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Abstract

We give a development of the theory of lossy data compression from the point of view
of statistics. This is partly motivated by the enormous success of the statistical approach
in lossless compression, in particular Rissanen’s celebrated Minimum Description Length
(MDL) principle. A precise characterization of the fundamental limits of compression
performance is given, for arbitrary data sources and with respect to general distortion
measures.

The starting point for this development is the observation that there is a precise
correspondence between compression algorithms and probability distributions (in analogy
with the Kraft inequality in lossless compression). This leads us to formulate a version
of the MDL principle for lossy data compression. We discuss the consequences of the
lossy MDL principle and explain how it leads to potential practical design lessons for
vector-quantizer design.

We introduce two methods for selecting efficient compression algorithms, the lossy
Maximum Likelihood Estimate (LMLE) and the lossy Minimum Description Length Esti-
mate (LMDLE). We describe their theoretical performance and give examples illustrating
how the LMDLE has superior performance to the LMLE.

1 Introduction

Formally and somewhat roughly speaking, the central problem of universal data compres-
sion is that of selecting an appropriate code among a given family, in order to obtain good
compression performance. Following [3], we identify compression algorithms with probability
distributions on the reproduction space.

More precisely, consider a source {Xn} with values in the alphabet A, which is to be
compressed with distortion no more thanD with respect to an arbitrary sequence of distortion
measures ρn : An × Ân → [0,∞), where Â is the reproduction alphabet. For a source string
xn

1 = (x1, x2, . . . , xn) ∈ An, let B(xn
1 ,D) denote the distortion-ball of radius D around xn

1 :

B(xn
1 ,D) = {yn

1 ∈ Ân : ρn(xn
1 , y

n
1 ) ≤ D}.
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We consider the class of codes Cn : An → {0, 1}∗ that operate at distortion level D. Any
such code Cn is the composition of a quantizer φn that maps An to a (finite or countably
infinite) codebook Bn ⊂ Ân, followed by a prefix-free encoder ψn : Bn → {0, 1}∗. The code
Cn operates at distortion level D, if ρn(xn

1 , φn(xn
1 )) ≤ D for all xn

1 ∈ An. The figure of merit
here is, of course, given by the length function Ln of the code Cn:

Ln(xn
1 ) = length ofψn(φn(xn

1 )) bits.

As shown in [3], there is a precise correspondence between compression algorithms and
probability distributions Q on Ân. Similarly to the lossless case, this correspondence is
expressed in terms of the idealized lossy Shannon code-lengths

Ln(Xn
1 ) = − logQ(B(Xn

1 ,D)) bits. (1)

More specifically, for any code Cn with length-function Ln operating at distortion level D,
there is a probability distribution Qn on Ân such that Ln(xn

1 ) ≥ − logQn(B(xn
1 ,D)) for all

xn
1 ∈ An. Conversely, for any sequence of “admissible” distributions {Qn}, there is a sequence

of codes {Cn, Ln} operating at distortion level D, such that, for (almost) any realization of
the source, Ln(Xn

1 ) ≤ − logQn(B(xn
1 ,D)) +O(log n), eventually.

Thus motivated, we pose the problem of selecting a “good” code among a given family, as
the statistical estimation problem of selecting one of the available probability distributions
{Qθ; θ ∈ Θ} on the reproduction space.

2 Inference and Lossy Compression

In the lossless case the problem optimal compression is, theoretically at least, equivalent to
finding a probability distributionQ that in some sense minimizes the code-lengths − logQ(xn

1 ).
In that case the optimal choice is simply to take Q to be the true source distribution.

As it turns out [3], in the lossy case the best choice is to take Q to be the optimal reproduc-
tion distribution Q∗ on Ân, i.e., the optimal output distribution in Shannon’s rate-distortion
problem. Thus, our goal here is to do statistical inference with the goal of estimating this
distribution Q∗, and not the true source distribution, from the data.

More generally, given a family of probability distributions {Qθ; θ ∈ Θ} on the reproduction
space, we want to chose the one whose limiting coding rate, call it R(P, θ,D),

R(P, θ,D)
�
= lim

n→∞− 1
n

logQθ(B(Xn
1 ,D)) bits/symbol, (2)

is as small as possible. IfQ∗ = Qθ∗ happens to be in the above class, then of courseR(P, θ∗,D)
is simply the rate-distortion function of the source. But in general we do not always require
that to be the case, and we think of our target distribution Qθ∗ as that corresponding to
θ∗ = arg minθ R(P, θ,D). Intuitively, we think of Q∗

θ as the simplest distribution describing
all the regularity in the data, with accuracy no worse than D.

