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Abstract— The “thinning” operation on a discrete random
variable is the natural discrete analog of scaling a continuous
variable, i.e., multiplying it by a constant. We examine the role
and properties of thinning in the context of information-theoretic
inequalities for Poisson approximation. The classical Binomial-to-
Poisson convergence, sometimes referred to as the “law of small
numbers,” is seen to be a special case of a thinning limit theorem
for convolutions of discrete distributions. A rate of convergence
is also provided for this limit. A Nash equilibrium is established
for a channel game, where Poisson noise and a Poisson input
are optimal strategies. Our development partly parallels the
development of Gaussian inequalities leading to the information-
theoretic version of the central limit theorem.

I. I NTRODUCTION

Approximating the distribution of the sum of weakly de-
pendent discrete random variables by a Poisson distribution
is a well studied subject in probability; see [1] for an exten-
sive account. Strong connections between these results and
information-theoretic techniques were established in [2][3];
see also [4]. For the special case of approximating a Bino-
mial distribution by a Poisson, the sharpest results to date
are established via these techniques combined with Pinsker’s
inequality [5][6][7], at least for most of the parameter values.

Given α ∈ (0, 1) and a discrete random variableY with
distribution P on N0 = {0, 1, 2, . . .}, the α-thinning of P is
the distributionTα(P ) of the sum,

Y∑
n=1

Xn, whereX1, X2 . . . , Xn ∼ i.i.d. Bernoulli(α), (1)

and whereY is assumed to be independent of the{Xi}. In
this work we show that the thinning operation can be used
to formulate a version of the law of small numbers, in a
way that naturally resembles the classical formulation of the
central limit theorem. In particular, the “thinning” law of large
numbers we develop gives a Poisson limit theorem for sums
of i.i.d. random variables, and not for triangular arrays. These
results are shown to hold in total variation as well as in
information divergence, and explicit rates of convergence are
obtained. Thinning is also shown to be useful in the context
of a discrete mutual information game, where the optimal
strategies for both sender and jammer are given by the Poisson
distribution.

The central limit theorem has been established in the strong
sense of information divergence in [8]; see also [9] and the

references therein. The main results of this paper can be seen
as analogous theorems for Poisson convergence.

II. T HINNING

The thinning operation was introduced by Rényi in [10]
in connection with the characterization theory of the Poisson
process. Letα ∈ (0, 1) and P be a distribution onN0 =
{0, 1, 2, . . .}. The α-thinning of P is the distributionTα(P )
of the sum (1). An explicit representation ofTα(P ) can be
given as,

Tα (P ) (k) =
∞∑

l=k

P (l)
(

l

k

)
αk (1− α)l−k

, k ≥ 0.

It is immediate from the definition that the thinning of a sum
of independent random variables is the convolution of the
corresponding thinnings.

Example 1:Thinning conserves the set of Bernoulli sums.
That is, the thinned version of the distribution of a finite sum
of Bernoulli random variables (with possibly different para-
meters) is also such a sum. This follows from the last remark
above together with the observation that theα-thinning of a
Bernoulli(p) random variable is the Bernoulli(αp) distribution.

Example 2:Thinning conserves the Poisson law, in that
Tα(Po(λ)) = Po(αλ):

Tα (Po (λ)) (k) =
∞∑

l=k

Po (λ, l)
(

l

k

)
αk (1− α)l−k

=
∞∑

l=k

λl

l!
e−λ

(
l

k

)
αk (1− α)l−k

=
e−λ

k!
αkλk

∞∑
l=k

λl−k

(l − k)!
(1− α)l−k

=
e−λ

k!
(αλ)k

∞∑
l=0

(λ (1− α))l

l!

=
e−λ

k!
(αλ)k

eλ(1−α)

= Po (αλ, k) .
Similarly, the α-thinning of a geometric distribution with

meanλ is a geometric with meanαλ. And since the sum of
n i.i.d. geometric distributions has negative Binomial distri-
bution, the thinning of a negative Binomial is also negative
Binomial.



