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Abstract—The “thinning” operation on a discrete random references therein. The main results of this paper can be seen

variable is the natural discrete analog of scaling a continuous gas analogous theorems for Poisson convergence.
variable, i.e., multiplying it by a constant. We examine the role

and properties of thinning in the context of information-theoretic II. THINNING

inequalities for Poisson approximation. The classical Binomial-to- o . . L

Poisson convergence, sometimes referred to as the “law of small The thinning operation was introduced bye®i in [10]
numbers,” is seen to be a special case of a thinning limit theorem in connection with the characterization theory of the Poisson
for convolutions of discrete distributions. A rate of convergence process. Letr € (0,1) and P be a distribution onN, =

is also provided for this limit. A Nash equilibrium is established {0,1,2,...}. The a-thinning of P is the distributionT}, (P)

for a channel game, where Poisson noise and a Poisson input L .
are optimal strategies. Our development partly parallels the Of the sum (1). An explicit representation @f,(P) can be

development of Gaussian inequalities leading to the information- given as,

theoretic version of the central limit theorem. S I
T, (P) (k) = ;P (1) (k> oF1-a)F, k>0

Approximating the distribution of the sum of weakly dey; js immediate from the definition that the thinning of a sum

pendent discrete random variables by a Poisson dismb““&f‘independent random variables is the convolution of the
is a well studied subject in probability; see [1] for an eXterEorresponding thinnings.

sive account. Strong connections between these results a”éxample 1: Thinning conserves the set of Bernoulli sums.

information-theoretic techniques were established in [2][3}hat is, the thinned version of the distribution of a finite sum
see also [4]. For the special case of approximating a Bingr gernoulli random variables (with possibly different para-
mial distribution by a Poisson, the sharpest results 10 dgiguters) is also such a sum. This follows from the last remark
are established via these techniques combined with Pinskefs,ye together with the observation that thehinning of a
inequality [S][6][7], at least for most of the parameter valuegzernoullip) random variable is the Bernoulip) distribution.

‘Givena € (0,1) and a discrete random variablé with Example 2: Thinning conserves the Poisson law, in that
distribution P on Ny = {0,1,2,...}, the a-thinning of P is T (Po())) = Po(a))

the distributionT,, (P) of the sum,

I. INTRODUCTION

- ! -
Y T, (Po(\) (k) =Y Po(\1 F(1—a)™"
ZX"’ whereX;, X5..., X,, ~iid. Bernoull{«), (1) (o)) lz:; ol )(k>a 4=
n=1

> )\l —\ l k l—k
. . = —e a” (1 - a)

and whereY is assumed to be independent of th&,;}. In =l k
this work we show that the thinning operation can be used N o ik
to formulate a version of the law of small numbers, in a = e—a’“A’“Z (1— a)l—k
way that naturally resembles the classical formulation of the k! —k (L =k)!
central limit theorem. In particular, the “thinning” law of large -2 o0 o

. . - e k- (A (1 —a))
numbers we develop gives a Poisson limit theorem for sums =0 (ad) Z 1
of i.i.d. random variables, and not for triangular arrays. These ) 1=0 ’
results are shown to hold in total variation as well as in _ g(a)\)kem_‘”
information divergence, and explicit rates of convergence are R
obtained. Thinning is also shown to be useful in the context = Po (a\k).

of a discrete mutual information game, where the optimal Similarly, the a-thinning of a geometric distribution with
strategies for both sender and jammer are given by the Poissogan )\ is a geometric with meanA. And since the sum of
distribution. n i.i.d. geometric distributions has negative Binomial distri-

The central limit theorem has been established in the strobigtion, the thinning of a negative Binomial is also negative
sense of information divergence in [8]; see also [9] and th&inomial.



Recall that the mth factorial moment of a pair, in the sense that neither of the players would benefit by

random variable X is fm,,(X) = F [X[m}] = changing her strategy if the other player does not. The entropy
E[X(X-1)---(X—m+1)]. The factorial moments power inequality plays an essential role in the proof of the
of an a-thinning are easy to calculate: Nash equilibrium condition.
Here we assume thaf andY take values irNg, and that
u u he strategies of both players are subject to the constraints
B X)) |=BlB|(X X |V t
n=1 (] n=1 [k] E [X] <Ain, E [Y] < Anoise

k k
=FE [a (Y)[k]] =o'l [Y[kﬂ : where A\, and Anoise are positive constants. Moreover, we

Thus, thinning scales the factorial moments in the same way-ume that the distributions &f and ¥’ are both ultra log-

that ordinary multiplication scales the ordinary moments. Encave: X € ULC (A),A < AnandY € ULC (p),pn <