3 A Lossy MDL Principle

A natural way to estimate the optimal θ∗ empirically is to try and minimize the idealized
code-lengths (1), or equivalently to maximize the probabilities Qθ(B(Xn

1 ,D)). We thus define
the Lossy Maximum Likelihood Estimate (LMLE) as

θ̂LML
n = arg min

θ∈Θ
[− logQθ(B(Xn

1 ,D))]. (3)
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Our first main result (Theorem 1 below) states that, under very general conditions [2][4],
this estimate is consistent as n → ∞. But as with the classical (lossless) maximum likeli-
hood estimate (MLE), θ̂LML

n also has some undesirable properties. First, the infimum in the
definition of θ̂LML

n is not really a code-length; if we choose one of the θ’s based on the data,
we should also describe the chosen θ itself. Indeed, there are examples [2] where θ̂LML

n is not
consistent but it becomes consistent when appropriately modified to correspond to an actual
two-part code. Second, maximum-likelihood-type estimates tend to “overfit” the data: For
example, if in the classical (lossless) setting we try to estimate the distribution of a binary
Markov chain, then, even if the data turns out to be i.i.d., the Maximum Likelihood Estimate
(MLE) will typically be a Markov (non-i.i.d.) distribution.

To rectify these problems, we consider “penalized” versions of the lossy MLE, similar
to those considered in the lossless case: We define the Lossy Minimum Description Length
Estimate (LMDLE) as

θ̂LMDL
n = arg min

θ∈Θ
[− logQθ(B(Xn

1 ,D)) + �n(θ)], (4)

where �n(θ) is a given “penalty function.” There are two natural families of of penalties to
consider – general penalties satisfying Kraft’s inequality for a lossless code on a countable
parameter space Θ (so that the MDL estimate then indeed corresponds to a two-part code),
and dimension-based penalties. For simplicity, here we only consider penalties of the form

�n(θ) =
1
2
k(θ) log n, (5)

where k(θ) is a non-negative integer that can be interpreted as “dimension” in a sense we
make precise later.

An important point to note is that both the LMLE and the LMDLE are difficult to
compute, either analytically or computationally, even in the simplest examples. For this
reason, we introduce two more estimators that are useful when the data and the reproduction
distributions {Qθ} are i.i.d. We define the pseudo-LMLE and the pseudo-LMDLE by:

θ̃LML
n

�
= arg min

θ∈Θ
R(P̂n, θ,D) (6)

θ̃LMDL
n

�
= arg min

θ∈Θ
[R(P̂n, θ,D) + �n(θ)], (7)

where P̂n denotes the empirical distribution of Xn
1 . The motivation for these definitions

comes from the expansion [6][5],

− logQn
θ (B(xn

1 ,D)) = nR(P̂xn
1
, θ,D) +

1
2

log n+O(1),

which suggests that, to first order, we may replace the logarithm of the Q-probability of a
distortion ball by the rate function R(P, θ,D).

Theorem 1 (Consistency) Under general conditions, the LMLE and LMDLE are strongly
consistent estimators, in that they converge to θ∗ with probability one. In the case of
i.i.d. source and reproduction distributions, the pseudo-LMLE and pseudo-LMDLE are also
strongly consistent.

The proof of Theorem 1 [2][4] is rather long and technical, and uses ideas and techniques
related to the notion of epi-convergence in convex analysis.
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In the following section we present our second main result, which shows that the LMDLE
family of estimators avoids the common problems of the corresponding maximum-likelihood-
based estimators. For the sake of simplicity, this is first illustrated via two representative
examples, and a more general result is given in Section 5.

4 Examples: MDL vs. Maximum Likelihood

Example 1. Gaussian Codes. Suppose that the source {Xn} is a real-valued, stationary
and ergodic, with zero mean and finite variance, and suppose that each Qθ is an i.i.d.N(0, θ)
distribution with θ ∈ Θ = [0,∞). If we take ρn to be mean-squared error, then θ̃LML

n

can be explicitly computed as a function of the data using the explicit form of the rate
function R(P, θ,D). Furthermore, the the following dichotomy [5] [2] highlights the important
difference between the pseudo-LMLE and the pseudo-LMDLE: Although they both converge
to the optimal θ∗ = 0, as n→ ∞ we actually have:

θ̃LML
n �= θ∗ = 0 infinitely often, w.p.1

θ̃LMDL
n = θ∗ = 0 eventually, w.p.1.

(8)

Here we have taken k(θ) in the penalty function to be equal to 1 for all θ �= 0, and zero
otherwise. Figure 1 shows an explicit numerical example illustrating the above behavior.
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Figure 1: The dashed line denotes the pseudo-LML estimate and the solid line is the pseudo-
LMDL estimate. In this example, source variance=1, D = 0.1 and θ∗ = 0.949.

This rather artificial example shows clearly that the MDLE not only converges to the
correct value, but when there is a subset of the parameter space containing θ∗ which we
consider particularly “simple,” we can make sure that the MDLE actually “finds” this simple
subset eventually with probability one.

