x, y), and whereW 1,W 2 satisfy,

‖W 1 −W 2‖ ≤ 2
n− 1

& EW 1(F ) ≥ c− a

n− 1
,

wherea = supx∈A F (x).

A more general version of Proposition 1 is given in Propo-
sition 2 in Section V so we postpone its proof until then.

Remark. The classical extension of Sanov’s theorem to
Markov chains is Donsker and Varadhan’s large deviations

principle [15]. It states that, under appropriate conditions on
the Markov chain and onF , asn →∞ we have,

− log Px

{ n−1∑
i=0

F (Xi) ≥ nc
}
≈ n inf

W
H(W‖W 1 � P ), (4)

where the infimum is over all bivariate distributionsW with
marginalsW 1 andW 2 that satisfy

W 1 = W 2 & EW 1(F ) ≥ c.

The above proposition gives a non-asymptotic version of the
upper bound in (4), and offers an elementary “explanation”
for the Donsker-Varadhan rate function.

III. D OEBLIN CHAINS

Next we go on to obtain a nontrivial large deviations
bound by establishing a lower bound on the relative entropy
appearing in Proposition 1. In this section we concentrate on
what is probably the “nicest” class of general-alphabet Markov
chains. These are the chains that converge to equilibrium
exponentially fast, uniformly in the initial condition. This is
formalized by requiring that{Xn} has a unique stationary
distributionπ such that

dn = sup
x
‖Pn(x, ·)−π‖ → 0 exponentially fast asn →∞.

In fact this is equivalent to the seemingly weaker condition
that there exists somen ≥ 1 for which dn < 2. An important
and very useful feature of Doeblin chains is that, whether
or not a given chain belongs to this class, can be readily
verified via “Doeblin’s minorization condition.” This states
that there exists an integerm ≥ 1, anα > 0 and a probability
distributionρ on A such that

Pm(x,E) ≥ αρ(E), for all x ∈ A, E ⊂ A. (5)

See [13] for a detailed discussion. Additional motivation for
considering Doeblin chains is given in Remark 3 below.

Theorem 1. Suppose the Markov chain{Xn} satisfies the
Doeblin condition (5) and has stationary distributionπ. For
any bounded functionF : A → R and anyε > 0 we have,

log Px

{ n−1∑
i=0

[F (Xi)− Eπ(F )] ≥ nε
}

≤ −n− 1
2

[ α

mF
ε− 3

n− 1

]2

,

as long asn ≥ 1 + 3mF/(αε), whereF = supx |F (x)|.
Remarks.

1) Note that, if {Xn} is a sequence of i.i.d. random
variables with common distributionπ, then the Doeblin
condition holds withm = α = 1 and ρ = π, and the
bound of Theorem 1 reduces to

−n− 1
2

[ ε

F
− 3

n− 1

]2

.



This is essentially identical to the classical Hoeffding
bound [9],

−n

2

( ε

F

)2

,

which is known to be tight in the i.i.d. case.
2) Theorem 1 improves upon a recent result of Glynn and

Ormoneit [8] by a factor of 2 in the exponent. The
proof technique of [8] is completely different, relying on
martingale methods and a generalization of Hoeffding’s
original argument [9].1

3) Although Doeblin chains form a very restricted sub-class
of all ergodic chains, it is perhaps the most natural class
to consider in terms of large deviations properties. To
see that, recall that Bryc and Dembo [3] have provided a
counter-example of a stationary Doeblin chain for which
the regular large deviations principle fails to hold with
any rate function. Moreover, if it were possible to obtain
meaningful exponential bounds as in the theorem above,
with exponents that were independent of the initial
condition, this would mean that the ergodic theorem
would hold for all bounded functions uniformly in the
initial condition, a fact which is known toimply that the
chain is Doeblin [13].

To proceed with the proof we need to introduce some nota-
tion. We identify functionsf : A → R by the corresponding
(infinite-dimensional) column vectorsf = (fj) and probability
measuresµ by the corresponding row vectorsµ = (µi);
similarly, an arbitrary finite signed measureµ onA is simply a
row vector with finiteL1 norm, i.e., with

∑
i |µi| < ∞. Recall

that the transition kernel(Pij) or any other (not necessarily
positive) infinite matrix(Qij) acts on functionsf : A → R
on the right and on signed measuresµ on A on the left by:

(Qf)i =
∑

j

Qijfj and (µQ)j =
∑

i

µiQij .

