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Abstract—We report the results of a series of numerical studies
examining the convergence rate for some approximate representa-
tions of α-stable distributions, which are a highly intractable class
of distributions for inference purposes. Our proposed represen-
tation turns the intractable inference for an infinite-dimensional
series of parameters into an (approximately) conditionally Gaus-
sian representation, to which standard inference procedures such
as Expectation-Maximization (EM), Markov chain Monte Carlo
(MCMC) and Particle Filtering can be readily applied. While
we have previously proved the asymptotic convergence of this
representation, here we study the rate of this convergence for
finite values of a truncation parameter, c. This allows the selection
of appropriate truncations for different parameter configurations
and for the accuracy required for the model. The convergence is
examined directly in terms of cumulative distribution functions
and densities, through the application of the Berry theorems and
Parseval theorems. Our results indicate that the behaviour of our
representations is significantly superior to that of representations
that simply truncate the series with no Gaussian residual term.

I. INTRODUCTION

The class of α-stable distributions is of interest because of
its versatility (capability to deal both with heavy-tailedness and
skewness) and ease of interpretation through its parameters.
We refer to [1] for an extensive bibliography of existing works
and application areas, ranging from engineering to finance to
the climatological sciences. The distribution was originally
introduced by [2] and it plays the key role of representing
the limit distribution in a generalized version of the central
limit theorem (CLT), formalized by [3]. In this CLT the finite
variance hypothesis of the classic CLT is relaxed, causing a
power tail decay of the probability density function (pdf) of
the form p(x) ∼ 1

|x|1+α , |x| → ∞, where α ∈ (0, 2) is the tail
parameter. This asymptotic behaviour of the pdf corresponds
to the presence of extreme values in the distribution, with
more extreme values appearing more frequently for decreasing
values of α. The other parameters of the distribution are
β ∈ [−1, 1], the skewness, µ ∈ (−∞,∞), the location, and
σ > 0, the scale. An α-stable distributed random variable X ,
X ∼ Sα(σ, β, µ), has characteristic function (CF) φX(s) :=
E
[
exp (isX)

]
such that

log(φX(s))

=

{
−σα|s|α

{
1− iβ sgn(s) tan πα

2

}
+ iµs if α 6= 1,

−σ|s|
{

1 + iβ sgn(s) 2
π

log |s|
}

+ iµs if α = 1.
(1)
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Fig. 1. Some α-stable pdf s Sα(σ, β, µ). If not specified, α = 0.5,
σ = 1, β = 0.5, µ = 0.

From (1) it is possible to see that the Gaussian case is
recovered for α = 2, the Cauchy distribution for α = 1, β = 0,
and the Lévy distribution for α = 1/2, β = 1.
In contrast with the CF, the density function for α-stable
distributions is not available in closed form except in these
few special cases. In Fig. 1 we give some pdf illustrations,
produced by kernel smoothing histograms of samples gener-
ated through the exact sampling method of [4]. The lack of a
closed form expression of the pdf complicates the inference in
probabilistic models based on the α-stable distribution. Various
approaches to inference have been proposed (see [5]–[12] for
parameter inference) but most are approximate or unwieldy to
implement. In [13]–[16] we have tackled the inference problem
by resorting to very accurate approximations of the stable
distribution via Poisson random series representations. We
stress that the proposed approximation is relevant especially
in large scale computation problems. In fact, as summarized
in the following, we avoid the generation of an infinite series
for each α-stable random variable by replacing the residual
part of the series with a Gaussian random variable.

A. Poisson Sum Representation (PSR)

If we form the following infinite random summation,

X =

∞∑

j=1

WjΓ
−1/α
j − E[W1]b

(α)
j ,



X
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Fig. 2. Illustration of the PSR truncation in terms of the {Γj ≤ c} .

where E[·] denotes the expected value, {Γj}∞j=1 are the arrival
times of a unit rate Poisson process, and the

{
Wj

}∞
j=1

are
independent and identically distributed (i.i.d.) random variables
independent of {Γj}∞j=1, with E[|W1|α] < ∞, then the
random variable X converges in distribution to the stable law
Sα(σ, β, 0), see [17, p.28]. The coefficients b(α)

j are non-zero
only if α ∈ [1, 2) and for this case they are readily computed
and have a telescoping structure, see [17, p.28]. We further
refer to [17, p.28] for the non-linear transformations that map
the moments of Wj and α into the distribution parameters β
and σ. We will not require the b(α)

j coefficients or the non-
linear transformations in this paper.

