
REVIEWS
Edited by Jeffrey Nunemacher

Mathematics and Computer Science, Ohio Wesleyan University, Delaware, OH 43015

Information and Complexity in Statistical Modeling. By Jorma Rissanen. Springer-Verlag,
New York, 2007, viii+142 pp., ISBN 978-0-387-36610-4, $44.95.

Reviewed by Ioannis Kontoyiannis

In statistics—and in much of science—the central goal is to identify regularities in
empirical observations. In classical mechanics, for example, physical laws allow the
scientist to give succinct descriptions for complicated phenomena, like the motion of
the planets, using a few simple equations. This description offers a “summary” or
“explanation” of the existing empirical observations and can also be used to predict
future observations. According to Occam’s razor, the simplest such explanation is the
one that should be favored. Similarly, the statistician fits a model to his or her data,
in order to identify some of the statistical structural characteristics of the phenomenon
that is being observed, and to make inferences about the underlying mechanism that
produced the data. A (perhaps the) fundamental question in statistics is how this should
be done, and it is a hard question to answer.

In statistical studies this question often takes the following form: we have some
observable quantity of interest—the size of a cancerous tumor, for example—and there
is a very large number of possible factors—like the genes in the patient’s DNA—
that may or may not influence this quantity. Typically, once we know which factors
are relevant, it is fairly easy to come up with a statistical model that captures their
influence. But, most of the time, the hard part is to figure out which of the factors to
include. This is the fundamental problem of model selection, and it is one of the most
active areas in current statistical research.

This book is an exposition of Rissanen’s approach toward addressing this funda-
mental issue, based on the notion of stochastic complexity and the Minimum Descrip-
tion Length (MDL) principle.

Consider the following simple task: Given a binary string x = (x1, x2, . . . , xn),
what can be said about the bits xi ? Are they independent? What is the most likely value
of the next bit xn+1? How much information can we reliably extract about the struc-
ture of x , and what is that information? According to Rissanen (and to Kolmogorov
and others), there is an essentially unique and fundamentally correct way to go about
answering these questions. Fix a universal Turing machine U ,1 and define the Kol-
mogorov complexity K (x) of x as the length, denoted length(p∗), of the shortest binary
program p∗ such that, when U runs p∗, it produces x . Formally,

K (x) = min{length(p), for programs p such that U(p) = x}.
1Recall that a Turing machine is the simplest mathematical model of a digital computer, namely, a machine

which can execute any well-defined algorithm, using finite but unlimited memory. A universal Turing machine
is one which can emulate any other Turing machine. Except for the obvious limitation of finiteness, all our PC’s
are basically universal Turing machines. Mathematically, a Turing machine is described as a (special) map U
from the set {0, 1}∗ of finite-length binary strings to the set of all finite- or infinite-length binary strings.
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Then x contains K (x) = length(p∗) bits of information and is most economically
described by p∗. This approach certainly conforms with the intuition that the simplest
explanation (in this case, the shortest description) should be favored, and, as was shown
by Kolmogorov, the complexity K (x) is essentially independent of the choice of the
universal Turing machine U .

But, as was also shown by Kolmogorov, because of the vast richness of the space
of all possible programs p, the complexity K (·) is not a computable function; that
is, there is no algorithm that can effectively determine K (x) for every string x . So,
if anything concrete is to be said about the data, it is necessary to restrict the class
of programs p that are allowed as possible descriptions. A natural and elegant way
to do this is via a well-known result in information theory, the Kraft correspondence,
which states that there is a precise and essentially one-to-one correspondence between
probability distributions and binary descriptions.2

KRAFT CORRESPONDENCE. Given a probability distribution Q on a discrete set
A, there is a way to describe each element x of A without ambiguity, using approx-
imately − log2 Q(x) bits. In other words, there is a “nice” map C from A to the set
{0, 1}∗ of finite-length binary strings, such that length(C(x)) ≈ − log2 Q(x) bits, for
every x in A.3 Conversely, any such map C defines a probability distribution Q on A
by reversing the above relationship: Q(x) ≈ 2−length(C(x)).

In this context, therefore, finding a good “description” or “explanation” for the data
x , namely, finding a short binary program p that produces x , is equivalent to fitting
a good statistical model to x , where a “good model” is one that leads to the shortest
description for x . This thinking leads to a natural way to restrict the class of programs
p we allow: we can fix a parametric model M = {Qθ : θ ∈ �}, or more generally
a collection {Mγ } of such models, and consider only programs that correspond to
probability distributions from this collection.4

For the sake of concreteness, suppose our data string x = (x1, x2, . . . , xn) consists
of observations xi taking values in a finite set A, so that x ∈ An, and let’s choose and fix
a single parametric model M = {Qθ : θ ∈ �} of distributions Qθ over An. Further,
for simplicity, suppose that � is a finite set, so that M contains only finitely many
distributions. [The extension to the more usual case of real- or vector-valued data, and
to models parametrized by open subsets of R

d , requires little more than more involved
notation.]