The operator norm ofQ is defined as

|||Q||| = sup
i

∑
j

|Qij |,

and the convergence parameterdn defined above can be ex-
pressed asdn = |||Pn−Π|||, where the kernelΠ corresponding
to the stationary distributionπ is defined byΠij = πj .

The first technical step is to establish a quantitative version
of the following fact: If the chain{Xn} converges to station-
arity quickly andδ is a finite signed measure with total mass
δ(A) = 0, then‖δ(I−P )‖ cannot be much smaller than‖δ‖.
This can be thought of as an upper bound on the operator
norm of the fundamental kernel of the chain.

Lemma 2. If the chain{Xn} satisfies the Doeblin condition
(5), then for any finite signed measureδ such thatδ(A) = 0,

‖δ(I − P )‖ ≥ α

m
‖δ‖.

1Note also that result of [8] upon which we improve is actually stated
slightly incorrectly there; there should have been an extra factor of 2 in the
estimate of the norm of the functiong there, which translates to an extra
factor of 1/2 in the exponent they finally obtain.

PROOF. We first consider the casem = 1. Define the positive
operatorsC andD by Cij = αρj andD = P − C. Observe
that each row ofD sums to(1 − α) so that|||D||| = 1 − α,
and also that we haveδC = 0 and δPC = 0. Therefore,
δP 2 = δP (C + D) = δPD, and hence

‖δ(I − P k)P k‖ = ‖δ(I − P k)Dk‖
≤ (1− α)k‖δ(I − P k)‖. (6)

Now, for anyk we have

(I − P 2k) = (I − P k) + P k(I − P k),

so multiplying byδ on the left, taking norms, and using (6),

‖δ(I − P 2k)‖ ≤ ‖δ(I − P k)‖+ ‖δP k(I − P k)‖
≤ (1 + (1− α)k)‖δ(I − P k)‖.

Applying this inductively we obtain,

‖δ(I − P 2n

)‖ ≤ ‖δ(I − P )‖
n−1∏
k=0

(1 + (1− α)2
k

)

so passing to the limit asn →∞ yields

‖δ(I −Π)‖ = ‖δ‖ ≤ ‖δ(I − P )‖
∞∏

k=0

(1 + (1− α)2
k

),

and this gives the required bound upon observing that that the
above infinite product equals1/α. To see this, observe that
the nth partial product [fromk = 0 to k = (n − 1)] consists
of the first2n−1 terms of the geometric series in(1− α).

Finally, for the casem > 1, note that by the previous
argument we have‖δ(I − Pm)‖ ≥ α‖δ‖. To complete the
proof it will suffice to show that for eachk,

‖δ(I − P )‖ ≥ 1
k
‖δ(I − P k)‖. (7)

To that end, letβk = ‖δ(I − P k)‖. Since|||P ||| = 1, we have

βk ≥ ‖δ(I − P k)P‖
= ‖δ(I − P k+1)− δ(I − P )‖
≥ ‖δ(I − P k+1)‖ − ‖δ(I − P )‖

i.e., βk ≥ βk+1 − β1, implying thatβk+1 ≤ (k + 1)β1. This
establishes our claim (7) and completes the proof. �

PROOF OF THEOREM 1. From Proposition 1, it suffices to
show that

H(W‖W 1 � P ) ≥ 1
2

[ αε

mF
− 3

n− 1

]2

, (8)

wheneverW = (Wij) is a bivariate distribution satisfying

‖W 1 −W 2‖ ≤ 2
n− 1

(9)

and EW 1(F ) ≥ ε + Eπ(F )− b

n− 1
. (10)

Write Wij = W 1
i Qij for some transition kernelQ. Applying

Pinsker’s inequality (3),

H(W‖W 1 � P ) ≥ 1
2

[ ∑
ij

W 1
i |Pij −Qij |

]2

, (11)



but

W 1(P −Q) = W 1P −W 2

= W 1P −W 1 + π − πP − (W 2 −W 1)
= δ(I − P )− (W 2 −W 1),

whereδ = π −W 1. Taking norms and using Lemma 2,∑
ij

W 1
i |Pij −Qij | ≥ ‖W 1(P −Q)‖

≥ α

m
‖δ‖ − ‖W 1 −W 2‖. (12)

But from the two assumptions (9) and (10) we have the bounds
‖W 1 −W 2‖ ≤ 2/(n− 1) and

ε ≤ EW 1(F )− Eπ(F ) +
b

n− 1

≤ |EW 1(F )− Eπ(F )|+ F

n− 1

≤ ‖δ‖F +
F

n− 1
.