Now, the utility of the PSR for inference can be seen
by choosing Wj ∼ N (µW , σ

2
W ), the non-centered normal

distribution. Then we can immediately write an auxiliary
variables model for X as

X|{Γj}∞j=1 ∼ N
(
µWm,σ

2
WS

2
)
,

m :=

∞∑

j=1

Γ
−1/α
j − b(α)

j , S2 :=

∞∑

j=1

Γ
−2/α
j ,

Γj − Γj−1 ∼ E(1), j = 1, 2, ...,∞, Γ0 = 0,

where E(1) is the exponential distribution with unity mean. In
this model m and S2 are treated as auxiliary random variables,
and X has a conditionally Gaussian structure. This means
that standard auxiliary variables methods for conditionally
Gaussian models may be readily applied, for example blocked
and collapsed Gibbs samplers [18], Rao-Blackwellised particle
filters [19], [20] and Monte Carlo EM [21]. We note that
the general framework here is a scale and mean mixture of
normals, since we have:

p(X) =

∫

m∈<

∫

S∈<+

N
(
X|µWm,σ2

WS
2
)
p(m,S) dm dS .

For implementations of these ideas, see [13]–[16], [22].

While this exact representation of the stable law is a very ap-
pealing framework in theory, it is computationally intractable
because of the infinite summations involved in m and S. A
possible approach that we have adopted is to truncate the series
to values of Γj ≤ c, say, and to approximate the distribution
of the residual term of the series. As illustrated in Figure 2,
the PSR can be split as

X =Xc +R(c,∞), Xc :=
∑

j:Γj∈[0,c]

WjΓ
−1/α
j , (2)

where R(c,∞) is the PSR residual term, defined as R(c,∞) :=

limd→∞R(c,d), and

R(c,d) :=
∑

j:Γj∈(c,d)

WjΓ
−1/α
j − E[W1]

bdc∑

j=1

b
(α)
j ,

where b·c denotes the lower integer part.

It would seem natural that a CLT applies to R(c,∞),
and indeed the exact mean, m(c,∞), and variance, S2

(c,∞),
of R(c,∞) have been established along with its asymptotic
normality (as c → ∞) in [22] (see also [23] for a special
case of the result when σW = 0). This CLT result helps to
justify the Gaussian approximation R̂(c,∞) which is made in
practical inference procedures:

R̂(c,∞) ∼ N
(
m(c,∞), S

2
(c,∞)

)

an approximation which converges to the distribution of the
true residual R(c,∞) as c→∞, and which is chosen to retain
the conditionally Gaussian stucture of the model:

X|{Γj ∈ [0, c]} approx∼

N

µW ∑
j:Γj∈[0,c]

Γ
−1/α
j +m(c,∞), σ

2
W

∑
j:Γj∈[0,c]

Γ
−2/α
j + S2

(c,∞)

 .

Denoting with Z(c,∞) := (R(c,∞)−m(c,∞))/S(c,∞) the stan-
dardized residual, in [22] we showed that its CF , φZ(c,∞)

(s),
can be written as

φZ(c,∞)
(s) = exp

(
−s2/2 + ξc(s)

)
, (3)

where

ξc(s) :=
∑

k≥3

ik

k!

α
k−α(
α

2−α

)k/2 c
1−k/2gks

k, gk :=
E[W k

1 ]
(
E[W 2

1 ]
)k/2 .

(4)

Then the CLT for R(c,∞) was proven showing that φZ(c,∞)
(s)

converges pointwise to the CF of the standard normal distri-
bution N (0, 1)

φ(s) = exp
(
−s2/2

)
. (5)

B. Contributions of the paper

While the CLT proves that the approximation scheme
becomes exact as the truncation limit c approaches infinity, we
would ideally wish to have bounds on the error made for the
finite values of c used in practice; hence the aims of this paper
are to study numerically the error in distribution functions
and density functions under finite values of c, potentially
allowing automatic choice of the value of c for different
parameter regimes. The contributions of the paper are to apply
numerical integration methods to probability theoretic results
in order to predict behaviour of the approximate model for
finite c. We apply numerical integration to Berry theorems
and Parseval theorems for a wide range of parameter settings,
in order to test the Gaussianity of the residual series. We also
provide preliminary results about the convergence of the whole
approximated series to the α-stable law. We focus here on the
symmetric stable law, in the expectation that this will give
guidance to performance in general asymmetric stable laws. In
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Fig. 3. Q1, Q2, Q3, the numerical approximations of I1 (left), I2 (centre) and I3 (right), in a double logarithmic scale, as a function of 3 ≤ c ≤ 1000 and
α = 0.1, . . . , 1.9, α 6= 1, when Wj ∼ N (0, σ2

W ). The plots include approximate error bands for each line.

our current work however, we are extending the frameworks
to analyse convergence results in theory, without the need for
numerical simulations, and to asymmetric stable laws.