Similar conclusions are obtained for the case when we take the coding distributions Qθ

to be i.i.d.N(θ, 1) with θ ∈ R.

Example 2. I.I.D. Bernoulli Codebooks. Consider an i.i.d. Bernoulli source with parameter
p = Pr(X = 1). Figure 2 illustrates the behavior of the MLE and MDLE, when the k(θ) = 0
for θ = θ∗ = (p − D)/(1 − 2D), and zero otherwise, where θ∗ obviously corresponds to
the R(D)-achieving output distribution. Once again, we get the same dichotomy as in (8)
between the behavior of the pseudo-LMDLE and the pseudo-LMLE estimators. In fact,
repeated simulations indicate that the pseudo-LMDLE not only “hits and stays at” θ∗ (unlike
the pseudo-LMLE which bounces around forever), but that it actually does so pretty fast.
An example is shown in Figure 2 below.
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Figure 2: The dashed line represents the pseudo-LML estimate, and the solid line is the
pseudo-LMDL estimate. Here p = .4, D = .1 and θ∗ = .375.

5 A More General Dichotomy Theorem

Suppose that the memoryless source {Xn} takes values in a finite alphabet A of size m. Let
Θ parametrize the simplex of all i.i.d. probability distributions on A = Â, and take Θ to be
the class of reproduction distributions from which we want to pick the best code. Also take
{ρn} to be a family of single-letter distortion measures.

Now suppose that L1 ⊂ L2 ⊂ ... ⊂ Ls ⊂ Θ is a nested sequence of sets that parametrize
increasingly ”complicated” subsets of the simplex. We express our preference for ”simpler”
subsets L by penalizing θ more when it only belongs to more complicated sets; so k(θ) ≡
min{1 ≤ i ≤ s : θ ∈ Li} denotes the index of the simplest subset containing θ. This
defines LMDL and pseudo-LMDL estimates as in (4) and (6). For convenience, we also set
s∗ = k(θ∗). Then our second main result [2][5] is a more general statement of the dichotomy
??? established in the above two examples.

Theorem 2 (Dichotomy) Suppose that:

i. The source distribution P belong to the class

S(D) = {P : D < Dmax(P ), Q∗is unique, support(P ) = A, and support(Q∗) = A}
where Dmax(P ) = miny∈Â EP [ρ(X, y)];

ii. The dimension of Ls∗ , where s∗ ≡ k(θ∗), is strictly less than m− 1.

Then:

1. θ̃LML
n /∈ Ls∗ i.o. w.p.1

2. θ̃LMDL
n ∈ Ls∗ eventually w.p.1

3. θ̂LMDL
n ∈ Ls∗ eventually w.p.1.

Thus, the pseudo-LMDL estimate approaches Q∗ eventually through codes in Ls∗ . In
other words, if there is a “nice” subset Ls∗ of Θ and we want to know if θ∗ is in Ls∗ , then
the (appropriately defined) pseudo-LMDL estimate finds this set in finite time whenever θ∗

does indeed belong to it. The pseudo-LML estimate, on the other hand, cannot display this
behavior – even though it will converge to the correct value of θ∗, it will infinitely often take
excursions outside of Ls∗ .
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Perhaps the most natural choice of the nested sequence of sets would be a sequence
of truncated affine sets of varying dimension, where each Li has dimension i. This is the
situation which motivated the posing of the dichotomy problem, and it is in this sense that
k(θ) represents the “dimension” of θ. We thus use the word dimension, keeping in mind that
θ in itself is just a vector in an (m − 1)-dimensional space and that the “dimension” really
only invokes an implicit hierarchy of sets in which we would like θ∗ to be as far up as possible.

The proof of Theorem 2 is based a detailed asymptotic analysis, building on the results of
[6][1] and the references therein. The main technical tools are delicate large deviation bounds
and a uniform version of the vector form of the law of the iterated logarithm.

In addition to the clear dichotomy for the pseudo-estimates, Theorem 2 strongly suggests
a dichotomy for the LMLE and LMDLE. Though we did not proved that the LMLE has to
fluctuate outside of Ls∗ for ever as it approaches Q∗, it typically does so, while the LMDLE
always eventually lies within Ls∗ .

The above result also has another implication. In [3] it was shown that “lossy mixture
codes” (as defined there based on the codes-distributions correspondence) are universal over
the class S(D), with a redundancy of order O( log n

n ) bits/symbol. One consequence of Theo-
rem 2 is that codes based on any one of the four “lossy” estimates defined in this work are
universal over a similar class of sources, also with a redundancy of O( log n

n ) bits/symbol.
Further results, more general statements, and connections with vector-quantization are

developed in [2].
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