Recall that the mth factorial moment of a
random variable X is fmm(X) = E

[
X[m]

]
=

E [X(X − 1) · · · (X −m + 1)] . The factorial moments
of an α-thinning are easy to calculate:

E

( Y∑
n=1

Xn

)
[k]

 = E

E

( Y∑
n=1

Xn

)
[k]

| Y


= E

[
αk (Y )[k]

]
= αkE

[
Y[k]

]
.

Thus, thinning scales the factorial moments in the same way
that ordinary multiplication scales the ordinary moments.

Next we show that another class of distributions onN0 that
are conserved by thinning is the class of ultra log-concave
distributions. Recall thatP is ultra log-concaveif the ratio be-
tweenP and a Poisson distribution is a (discrete) log-concave
function; see [11][12]. In particular, the ultra log-concave class
contains all distributions that arise from sums of independent
(possibly non-identical) Bernoulli random variables.

Proposition 3: For anyα ∈ (0, 1), the mapP 7→ Tα(P ) is
injective forP ultra log-concave; that is, ifP andQ are ultra
log-concave withTαP = TαQ thenP = Q.

Proof: An ultra log-concave distribution is uniquely de-
termined by its (factorial) moments because ultra log-concave
distributions satisfy a Craḿer-type tail condition. The thinning
operation simply scales the factorial moments, so if we know
the factorial moments of the thinned distribution we also know
the factorial moments of the original distribution.

Note that theα-thinning Tα(P ) of a distribution P on
N0 is also a distribution onN0. We can extend the thin-
ning operation for distributionsP of random variablesY on
N0/n = {0, 1

n , 2
n . . .}, by letting Tα(P ) be the distribution of

1
n

∑nY
j=1 Xj , where the{Xj} are as before. More generally,

starting with a random variableX with distribution P on
[0,∞), let Pn denote the uniformly quantized version ofP
supported onN0. It is easy to see that, asn → ∞, Tα(Pn)
converges to the distribution ofαX. In this sense, thinning can
be interpreted as a discrete analog of the scaling operation for
continuous random variables.

III. A M UTUAL INFORMATION GAME

Suppose a transmitter sends a signalX through an additive
noise channelZ = Y + X, while a jammer adds independent
noiseY . The sender wishes to maximize the transmission rate
I(X;Z) by choosing an appropriate distribution forX, while
the objective of the jammer is to chooseY so thatI(X;Z) is
minimized:

X −−−−→
⊕

−−−−→ Zx
Y

For continuous random variablesX and Y with power con-
straints of the formE

[
X2
]
≤ P andE

[
Y 2
]
≤ N, this is a

classical problem; see, e.g., [13, p.263][14] and the references
therein. In that case, the Gaussian distributions with mean 0
and variancesP andN , respectively, form a Nash equilibrium

pair, in the sense that neither of the players would benefit by
changing her strategy if the other player does not. The entropy
power inequality plays an essential role in the proof of the
Nash equilibrium condition.

Here we assume thatX andY take values inN0, and that
the strategies of both players are subject to the constraints

E [X] ≤ λin, E [Y ] ≤ λnoise,

where λin and λnoise are positive constants. Moreover, we
assume that the distributions ofX andY are both ultra log-
concave:X ∈ ULC (λ) , λ ≤ λin and Y ∈ ULC (µ) , µ ≤
λnoise, whereULC(λ) denotes the class of ultra log-concave
distributions onN0 with meanλ. A similar but more restricted
version of this game was considered in [15]. The sets of
strategies are not convex, so Von Neumann’s classical result on
the existence of a game-theoretic equilibrium cannot be used.
Nevertheless, our next result states that Poisson distributions
form a Nash equilibrium pair for this game. Thus, the Poisson
additive noise channel is “worst possible” in this particular
class of transmission problems.

Theorem 4:In the above discrete transmission game, the
Poisson distribution is the optimal input distribution for Pois-
son distributed noise: IfZ ∼ Po(λnoise), then:

Po (λin) = arg max
X∈ULC(λ), λ≤λin

I (X;Z) .