Next we show that another class of distributionsNgnthat Anoise WhereULC(A) denotes the class of ultra log-concave

are conserved by thinning is the class of ultra Iog-conca\%Str!bUtlons O.rNO with mean). A§|m|lar b.Ut more restricted
version of this game was considered in [15]. The sets of

distributions. Recall thaP is ultra log-concavef the ratio be- . , .
rategies are not convex, so Von Neumann'’s classical result on

tweenP and a Poisson distribution is a (discrete) Iog-conca\fé ! . o
L . e existence of a game-theoretic equilibrium cannot be used.
function; see [11][12]. In particular, the ultra log-concave claﬁ

contains all distributions that arise from sums of independe%f?x]e:hﬁ;iisé OSiTiSr?J(rz]reZﬁlt‘osrt?;?ss tgﬁ;gﬁjg”ﬁfggggggs
(possibly non-identical) Bernoulli random variables. q P 9 : '

Proposition 3: For anya € (0, 1), the mapP — T, (P) is additive noise channel is “worst possible” in this particular

injective for P ultra log-concave; that is, i and@ are ultra CIE_‘Itc’;e?r;gnjrl?:Stsr:gna%rg\geg:&ete transmission game. the
log-concave withl, P = T,,Q then P = Q. ; 9 '

Proof: An ultra log-concave distribution is uniquely de-Poisson distribution is the optimal input distribution for Pois-

termined by its (factorial) moments because ultra Iog—conc:a\s/gn distributed noise: 1/ ~ Po(Anaise), then:

distributions satisfy a Craén-type tail condition. The thinning Po(\in) = argmax I(X;Z).
operation simply scales the factorial moments, so if we know X€eULC(N), A< in
the factorial moments of the thinned distribution we also knOWIso, if X ~ Po(An)
the factorial moments of the original distribution.

Note that thea-thinning 7,,(P) of a distribution P on
Ny is also a distribution orNg. We can extend the thin- Po (Anoise) = arg min I1(X;7) .
ning operation for distributiong> of random variableg” on YEULC(A); A< Ancise
No/n={0,,2...}, by letting7,,(P) be the distribution of Thys, the distributionsPo(Ain), Po(Anoise) fOrm a unique
152" X;, where the{X;} are as before. More generally,Nash equilibrium pair in this discrete transmission game.
starting with a random variabl& with distribution P on Proof: Details will not be given here, but the basic idea
[0,00), let P, denote the uniformly quantized version &f in proving the first half of the theorem is to repla&eby the
supported oriNo. It is easy to see that, as — oo, To(F,) sum of two random variables, one with distributi@h, (X)
converges to the distribution ofX. In this sense, thinning canplus a Po (Ai, (1 — «)), so that the sum still has mean less
be interpreted as a discrete analog of the scaling operation figéin or equal to\j, and is ultra log-concave. One then shows
continuous random variables. that the transmission rate increases whedecreases, so that
the maximum is attained wheX is replaced by a Poisson
distribution corresponding t@ = 0. The second part is proved
Suppose a transmitter sends a sighathrough an additive in a similar manner. The rest of the arguments follow from

, then the Poisson distribution is the
optimal distribution for the jammer, i.e.,

I11. A MUTUAL INFORMATION GAME

noise channel =Y + X, while a jammer adds independentesults in [15][12]. m
noiseY . The sender wishes to maximize the transmission rate
I(X; Z) by choosing an appropriate distribution f&f, while IV. THE LAW OF THIN NUMBERS
the objective of the jammer is to choo¥eso thatl/(X;Z)is  For any random variableX with distribution P on Ny,
minimized: x @ p we write P*" for the n-fold convolution of P with itself,
i.e., the distribution of the sum of i.i.d. copies ofX. In
T particular, if P = Bernoulli(p), then P** = Binomial(n, p)
and T}, (P*") = Binomial(n, p/n). Therefore, the classical
Y Binomial-to-Poisson convergence can be stated ad? I

For continuous random variables andY" with power con- Bernoullip), thenT ,,(P*") — Po(p) asn — ooc. In fact,
straints of the formE [X?] < P and E [Y?] < N, this is a this result holds in great generality:

classical problem; see, e.g., [13, p.263][14] and the referenceTheorem 5 (weak version)l:et P be a distribution orlNg
therein. In that case, the Gaussian distributions with meansh mean\. ThenT; ,,, (P*") converges pointwise t&o (1))
and variance$® and N, respectively, form a Nash equilibriumasn — co.



Proof: Note thatT} ,, (P*") =
we have the following elementary inequalities for all

ZP l—oz
ZP Y (1—a) !

Ta (P)( )207 j=2.

>(1-a)

Thus takinga: = 1/n:

(Tl/n (P))*n (])

( ) (ZP la(1—a) 1>j((1—a)*)"_j

-y (Ermee2) ) ()

Now, for any fixed value ofi andn tending to infinity,
nyo 4

ni-jl 40

(n—)A
-3) e
n

and by the monotone convergence theorem,

ZP (1—1>l1 — A

and

Therefore,

liminf (71, (P))™ (j) > Po(),j).

n—oo

Since all (T, (P))™
Po (), the abovdim inf is necessarily a limit.