Now we are in a position to define the central idea in Rissanen’s approach:
The stochastic complexity of the data x relative to the model M is the length of

the shortest binary description of x that can be obtained from descriptions correspond-
ing to probability distributions in M. Accordingly, the Minimum Description Length
(MDL) principle mandates that, among all distributions in M, the one that most accu-
rately captures the nature of the data x is the distribution which achieves this shortest
description.

2The Kraft correspondence described here is really a simple consequence of an information-theoretic result
usually referred to as the “Kraft inequality.” The term “Kraft correspondence” is not standard, but it is more
suggestive for the purposes of this discussion.

3For our purposes, it suffices to think of “nice” maps simply as those that are invertible. For the more curious
reader, what is really required is that C has the prefix-free property: the string C(x) is not the beginning of the
string C(y) for any x �= y.

4Recall that a parametric model is simply a collection of distributions indexed by some parameter θ , usually
taking values in some subset � of R

d . For example, in the case of a binary string x , we may consider the
model M = {Qθ : θ ∈ (0, 1)}, where, according to distribution Qθ , the successive bits xi are independent,
and Pr{xi = 1} = θ .
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The above definitions, although intuitively satisfying, are too vague to translate into
equations. In particular, they do not specify how we should compute the description
length for x that corresponds to any given distribution Qθ . For example, the obvious
answer of − log2 Qθ (x) bits suggested by the Kraft correspondence is erroneous! The
reason is the following subtle but crucial observation: in order to use Qθ to describe x
in a truly invertible manner, we need also to describe the distribution Qθ itself!

As it turns out, this “gap” in Rissanen’s definition is intentional. The problem of op-
timally choosing a distribution from M to describe our data in as few bits as possible
is exactly the topic of an area known as universal data compression in the information
theory literature. This is why, after the Introduction in Chapter 1, the following two
chapters in the book deal with the basic information-theoretic ideas of data compres-
sion and universal data compression.

There are many ways to fill the above gap—many universal data compression
algorithms—several of which are considered in Chapter 5, where the notion of
stochastic complexity is introduced and its properties are discussed. Here we will
briefly describe two special cases: two-part codes, and the normalized maximum
likelihood (NML) code.

TWO-PART CODING. We can try to describe x in two steps: first describe a dis-
tribution Qθ , and then describe x using Qθ . To do this we need first to decide on a
code for the parameters θ ∈ �. Again, this can be done in many ways, and Rissanen
proposes a canonical way to design such a code; but let’s suppose for now that we have
such a code C that maps � to {0, 1}∗. Then the stochastic complexity of the data is

SC(x) = min
{
length(C(θ)) + [− log2 Qθ (x)] : θ ∈ �

}
,

and the MDL principle states that the distribution Qθ that best captures the statistical
properties of x is the one corresponding to the parameter θ∗ that achieves the above
minimum.5

Two remarks are in order here. First, note that so far nothing has been assumed
about the data; there is no requirement that x be a sample from a “true” distribution,
let alone that this distribution belongs to M. Furthermore, the optimality properties
of the MDL principle described in Chapter 5 hold in great generality, with minimal,
if any, statistical assumptions on x (and for the case of the NML code this is true in
an even stronger sense than for the two-part code). Second, we observe that, up to this
point, our review could have just as well been of Rissanen’s first book [3], published
in 1989, which described the state of affairs at that time. The main point of departure
from the “old MDL theory” is the idea that any universal code can be used for statistical
inference, and this departure was prompted primarily by the point of view advanced
in a 1998 paper by Barron, Rissanen, and Yu [1] and by the development of the NML
code.

THE NORMALIZED MAXIMUM LIKELIHOOD (NML) CODE. As noted
above, what we ideally would like to do is to use minθ [− log2 Qθ (x)] bits to describe
x , but this does not correspond to a true codelength for the data. Note, by the way, that
the θ̂ (x) that achieves this minimum is nothing but the classical maximum likelihood
estimate (MLE) for the parameter θ . Nevertheless, we can use the “ideal” codelength

5It is worth noting that, in view of the Kraft correspondence, choosing a code C for � is somewhat remi-
niscent of the Bayesian problem of choosing a prior distribution on �, although the ways in which the two are
used are quite different.
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of “�∗(x) = − log2 Q θ̂ (x)(x) bits” as a yardstick against which we measure our per-
formance. From this we can construct a minimax problem which identifies the best
code for the worst possible distribution of the data, where now every possible code
C and every possible distribution (not just those in M) are allowed in the game, and
the objective function that’s being optimized is the expected value of the difference
between the codelength of the code C and the ideal �∗(x). The solution to this problem
is the NML code, which turns out to be the code given by the Kraft correspondence
for the distribution

QN M L(x) = Q θ̂ (x)(x)
∑

all y Q θ̂ (y)(y)
.