Substituting these in (12) yields∑
ij

W 1
i |Pij −Qij | ≥ αε

mF
ε− 1

n− 1
(2 + α/m)

≥ αε

mF
ε− 3

n− 1
,

and combining with (11) gives (8) as required. �

IV. F INITE-STATE CHAINS

Every finite state chain which is ergodic – equivalently,
irreducible and aperiodic – satisfies Doeblin’s condition. But
in many important special cases much more in known about
the speed at which the chain converges to equilibrium, i.e., the
rate at whichdn → 0; see [2] for a starting point. In those
cases it may be possible to get more accurate large deviations
bounds by utilizing this knowledge. This is made precise in
the following theorem. See [11][10] for earlier related work.

Theorem 2. Suppose{Xn} is an ergodic finite-state chain
(or, more generally, a Doeblin chain) and letdn denote its
L1 convergence parameter as before. Then the seriesd =∑

n≥0 dn converges and for any bounded functionF : A → R
and anyε > 0 we have,

log Px

{ n−1∑
i=0

[F (Xi)− π(F )] ≥ nε
}

≤ −n− 1
2

[ ε

dF
− 3

n− 1

]2

,

as long asn ≥ 1 + 3dF/ε, whereF = supx |F (x)|.
The proof of Theorem 2 is exactly analogous to that of

Theorem 1, with Lemma 2 replaced by the following Lemma.
Their proofs are omitted.

Lemma 3. Under the assumptions of Theorem 2 for any finite
signed measureδ such thatδ(A) = 0 we have:

‖δ(I − P )‖ ≥ 1
d
‖δ‖.

V. SIMULATION

Here we very briefly sketch some related results that are
motivated by problems in computer simulation. Recall [13]
that an irreducible, aperiodic chain{Xn} with values in the
countable alphabetA is geometrically ergodicif there exists
a functionV : A → [1,∞), positive constantsδ, b and a finite
setS ⊂ A such that

E[V (X1)|X0 = x] ≤ (1− δ)V (x) + bIS(x). (13)

Although Doeblin chains are a subset of geometrically ergodic
chains, in many applications where detailed quantitative results
are sought, it is useful to find such a “Lyapunov function”V
satisfying (13) even if the chain is Doeblin or finite-valued.

Now suppose we are simulating a geometrically ergodic
Markov chain{Xn} with stationary distributionπ, and we
plan to estimate the expected valueEπ(F ) of a given function
F which is is dominated byV (in the sense that|F (x)| ≤
CV (x) for all x ∈ A, for some constantC). We select a finite
set of statesB ⊂ A for which we can find an accurate lower
bound on the probabilityπ(B), and define

U(x) = V (x)− E[V (X1)|X0 = x], x ∈ A;

observe that the mean ofU underπ equals zero.
Our main result here is an explicit exponential upper bound

for the following conditional probability, for any positiveε, u:

Px

{
n−1∑
i=0

[F (Xi)− Eπ(F )] ≥ nε

∣∣∣∣∣ ∣∣∣ n−1∑
i=0

U(Xi)
∣∣∣ ≤ u,

Xn−1 ∈ B

}
The idea is that we sequentially calculate the values of the

partial sums ofF and of U . If it at some point it turns out
that the partial sums ofU are absolutely bounded byu and
that at that point the chain is in some state inB, then our
bound gives a precise qualitative guarantee on the probability
that the partial sums of interest are withinε of Eπ(F ). If
that guarantee is satisfactory, we stop; if not, we continue and
repeat the above process.

It is somewhat remarkable that it is possible to extablish a
large deviations upper bound at this level of generality, since
even the standard asymptotic large deviations principle may
well fail for unbounded functions of geometrically ergodic
chains, as for example for the simple nearest neighbor random
walk on the nonnegative integers withF (x) = x.