II. DIVERGENCE MEASURES

Ideally, we would like to analytically convert the notion
of convergence between CFs mentioned in section I-A to
convergence between cumulative distribution functions (cdfs)
and probability density functions (pdfs), the latter in terms of
the commonly used divergence measures, such as Kullback-
Leibler divergence (KLD) and α-divergence, see [24]. How-
ever, due to intractability of the stable pdf, such analytical
study is not readily available in closed form. Hence, in the rest
of this paper theoretical results which relate the deviation of
CFs to deviations in cdfs and pdfs will be used in a numerical
simulation to establish intuition for further research on this
topic.

A. cdf divergence

If FZ(c,∞)
(x) is the cdf of Z(c,∞) and Φ(x) is the cdf of the

standard normal, then, by means of Berry’s smoothing lemma,
see [25, Lemma 2, p.538], for any c ≥ 1, Ω > 0 and x ∈ R

∣∣∣FZ(c,∞)
(x)− Φ(x)

∣∣∣ ≤ 1

π

∫ Ω

−Ω

∣∣∣φZ(c,∞)
(s)− φ(s)

∣∣∣
|s| ds+

9.6

Ω
(6)

Ω→∞−→ 1

π

∫ ∞
−∞

∣∣∣φZ(c,∞)
(s)− φ(s)

∣∣∣
|s| ds := I1, (7)

where (7) is meaningful only if the integral converges, other-
wise the truncated version (6) should be considered.

B. pdf divergence

Alternatively, if φZ(c,∞)
(s) and φ(s) are integrable func-

tions, we can use the continuity theorem for densities, see [25,
p.510]. Defining fZ(c,∞)

(x) and f(x) to be the pdf of Z(c,∞)

and the standard normal pdf, respectively, we have
∣∣∣fZ(c,∞)

(x)− f(x)
∣∣∣ ≤ 1

2π

∫ ∞

−∞

∣∣∣φZ(c,∞)
(s)− φ(s)

∣∣∣ds := I2.

If I2
c→∞−→ 0, this implies that the pdf of the residual converges

uniformly to the standard normal pdf, given that I2 does not
depend on x.

C. Integrated squared error

Finally, we can consider convergence to zero of the inte-
grated squared error (ISE) between pdfs, defined by

ISE
(
fZ(c,∞)

(x), f(x)
)

:=

∫ ∞

−∞

(
fZ(c,∞)

(x)− f(x)
)2

dx.

If φ2
Z(c,∞)

and φ2(s) are integrable, then, using Parseval
identity, see [25, p.510], we can express the ISE in terms of
the CFs as follows

ISE
(
fZ(c,∞)

(x), f(x)
)

=
1

2π

∫ ∞
−∞

(
φZ(c,∞)

(s)− φ(s)
)2

ds := I3.

III. NUMERICAL SIMULATIONS OF CONVERGENCE

In the following we assume that the integrability criteria
in sections II-A to II-C are satisfied and we empirically verify
them by checking that Q1, Q2, Q3, the numerical approxi-
mations of the integrals I1, I2, I3, do not diverge. In detail,
we use the Gauss-Kronrod quadrature scheme throughout
the MATLAB function ‘quadgk’ [26] in computing such
approximations as a function of c ≥ 1 and a range of different
α values. We consider Wj ∼ N (0, σ2

W ), corresponding to the
symmetric stable distribution (β = 0). For this scenario, in [22]
we have shown how the specific structure of the coefficients
gk in (4) can be exploited to provide a closed form expression
of ξc(s)

ξc(s) = ψc(t) = c

(
1− e−t − taγ (1− a, t) +

at

(1− a)

)
,

with a = α/2, t = (1−a)s2

2ca and γ(s, t) :=
∫ t

0
xs−1 e−x dx the

lower incomplete gamma function.

Figure 3 shows the dependence of Q1, Q2, Q3 on c and α,
on a double logarithmic scale, together with approximate
numerical error bands. These do not appear visible, when
compared to the Qi values, suggesting empirically that the
chosen numerical method is well behaved and has converged.
The relation between log(Qi), i ∈ {1, 2, 3}, and log(c) is very
close to affine, noting that we might have to take c ≥ 10 for
small values of α. Then Figure 4 shows results of the linear
regressions for finding ui and vi in

log(Qi) ≈ vi log(c) + ui, i ∈ {1, 2, 3}, c ≥ 10,

corresponding to Qi ≈ exp(ui) c
vi .

In detail, Q1 and Q3 have a decay approximately proportional
to 1/c, while Q2 decays approximately as 1/c2, when c→∞.
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IV. APPROXIMATION ERROR IN THE STABLE LIKELIHOOD

In this section we examine the error caused by the overall
approximation of the stable law with the PSR plus Gaussian
residual. Ultimately this can be considered as the real error
quantity of interest when performing likelihood or Bayesian
inference with the model. Recalling that Xc is the truncated
PSR, as in (2), define

X := Xc +R(c,∞), (‘true’ stable law variate)

X̂ := Xc + R̂(c,∞), (Gaussian approximated series).