What is this QN M L distribution like? Several examples in the book illustrate its
form, use, and properties. In a way, this distribution looks like a strange “perturba-
tion” of the classical MLE, and it is natural to wonder why we should care about it.
One answer is that it is well motivated by the above discussion; another is that, as the
applications (Chapter 9) in the book illustrate, it performs well in various practical
problems; also, in Chapter 5 it is shown to enjoy important optimality properties. But
perhaps the most important feature of QN M L , and, more generally, the models pro-
duced by any version of the MDL principle, is that they are by design good at avoiding
“overfitting,” which is one of the biggest problems in applied statistics. The reason is
mathematically far from obvious, but intuitively fairly simple: Since, by construction,
the MDL distributions lead to honest coding algorithms, they implicitly describe the
distribution which is chosen, as well as the data. It is, therefore, natural to expect that
more complex distributions (and more complex models as a whole) will be harder to
describe and hence naturally “penalized.”

It is interesting that this year also saw the publication of another beautiful book
on MDL, Grünwald’s text [2], which has a very different, much more leisurely style.
In Chapter 17 of [2] there are many illustrations of the MDL principle for a range of
realistic statistical inference problems, and the performance of MDL-based methods is
carefully compared to that of many of the standard and commonly used methods and
techniques.

Chapter 4 of the book under review gives an introduction to Kolmogorov complex-
ity and related notions. In particular—and this is another major point of departure
from the “old MDL”—Rissanen describes Kolmogorov’s structure function and the
Kolmogorov minimal sufficient statistic. Given a string x , suppose we focus on a spe-
cial sub-class of programs p that produce x , namely, programs that first describe a set
B of strings such that x ∈ B, and then identify x as an element of B using ≈ log2 |B|
bits. Then the overall description of x takes ≈ K (B) + log2 |B| bits. For any α > 0,
the structure function hx(α) is defined as

hx(α) = min
{

log2 |B|, for sets B such that x ∈ B and K (B) ≤ α
}
.

The idea behind this definition is that the description of B contains all the “structure”
in x , while the remaining log2 |B| bits describe the “noise” in x . As it happens, hx(α)

is nonincreasing in α, and there is an optimal point ᾱ after which it follows the line
K (x) − α. The minimal sufficient statistic decomposition of x is then

K (x) = ᾱ + hx(ᾱ) = min
B : x∈B

[
K (B) + hx(K (B))

]
.

The interpretation of this relationship is that x contains ᾱ bits of learnable information
and hx(ᾱ) = K (x) − ᾱ bits of noise.
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The rest of the material in the book is too complex—both mathematically and
conceptually—to describe here in detail, so we give only an outline. In the same way
that stochastic complexity is a statistical analog for the non-computable Kolmogorov
complexity, in Chapter 6 we get corresponding “stochastic” or “statistical” analogs for
the structure function and the minimal sufficient statistic. Chapter 7 is on “optimally
distinguishable models.” In a way, the question considered here is similar to the prob-
lem of choosing a code C for the parameters θ in the earlier two-part code example—is
there an “optimal” choice? This issue is crucial when the parameter set � is an open
subset of R

d , since then we have to pick out a countable subset �′ of � and assign
finite-length descriptions only to the parameters θ in that subset. How should this set
�′ of “representatives” be chosen? The results of Chapter 6 are used to answer the
question. Chapter 8 is a broad discussion of the MDL principle in full generality, and
Chapter 9 illustrates its utility in a variety of statistical tasks.

SUMMARY. Like Rissanen’s first book [3], this book is part monograph, part man-
ifesto, part advanced textbook. It is a short book about a long, complex, fascinating
story. The style is both engaging and provocative. Whether or not the reader agrees
with Rissanen’s opinions about statistics—and they certainly are strong opinions—
this is an interesting and evocative text.

Finally, we should point out the obvious: The MDL principle and the statistical ideas
surrounding it have a fairly long history, and they were not all introduced by Rissanen
himself. Some of the people that have played a role in this development are Christopher
Wallace, David Boulton, A. Philip Dawid, Hirotsugu Akaike, Andrew Barron, Vijay
Balasubramanian, Bin Yu, and Peter Grünwald, as well as others mentioned in the
book.
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