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MM1 queue - the nicest of Markov chains

For the stable queue, with load strictly less than one, it isFor the stable queue, with load strictly less than one, it is

•  Reversible
•  Skip-free
•  Monotone
•  Marginal distribution geometric
•  Geometrically ergodic
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MM1 queue - the nicest of Markov chains
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Reflected Random Walk

A reflected random walk A reflected random walk 

where where 

Basic stability assumption:  Basic stability assumption:  

is the initial condition, 
and the increments ∆ are i.i.d.
is the initial condition, 
and the increments ∆ are i.i.d.

Basic question:  Can I compute sample path averages 
   to estimate the steady-state mean?
Basic question:  Can I compute sample path averages 
   to estimate the steady-state mean?



Simulating the RRW:  Asymptotic Variance

The CLT requires a third moment for the incrementsThe CLT requires a third moment for the increments

E[∆(0)] < 0 and E[∆(0)3] < ∞
Asymptotic variance = O

1

(1 − ρ)4 Whitt 1989
Asmussen 1992
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Simulating the RRW:  Lopsided Statistics

Assume only negative drift, and finite second moment:Assume only negative drift, and finite second moment:

Lower LDP asymptotics:  For each r < η ,Lower LDP asymptotics:  For each r < η ,
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Simulating the RRW:  Lopsided Statistics

Assume only negative drift, and finite second moment:Assume only negative drift, and finite second moment:

Lower LDP asymptotics:  For each r < η ,Lower LDP asymptotics:  For each r < η ,

Upper LDP asymptotics are null:  For each r ≥ η ,Upper LDP asymptotics are null:  For each r ≥ η ,
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E[∆(0)] < 0 and E[∆(0)2] < ∞

P η(n) ≤ r =

lim
n→∞

1

n
log

lim
n→∞

1

n
log

P η(n) ≥ r = 0

−I(r) < 0

even for the MM1 queue! even for the MM1 queue! 
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Construct the family of twisted transition lawsConstruct the family of twisted transition laws

P̌ (x, dy) = eθx−Λ(θ)+F̌(x)P (x, dy)eF̌ (y) θ < 0



Lower LDP

Construct the family of twisted transition lawsConstruct the family of twisted transition laws

Geometric ergodicity of the twisted chain implies multiplicative
ergodic theorems, and thence Bahadur-Rao LDP asymptotics
Geometric ergodicity of the twisted chain implies multiplicative
ergodic theorems, and thence Bahadur-Rao LDP asymptotics

P̌ (x, dy) = eθx−Λ(θ)+F̌(x)P (x, dy)eF̌ (y) θ < 0

Kontoyiannis & M 2003, 2005
M  2006



Lower LDP

Construct the family of twisted transition lawsConstruct the family of twisted transition laws

Geometric ergodicity of the twisted chain implies multiplicative
ergodic theorems, and thence Bahadur-Rao LDP asymptotics
Geometric ergodicity of the twisted chain implies multiplicative
ergodic theorems, and thence Bahadur-Rao LDP asymptotics

This is only possible when θ is negativeThis is only possible when θ is negative

P̌ (x, dy) = eθx−Λ(θ)+F̌(x)P (x, dy)eF̌ (y) θ < 0

Kontoyiannis & M 2003, 2005
M  2006



Null Upper LDP:  What is the area of a triangle?
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Large deviations for reflected random walk:  Large deviations for reflected random walk:  

e.g., Ganesh, O’Connell, and Wischik,  2004



Null Upper LDP:  Area of a Triangle

X(t)
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T = n

h = γn

b = β∗n

η(n) ≈ n−1A

An = 1
2γβ∗n2
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Consider the scalingConsider the scaling

Upper LDP is null:   For any γ,Upper LDP is null:   For any γ,

M 2006
CTCN 2008
 (see also  Borovkov,  et. al. 2003)
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What Is The Most Likely Area?

Are triangular excursions optimal?Are triangular excursions optimal?

Most likely path?Most likely path?
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What Is The Most Likely Area?

Triangular excursions are not optimal:Triangular excursions are not optimal:

A concave perturbation:  A concave perturbation:  greatly increased
area at modest “cost”
greatly increased
area at modest “cost”
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Scaled processScaled process

LDP question translated to the scaled processLDP question translated to the scaled process
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ψn(t) = n−1X(nt)

η(n) ≈ An ⇐⇒
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ψn(t) dt ≈ A

IX(ψ) = For concave ψ, with 
no downward jumps
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Most Likely Paths - Examples t
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What Next?

•  Heavy-tailed and/or long-memory settings?

•  Variance reduction, such as control variates

Smoothed estimator using fluid value function in CV:
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What Next?

•  Heavy-tailed and/or long-memory settings?

•  Variance reduction, such as control variates

•  Original question?   Conjecture,

lim
n→∞

1√
n

log P η(n) ≥ r = −Jη(r) < 0, r > η

for some range of r
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