Also, if X ∼ Po (λin) , then the Poisson distribution is the
optimal distribution for the jammer, i.e.,

Po (λnoise) = arg min
Y ∈ULC(λ), λ≤λnoise

I (X;Z) .

Thus, the distributionsPo(λin), Po(λnoise) form a unique
Nash equilibrium pair in this discrete transmission game.

Proof: Details will not be given here, but the basic idea
in proving the first half of the theorem is to replaceX by the
sum of two random variables, one with distributionTα (X)
plus a Po (λin (1− α)), so that the sum still has mean less
than or equal toλin and is ultra log-concave. One then shows
that the transmission rate increases whenα decreases, so that
the maximum is attained whenX is replaced by a Poisson
distribution corresponding toα = 0. The second part is proved
in a similar manner. The rest of the arguments follow from
results in [15][12].

IV. T HE LAW OF THIN NUMBERS

For any random variableX with distribution P on N0,
we write P ∗n for the n-fold convolution of P with itself,
i.e., the distribution of the sum ofn i.i.d. copies ofX. In
particular, if P = Bernoulli(p), then P ∗n = Binomial(n, p)
and T1/n(P ∗n) = Binomial(n, p/n). Therefore, the classical
Binomial-to-Poisson convergence can be stated as: IfP =
Bernoulli(p), then T1/n(P ∗n) → Po(p) as n → ∞. In fact,
this result holds in great generality:

Theorem 5 (weak version):Let P be a distribution onN0

with meanλ. ThenT1/n (P ∗n) converges pointwise toPo (λ)
asn →∞.



Proof: Note thatT1/n (P ∗n) =
(
T1/n (P )

)∗n
, and that

we have the following elementary inequalities for allα:

Tα (P ) (0) =
∞∑

l=0

P (l) (1− α)l ≥ (1− α)λ

Tα (P ) (1) =
∞∑

l=1

P (l) lα (1− α)l−1

Tα (P ) (j) ≥ 0, j ≥ 2.

Thus takingα = 1/n:(
T1/n (P )

)∗n (j)

≥
(

n

j

)( ∞∑
l=1

P (l) lα (1− α)l−1

)j (
(1− α)λ

)n−j

=
n[j]

nj · j!

( ∞∑
l=1

P (l) l

(
1− 1

n

)l−1
)j (

1− 1
n

)(n−j)λ

.

Now, for any fixed value ofj andn tending to infinity,

n[j]

nj · j!
→ 1

j!
,

and (
1− 1

n

)(n−j)λ

→ e−λ,

and by the monotone convergence theorem,

∞∑
l=1

P (l) l

(
1− 1

n

)l−1

→ λ.

Therefore,

lim inf
n→∞

(
T1/n (P )

)∗n (j) ≥ Po (λ, j) .

Since all
(
T1/n (P )

)∗n
are probability distributions and so is

Po (λ), the abovelim inf is necessarily a limit.
According to Scheff́e’s Lemma, pointwise convergence of

discrete distributions implies convergence in total variation.
Therefore, an immediate corollary is that,

‖T1/n(P ∗n)− Po(λ)‖ → 0, n →∞.

Theorem 6 (Thermodynamic version):Let P be a ultra log-
concave distribution onN0 with meanλ. Then,

H
(
T1/n (P ∗n)

)
→ H (Po (λ)) , asn →∞.

Proof: The distributionT1/n (P ∗n) is ultra log-concave
and has meanλ so according to [12, Proof of Theorem
2.5] H

(
T1/n (P ∗n)

)
≤ H (Po (λ)) . The entropy function is

lower semi continuous andT1/n (P ∗n) converges toPo (λ)
so lim inf H

(
T1/n (P ∗n)

)
≥ H (Po (λ)) which proves the

theorem.
By D (P‖Q) we shall denote the usualinformation diver-

gence from P to Q,

D (P‖Q) =
∑

j

P (j) log
P (j)
Q (j)

.