Since R(c,∞) and R̂(c,∞) are independent of Xc, by mul-
tiplicative property of the exponential (see e.g. [25, p.500])
we immediately have the following relations between CFs for
these random variables

φX(s) = φXc(s)φR(c,∞)
(s), (8)

φX̂(s) = φXc(s)φR̂(c,∞)
(s) = φX(s)φR̂(c,∞)

(s)/φR(c,∞)
(s).

(9)

We recall that φX(s) is given in closed form expression in
equation (1), and the CFs for the true and approximate resid-
uals are obtained as affine transformations of their normalised
counterparts as (see e.g. [25, p. 499])

φR(c,∞)
(s) = φZ(c,∞)

(S(c,∞)s) exp
(
ism(c,∞)

)
,

φR̂(c,∞)
(s) = φ(S(c,∞)s) exp

(
ism(c,∞)

)
,

with m(c,∞) and S(c,∞) their mean and standard deviation, as
in [22], φZ(c,∞)

(s) defined in (3), and φ(s) defined in (5).

As in Section II-A, we aim to convert pointwise errors in
the CF to convergence of the cdf. We then denote by FX(x),
FXc(x), FX̂(x) the cdfs of X , Xc and X̂ , respectively. By
means of the previous definitions in section I and eqs. (8)
and (9) and using the same limiting technique as in Section
II-A, we can bound the absolute difference of such cdfs as
follows

∣∣FX(x)− FXc(x)
∣∣ ≤ 1

π

∫ ∞
−∞

∣∣φX(s)
∣∣

|s|

∣∣∣∣∣1− 1

φR(c,∞)
(s)

∣∣∣∣∣ ds := IXc1 ,

∣∣FX(x)− FX̂(x)
∣∣ ≤ 1

π

∫ ∞
−∞

∣∣φX(s)
∣∣

|s|

∣∣∣∣∣∣1−
φR̂(c,∞)

(s)

φR(c,∞)
(s)

∣∣∣∣∣∣ ds := IX̂1 .
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Fig. 5. Numerical approximation of IX̂1 , in a double logarithmic scale, as a
function of 1 ≤ c ≤ 5000 and α ∈ {0.1, . . . , 1.9}, when Wj ∼ N (0, 2).

Given that |φXc(s)| < 1, IX̂1 is finite when I1 is finite,
while we have no guarantees on IXc1 . We have in fact proved
analytically (proof to be presented in a later publication) that,
when µW = 0, IXc1 is larger than IX̂1 for any value of
α ∈ (0, 2] and c > log(2)/(γ(1 − a, 1) + e−1 − 1), where
a = α/2. Therefore our Gaussian residual approximation is
likely to have lower error in cdf than direct truncation of the
series, a result borne out by previous experimental simulations,
see [23, p.56-57]. Hence, in the simulations in Figure 5 we
show just QX̂1 the numerical approximation of the smaller error
term IX̂1 , noticing that the numerical approximation of IXc

does not seem to be finite when α > 1. We observe that QX̂1
is asymptotically lower for smaller values of α, a reversal of
the trend in the residual convergence to Gaussianity shown in
Fig. 3. We believe this is because the residual term is of much
less relative significance compared to the heavy-tailed initial
terms in the PSR as α decreases. We can also observe that the
rate of convergence is dramatically improved for smaller α,
again in contrast with Fig. 3.

V. DISCUSSION AND CONCLUSION

In this paper we have generated numerical simulation
results to characterise the error made when approximating the
otherwise intractable PSR residual series as a Gaussian. The
results show that convergence is overall poorer for smaller val-
ues of α, which seems reasonable since these cases are further
from the Gaussian limit of the stable law (α → 2). Rate of
convergence as c increases appears to be approximately O(1/c)
for distribution functions, almost independent of α. These
trends appear to be somewhat reversed in our initial studies for
the approximation error for the whole stable distribution (i.e.
not just analysing the residual term) in that errors are smaller
for smaller α. This is probably because the residual terms are
dwarfed in size by the larger terms in the very heavy-tailed
earlier parts of the series. In addition, our approximation of
the residual is found to be significantly more accurate than the
more traditionally analysed approach [27], [28] which simply
truncates the series without approximating the residual. In our
current work we have proved some theoretical convergence
rates for the symmetric stable laws, and are extending these
theoretical results to the asymmetric case. These further results
will be presented in future publications. Many of our results
can also be extended to the case of continuous-time α-stable
Lévy processes, see [16], [29]–[32] and this is also a topic of
current investigation.
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