(Tl /n (P))*" , and that For ultra-log concave distributions the thermodynamic version

implies convergence in information divergence, which is a

much stronger sense of convergence than convergence in total

variation. This actually holds in much greater generality:
Theorem 7 (strong version):et P be a distribution oriNg

with meanX and D (P||Po (X)) < co. Then,

D (Tyn (P*™) |Po (X)) — 0, asn — oo.

Proof: The conditionD (P||Po (X)) < oo implies that
all series in the proof are convergent. According to the data
processing inequality,

D (P % Py x ... % Py||Po(A/n)

<3 D(PPo(\/n)).

i=1

.. % Po(\/n))

Therefore, it is sufficient to show that, as— oo, we havej -
D (T1/n (P) ||Po(X/n)) — 0. Replacingl /n by «, it suffices
to show that,

0
—D
5oL (Ta
Now, [12, Proposition 3.6] shows that;T (P)(z) =
(2Ta(P)(2) = (2+ 1) Ta(P)(2+1))/a and Z (Po(a)))(z) =
(Po(a)))(2)(z — a))/(«). We deduce that

2D (T (P) [ Po (o)) =
whereT,, (P)”~ (z) = (z + 1)To (P) (2 + 1)/(a)) is also a
distribution.

Sincelim,_.o T, (P) (0) = limy—0 7, (P)” (0) = 1 and
limy—o Ty (P) (2) = limg—o T, (P)”~ (2) = 0 for z > 1, the
result follows. [ ]

(P)[|Po(a)) =0 as a 0.

AD (To (P)™ | Ta (P)),

are probability distributions and so is

V. RATE OF CONVERGENCE

According to Sche#’s Lemma, pointwise convergence of _ _ .
discrete distributions implies convergence in total variation. The weak law of thin numbers only required that the first

Therefore, an immediate corollary is that,

Wl —0, n— o

IT1/n(P™") = Po

Theorem 6 (Thermodynamic versiordet P be a ultra log-

concave distribution ofNy, with mean\. Then,

H (T (P™")) = H (Po(N)),

asn — oo.

Proof: The distributionT’ /,, (P*") is ultra log-concave
and has meam\ so according to [12, Proof of Theorem
2.5] H (T, (P*™)) < H (Po(\)). The entropy function is
lower semi continuous and ,, (P*") converges toPo (\)
so liminf H (T}, (P*")) > H (Po (X)) which proves the

theorem.

By D (P||@Q) we shall denote the usuaiformation diver-

gence from P to Q

P(j)
D (P||Q) = ZP log 0"

moment of P be finite, and the strong version also required
that the divergence betwedhand the Poisson be finite. Under
the additional condition thaP has a finite second moment we
also obtain a rate of convergence result.
Proposition 8: Let P be a distribution olNy with meann\
and finite second moment. Then,
A 1
D (Tyn (P) ||Po (X)) < ~ s Var (P).
Proof: We have,

D (T (P) || Po (A :D(iP ) Bin (k,1/n) HPO >

k=0

P (k) D (Bin(k,1/n)||Po (X))

E%g

=
Il

0

Now, using the fact that the Poisson distributions belong to
an exponential family, together with the elementary bound



D (Bin (1,p) ||Po (Ip)) < Ip?, we get, Proof: Suppos€Z ~ Po()\) and note thath E(X )+ A\ =
E(X), so that
D (Bin (k,1/n) ||Po (X))
— D (Bin (k,1/n) |Po (k/n)) + D (Po (k/n) ||Po (\) A=(-a)EX]>0
. - . (k) (=E) Writing W for a Po(E(X)) random variable andlV; for an
<+ Z Po (n’]) log —2" independent random variable with distributi®(Po(E (X)),
7=0

n A -
7! eXp( )\) on"‘W]foz ~ X.

2
< % +A (:}\ — 1) , Thinning by o and iterating this expression yields,

Xu" —|— Wl—a" ~ X,

where we have used the elementary inequaliyg z+1—x <
z(x—1)+1—z=(x—1)°. Hence, for all n > 1, and takingn — oo yields the stated result.m
oo k i 2 Proposition 11:If P is an ultra log-concave distribution
D (Ty/n (P)||Po(N)) < ZP(k;) . (2 + A < - 1) ) such that for alla € (0,1) there exists an ultra log-concave
k=0 n nA distribution Q, with P = T,(Q.), then P is a Poisson
ni 1 & distribution.
=2 e Z P (k) - (k = n))* Proof: Let A andV denote the first two factorial moments
k=0 of P. Then Proposition 7 gives, for all > 1,
= 5 7Var (P) V=224
| noo D (1 (@) [Po(n) < 22— < ATL
as claimed. [ | n n
This gives the following immediate corollary, upon replacand sinceT’ /y, (Q1/n) = P for all n, letting n — 0 implies
ing P by P*": D (P||Po()\)) = 0. m
Corollary 9: Let P be a distribution orN, with mean\
and finite second moment. Then, VII. COMPOUND THINNING
1 Var (P) There seems to be a natural generalization of the thinning
D (T1n (P*") |Po () < -~ (A+ 3 ) idea, which parallels the generalization of the Poisson dis-