For ultra-log concave distributions the thermodynamic version
implies convergence in information divergence, which is a
much stronger sense of convergence than convergence in total
variation. This actually holds in much greater generality:

Theorem 7 (strong version):Let P be a distribution onN0

with meanλ andD (P‖Po (λ)) < ∞. Then,

D
(
T1/n (P ∗n) ‖Po (λ)

)
→ 0, asn →∞.

Proof: The conditionD (P‖Po (λ)) < ∞ implies that
all series in the proof are convergent. According to the data
processing inequality,

D (P1 ∗ P2 ∗ ... ∗ Pn‖Po (λ/n) ∗ ... ∗ Po (λ/n))

≤
n∑

i=1

D (Pi‖Po (λ/n)) .

Therefore, it is sufficient to show that, asn →∞, we have,n·
D
(
T1/n (P ) ‖Po (λ/n)

)
→ 0. Replacing1/n by α, it suffices

to show that,

∂

∂α
D (Tα (P ) ‖Po (αλ)) → 0 as α ↓ 0.

Now, [12, Proposition 3.6] shows that∂∂αTα(P )(z) =
(zTα(P )(z)−(z+1)Tα(P )(z+1))/α and ∂

∂α (Po(αλ))(z) =
(Po(αλ))(z)(z − αλ)/(α). We deduce that

∂

∂α
D (Tα (P ) ‖Po (αλ)) = λD (Tα (P )∼ ‖Tα (P )) ,

whereTα (P )∼ (z) = (z + 1)Tα (P ) (z + 1)/(αλ) is also a
distribution.

Since limα→0 Tα (P ) (0) = limα→0 Tα (P )∼ (0) = 1 and
limα→0 Tα (P ) (z) = limα→0 Tα (P )∼ (z) = 0 for z ≥ 1, the
result follows.

V. RATE OF CONVERGENCE

The weak law of thin numbers only required that the first
moment ofP be finite, and the strong version also required
that the divergence betweenP and the Poisson be finite. Under
the additional condition thatP has a finite second moment we
also obtain a rate of convergence result.

Proposition 8: Let P be a distribution onN0 with meannλ
and finite second moment. Then,

D
(
T1/n (P ) ‖Po (λ)

)
≤ λ

n
+

1
λn2

· V ar (P ) .

Proof: We have,

D
(
T1/n (P ) ‖Po (λ)

)
= D

( ∞∑
k=0

P (k) Bin (k, 1/n)
∥∥∥Po (λ)

)

≤
∞∑

k=0

P (k) D (Bin (k, 1/n) ‖Po (λ)) .

Now, using the fact that the Poisson distributions belong to
an exponential family, together with the elementary bound



D (Bin (l, p) ‖Po (lp)) ≤ lp2, we get,

D (Bin (k, 1/n) ‖Po (λ))
= D (Bin (k, 1/n) ‖Po (k/n)) + D (Po (k/n) ‖Po (λ))

≤ k

n2
+

∞∑
j=0

Po

(
k

n
, j

)
log

( k
n )j

j! exp
(
− k

n

)
λj

j! exp (−λ)

≤ k

n2
+ λ

(
k

nλ
− 1
)2

,

where we have used the elementary inequalityx log x+1−x ≤
x (x− 1) + 1− x = (x− 1)2 . Hence,

D
(
T1/n (P ) ‖Po (λ)

)
≤

∞∑
k=0

P (k) ·

(
k

n2
+ λ

(
k

nλ
− 1
)2
)

=
nλ

n2
+

1
λn2

∞∑
k=0

P (k) · (k − nλ)2

=
λ

n
+

V ar (P )
λn2

,

as claimed.
This gives the following immediate corollary, upon replac-

ing P by P ∗n:
Corollary 9: Let P be a distribution onN0 with meanλ

and finite second moment. Then,

D
(
T1/n (P ∗n) ‖Po (λ)

)
≤ 1

n

(
λ +

V ar (P )
λ

)
.