The proof of this inequality proceeds in two steps. First we
obtain an information-theoretic upper bound for the probability
of interest in terms of relative entropy; this is done in Propo-
sition 2 below. Then we apply Pinsker’s inequality as in the
beginning of the proof of Theorem 1 above, and we bound the
resulting expression from below by calculating a tight lower
bound on its minimum. This is achieved by constructing an
appropriate linear program and considering its dual. Similar
tools are used to obtain worst-case exponential bounds for
constrained problems in the i.i.d. case in [14].



Proposition 2. Let F1, F2, . . . , Fm be an arbitrary finite
collection of function fromA to R and B be an arbitrary
subset ofA. For any initial conditionx ∈ A and nonnegative
constantsc1, c2, . . . , cm, we have,

− log Px

{ n−1∑
i=0

Fj(Xi) ≥ ncj for all j, andXn−1 ∈ B
}

≥ (n− 1)H(W‖W 1 � P ),

whereW is a bivariate distribution onA×A whose marginals
W 1 andW 2 satisfy,

‖W 1 −W 2‖ ≤ 2
n− 1

and EW 1(Fj) ≥ cj −
bj

n− 1
for all j,

wherebj := supx∈B Fj(x).

PROOF. Fix an initial statex ∈ A. Let p denote the measure
on An induced by the distribution ofXn−1

0 conditioned
on {X0 = x}, write E for the event of interest,E ={ ∑n−1

i=0 Fj(Xi) ≥ ncj for all j, andXn−1 ∈ B
}
, and letµn

denote the conditional measureµn = p|
E

. From Lemma 1,

− log Px

{
· · ·

}
≥ H(µn‖p). (14)

Writing µn andp as products of conditional distributions,

µn(xn−1
0 ) = µ1(x0)µ2(x1|x0) · · ·µn(xn−1|xn−2

0 )
p(xn−1

0 ) = δx(x0)P (x1|x0) · · ·P (xn−1|xn−2),

the relative entropy in (14) can be expanded,

H(µn‖p) =
n−1∑
i=1

∑
xi−1
0

H
(
µi+1(·|xi−1

0 )‖P (·|xi−1)
)
µi(xi−1

0 ).

Letting µi denote the one-dimensional marginal ofµn corre-
sponding toxi−1, andµi,i+1 denote two-dimensional marginal
corresponding to(xi−1, xi), we can expandH(µn‖p) as

n−1∑
i=1

∑
xi−1
0

H
(
µi+1(·|xi−1

0 )‖P (·|xi−1)
)
µi(xi−2

0 |xi−1)µi(xi−1)

which, using the joint convexity of the relative entropy in its
two arguments, is bounded below by

n−1∑
i=1

∑
xi−1

H
(
µi+1(·|xi−1)‖P (·|xi−1)

)
µi(xi−1)

=
n−1∑
i=1

H
(
µi,i+1‖µi � P

)
.

Using the joint convexity ofH again,

H(µn‖p) ≥ (n− 1)
n−1∑
i=1

1
n− 1

H
(
µi,i+1‖µi � P

)
≥ (n− 1)H(W‖W 1 � P ),

where the bivariate measureW and its first marginalW 1 are,

W =
1

n− 1

n−1∑
i=1

µi,i+1 and W 1 =
1

n− 1

n−1∑
i=1

µi.

This combined with (14) gives the required bound, and it only
remains to verify thatW satisfies the stated properties. Indeed,
since the second marginal ofW is W 2 = 1

n−1

∑n−1
i=1 µi+1,

their difference isW 1−W 2 = µ1−µn

n−1 , and since theL1-norm
is bounded by 2 it follows that‖W 1 −W 2‖ ≤ 2/(n− 1).

Finally, by the definition ofW 1 and the eventE, for any j
we have thatEW 1(Fj) is given by

1
n− 1

n−1∑
i=1

Eµi(Fj) = Ex

[ 1
n− 1

n−1∑
i=1

Fj(Xi−1)
∣∣∣E]

=
n

n− 1
Ex

[ 1
n

n−1∑
i=0

Fj(Xi)
∣∣∣E]

− Ex

[Fj(Xn−1)
n− 1

∣∣∣E]
≥ c− bj

n− 1
, �
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