tribution to the compound Poisson. Suppose we start with a
Next we turn our attention to asymptotic lower boundsandom variabley’ ~ P with values inNy. The a-thinned

Let X be a random variable with distributioR and factorial yersion of v’ corresponds to writing” =1 + 1+ -+ 1 (¥

momentsfm,, (X) = E (X{y,). If P is a Poisson distribution imes), and then keeping each of thesewith probabilitya,

with mean ), then fm,, = A™. In general, we will have jhgependently of all the others; cf. (1) above.

Jmm = A™ only for a few values ofn. Let mo denote the  |f jnstead, we start with a random variablé to be

first value ofm such thatfm,, # A™ and puty = fmm,. “compound-thinned,” and we choose and fix a distributipn

Lower bounds on the rate of convergence are essentially givgi y — {1,2,...} and ana € (0,1), then thecompound

in terms ofmg and~. Using techniques that were developed,-thinned version oft” with respect to Qor, for short, the

for the central limit theorem [16], we can obtain that, (o, Q)-thinned version ofY, is the random variable which
o s (v — )\mo)2 results from writing” = 1+ 1+ --- + 1 (Y times), then

lim inf n="=D (Tyjn (P™)]| Po (V) > mO!W keeping each one of thode with probabilityc, and replacing

We conjecture that this lower bound is asymptotically tight.]?rif: g t_P;:‘Il SS rtg;t t?]r: Egﬁ;gg Oi%ilggigng Se ;rt]t;a:%i?m sample

VI. CHARACTERIZATIONS OF THEPOISSON DISTRIBUTION v

The main result of the recent work [12] is that the Poisson »  Xnén, X ~ii.d. Bernoullia), & ~iid. Q, (2)
distribution is the maximum entropy distribution in the class n»=1
of ultra log-concave distributions. Above we also saw thaihere the {¢;} are independent of thdX;}, and Y is
the Poisson is the worst noise in a discrete transmissipiependent of all the other variables. For fixadand Q,
game. Here we shall give some further characterizations of e write T..o(P) for the distribution the(a, Q)-thinned
Poisson law, inspired by analogous results for the Gaussiagersion of Y ~ P. Then T..o(P) can be expressed as
Proposition 10:Let X ~ P be an arbitraryNo-valued a mixture of “compound Binomials” in the same way as
random variable, and writ&,, for a random variable with T.(P) is a mixture of Binomials. Theeompound Binomial
distribution T, (P). If there exists € (0,1) and an indepen- distribution with parameters:, a, Q, denotedC Bin(n, a, Q),
dent Poisson random variabl, such that, is the distribution of the sum of i.i.d. random variables, each
X, 4 Z~P of which is the product of a Bernoulti) random variable and
¢ ’ an independent ~ @ random variable. In other words, it is
then X has a Poisson distribution. the («, Q)-thinned version of the point mass at i.e., the



distribution of (2) withY = n w.p.1. Then we can express VIII. DI1SCUSSION

the probabilities of thea, @)-thinned version off as, In this paper we have obtained a thinning version of the
Too(P)(k) = ZP(@ - CBin(l, o, Q)(K), law of srr:all numbers. This may be.termed the Ia}w of thin
numbers.” The proof of the law of thin numbers relies on the

classical law of large numbers. Similarly, the derivation of
the convergence rate in the law of thin numbers relies on the
) . ) . central limit theorem. Roughly speaking, this indicates that the
'Iih.e. following two observations are immediate from th?evel of complexity of the proofs is determined by the number

definitions. : . . .

of moments taken into consideration. In this sense, the law of

1) Compound Thinning Takes a Bernoulli Sum to a Cons;qe numpers and the law of thin numbers are “first-order”

pound lI?ernothnSum. lfhP |shthe distribution of the ‘roq 15 \whereas the central limit theorem and the convergence
Bernoulli sum} ;" , X; where the{X;} are independent 1o 1, the law of thin numbers are “second-order” results.
Bernoulli(p;), then T, o(P) is the distribution of the

0>k

where CBin(¢,«, Q)(k) is the probability that a random
variable withC'Bin(¢, «, Q) distribution equals:.

“compound Bernoulli sum?_" ;| X/¢; where the{ X!} IX. ACKNOWLEDGEMENT
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