Next we turn our attention to asymptotic lower bounds.
Let X be a random variable with distributionP and factorial
momentsfmm (X) = E

(
X[m]

)
. If P is a Poisson distribution

with mean λ, then fmm = λm. In general, we will have
fmm = λm only for a few values ofm. Let m0 denote the
first value ofm such thatfmm 6= λm and putγ = fmm0 .
Lower bounds on the rate of convergence are essentially given
in terms ofm0 andγ. Using techniques that were developed
for the central limit theorem [16], we can obtain that,

lim inf
n→∞

n2m0−2D
(
T1/n (P ∗n)

∥∥Po (λ)
)
≥ m0!

(γ − λm0)2

2λm0
.

We conjecture that this lower bound is asymptotically tight.

VI. CHARACTERIZATIONS OF THEPOISSON DISTRIBUTION

The main result of the recent work [12] is that the Poisson
distribution is the maximum entropy distribution in the class
of ultra log-concave distributions. Above we also saw that
the Poisson is the worst noise in a discrete transmission
game. Here we shall give some further characterizations of the
Poisson law, inspired by analogous results for the Gaussian.

Proposition 10: Let X ∼ P be an arbitraryN0-valued
random variable, and writeXα for a random variable with
distributionTα(P ). If there existsα ∈ (0, 1) and an indepen-
dent Poisson random variableZ, such that,

Xα + Z ∼ P,

thenX has a Poisson distribution.

Proof: SupposeZ ∼ Po(λ) and note thatαE(X)+λ =
E(X), so that

λ = (1− α)E [X] > 0.

Writing W for a Po(E(X)) random variable andWβ for an
independent random variable with distributionTβ(Po(E(X)),

Xα + W1−α ∼ X.

Thinning byα and iterating this expression yields,

Xαn + W1−αn ∼ X,

for all n ≥ 1, and takingn →∞ yields the stated result.
Proposition 11: If P is an ultra log-concave distribution

such that for allα ∈ (0, 1) there exists an ultra log-concave
distribution Qα with P = Tα(Qα), then P is a Poisson
distribution.

Proof: Let λ andV denote the first two factorial moments
of P. Then Proposition 7 gives, for alln ≥ 1,

D
(
T1/n

(
Q1/n

)
‖Po (λ)

)
≤

λ + V−λ2+λ
λ

n
≤ λ + 1

n
,

and sinceT1/n

(
Q1/n

)
= P for all n, letting n → 0 implies

D (P‖Po (λ)) = 0.

VII. C OMPOUND THINNING

There seems to be a natural generalization of the thinning
idea, which parallels the generalization of the Poisson dis-
tribution to the compound Poisson. Suppose we start with a
random variableY ∼ P with values inN0. The α-thinned
version ofY corresponds to writingY = 1 + 1 + · · ·+ 1 (Y
times), and then keeping each of these1s with probabilityα,
independently of all the others; cf. (1) above.

If, instead, we start with a random variableY to be
“compound-thinned,” and we choose and fix a distributionQ
on N = {1, 2, . . .} and anα ∈ (0, 1), then thecompound
α-thinned version ofY with respect to Q, or, for short, the
(α, Q)-thinned version ofY , is the random variable which
results from writingY = 1 + 1 + · · · + 1 (Y times), then
keeping each one of those1s with probabilityα, and replacing
each of the1s that are kept by an independent random sample
from Q. This has the corresponding representation,

Y∑
n=1

Xnξn, Xi ∼ i.i.d. Bernoulli(α), ξi ∼ i.i.d. Q, (2)

where the {ξi} are independent of the{Xi}, and Y is
independent of all the other variables. For fixedα and Q,
we write Tα,Q(P ) for the distribution the(α, Q)-thinned
version of Y ∼ P. Then Tα,Q(P ) can be expressed as
a mixture of “compound Binomials” in the same way as
Tα(P ) is a mixture of Binomials. Thecompound Binomial
distributionwith parametersn, α,Q, denotedCBin(n, α,Q),
is the distribution of the sum ofn i.i.d. random variables, each
of which is the product of a Bernoulli(α) random variable and
an independentξ ∼ Q random variable. In other words, it is
the (α, Q)-thinned version of the point mass atn, i.e., the



distribution of (2) withY = n w.p.1. Then we can express
the probabilities of the(α, Q)-thinned version ofP as,

Tα,Q(P )(k) =
∑
`≥k

P (`) · CBin(`, α, Q)(k),

where CBin(`, α, Q)(k) is the probability that a random
variable withCBin(`, α, Q) distribution equalsk.

The following two observations are immediate from the
definitions.

1) Compound Thinning Takes a Bernoulli Sum to a Com-
pound Bernoulli Sum. If P is the distribution of the
Bernoulli sum

∑n
i=1 Xi where the{Xi} are independent

Bernoulli(pi), then Tα,Q(P ) is the distribution of the
“compound Bernoulli sum”

∑n
i=1 X ′

iξi where the{X ′
i}

are independent Bernoulli(αpi), and the{ξi} are i.i.d.
with distributionQ, independent of the{Xi}.

2) Compound Thinning Takes the Poisson to the Compound
Poisson. If P = Po(λ), thenTα,Q(P ) is CPo(αλ,Q),
i.e., the compound Poisson distribution with rateαλ
and base distributionQ. Recall thatCPo(λ, Q) has the
representation,

CPo(λ, Q) ∼
Πλ∑
i=1

ξi,

where theξi are as before, andΠλ is a Po(λ) random
variable that is independent of the{ξi}.

Perhaps the most natural way in which the compound Pois-
son distribution arises is as the limit of compound Binomials.
That is, CBin(n, λ/n, Q) → CPo(λ, Q), as n → ∞, or,
equivalently, asn →∞,

T1/n,Q (Bin(n, λ)) = T1/n,Q(P ∗n) → CPo(λ, Q),

whereP denotes the Bernoulli(λ) distribution. This conver-
gence remains valid in general, for arbitraryP . The next result
generalizes the strong law of thin numbers, and its proof is
analogous to that.

Theorem 12:Let P be a distribution onN0 with mean
λ > 0 and finite variance. Then, for any probability measure
Q on N,

D(T1/n,Q(P ∗n)‖CPo(λ, Q)) → 0, asn →∞.

In fact, the same argument as the proof of the last theorem
works for non-integer-valued compounding. That is, ifQ is an
arbitrary probability measure onRd, then compound thinning
a N0-valued random variableY ∼ P with respect toQ means
that for each of the terms in the expansionY =

∑Y
i=1 1, we

either accept (with probabilityα) or reject it (with probability
1− α), and we replace terms the accepted terms by a vector
randomly sampled fromQ. This makesTα,Q(P ) itself a
probability measure onRd.

It is somewhat remarkable that the statementand proof of
Corollary 9 remain entirely unchanged in this case:

Theorem 13:The bound in Corollary 9 remains valid,
if we replace the thinning operationT1/n by the compound
thinningT1/n,Q with respect toanyprobability measureQ on
Rd.

VIII. D ISCUSSION

In this paper we have obtained a thinning version of the
law of small numbers. This may be termed the “law of thin
numbers.” The proof of the law of thin numbers relies on the
classical law of large numbers. Similarly, the derivation of
the convergence rate in the law of thin numbers relies on the
central limit theorem. Roughly speaking, this indicates that the
level of complexity of the proofs is determined by the number
of moments taken into consideration. In this sense, the law of
large numbers and the law of thin numbers are “first-order”
results, whereas the central limit theorem and the convergence
rate to the law of thin numbers are “second-order” results.

IX. A CKNOWLEDGEMENT

The authors wish to thank E. Telatar and C. Vignat for
hosting a workshop in 2006, where these ideas developed.

REFERENCES

[1] A. D. Barbour, L. Holst, and S. Janson,Poisson Approximation. Oxford
Studies in Probability 2, Oxford: Clarendon Press, 1992.
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