Why are reflected random walks so hard to simulate?

Sean Meyn

Department of Electrical and Computer Engineering and the Coordinated Science Laboratory University of Illinois

Joint work with Ken Duffy - Hamilton Institute, National University of Ireland

NSF support: ECS-0523620

References

Markov Chains and Stochastic Stability

SECOND EDITION

Control Techniques FOR Complex Networks

Copyrighted Material

Sean Meyn

Copyrighted Material

(Skip this advertisement)

Outline

Motivation

Reflected Random Walks

Why So Lopsided?

Most Likely Paths

Summary and Conclusions

For the stable queue, with load strictly less than one, it is

- Reversible
- Skip-free
- Monotone
- Marginal distribution geometric
- Geometrically ergodic

For the stable queue, with load strictly less than one, it is

- Reversible
- Skip-free
- Monotone
- Marginal distribution geometric
- Geometrically ergodic

Why then, can't I simulate my queue?

Why then, can't I simulate my queue?

ll Reflected Random Walk

Reflected Random Walk

A reflected random walk

$$X(n+1) = \max(0, X(n) + \Delta(n+1)),$$

where $X(0) = x_0 \in \mathbb{R}_+$ is the initial condition, and the increments Δ are i.i.d.

Reflected Random Walk

A reflected random walk

$$X(n+1) = \max(0, X(n) + \Delta(n+1)),$$

where $X(0) = x_0 \in \mathbb{R}_+$ is the initial condition, and the increments Δ are i.i.d. Basic stability assumption: $\delta := \mathbb{E}[\Delta(n)] < 0$ and finite second moment

Reflected random walk with increments,

$$\Delta(n) = \begin{cases} 1 & \text{with prob. } \alpha \\ -1 & \text{with prob. } \mu \end{cases}$$

$$ho=lpha/\mu<1$$
Load condition

Reflected Random Walk

A reflected random walk

$$X(n+1) = \max(0, X(n) + \Delta(n+1)),$$

where $X(0) = x_0 \in \mathbb{R}_+$ is the initial condition, and the increments Δ are i.i.d. Basic stability assumption: $\delta := \mathsf{E}[\Delta(n)] < 0$

Basic question: Can I compute sample path averages to estimate the steady-state mean?

$$\eta := \lim_{n \to \infty} \mathsf{E}[X(n)]$$

$$\eta(n) = \frac{1}{n} \sum_{t=0}^{n} X(t)$$

Simulating the RRW: Asymptotic Variance

The CLT requires a third moment for the increments

Asymptotic variance = $O\left(\frac{1}{(1-\rho)^4}\right)$

 $\mathsf{E}[\Delta(0)] < 0 \text{ and } \mathsf{E}[\Delta(0)^3] < \infty$

Whitt 1989 Asmussen 1992

Simulating the RRW: Asymptotic Variance

Simulating the RRW: Lopsided Statistics

Assume only negative drift, and finite second moment: $E[\Delta(0)] < 0 \text{ and } E[\Delta(0)^2] < \infty$

Lower LDP asymptotics: For each $r < \eta$,

$$\lim_{n\to\infty}\frac{1}{n}\log\mathsf{P}\big\{\eta(n)\leq r\big\}=-I\big(r\big)<0$$

M 2006

Simulating the RRW: Lopsided Statistics

Assume only negative drift, and finite second moment: $E[\Delta(0)] < 0 \text{ and } E[\Delta(0)^2] < \infty$

Lower LDP asymptotics: For each $r < \eta$,

$$\lim_{n\to\infty}\frac{1}{n}\log\mathsf{P}\big\{\eta(n)\leq r\big\}=-I(r)<0$$

M 2006

Upper LDP asymptotics are *null*: For each $r \geq \eta$,

$$\lim_{n \to \infty} \frac{1}{n} \log \mathsf{P} \big\{ \eta(n) \ge r \big\} = 0$$

even for the MM1 queue!

III Why So Lopsided?

Lower LDP

Construct the family of *twisted* transition laws

$$\check{P}(x,dy) = e^{\theta x - \Lambda(\theta) + \check{F}(x)} P(x,dy) e^{\check{F}(y)} \qquad \theta < 0$$

Lower LDP

Construct the family of *twisted* transition laws

$$\check{P}(x,dy) = e^{\theta x - \Lambda(\theta) + \check{F}(x)} P(x,dy) e^{\check{F}(y)} \qquad \theta < 0$$

Geometric ergodicity of the twisted chain implies multiplicative ergodic theorems, and thence Bahadur-Rao LDP asymptotics

Kontoyiannis & M 2003, 2005 M 2006

Lower LDP

Construct the family of *twisted* transition laws

$$\check{P}(x,dy) = e^{\theta x - \Lambda(\theta) + \check{F}(x)} P(x,dy) e^{\check{F}(y)} \qquad \theta < 0$$

Geometric ergodicity of the twisted chain implies multiplicative ergodic theorems, and thence Bahadur-Rao LDP asymptotics

Kontoyiannis & M 2003, 2005 M 2006

This is only possible when θ is negative

Null Upper LDP: Area of a Triangle

What Is The Most Likely Area?

Are triangular excursions optimal?

What Is The Most Likely Area?

Triangular excursions are *not* optimal:

A concave perturbation: greatly increased area at modest "cost"

Scaled process

$$\psi^n(t) = n^{-1}X(nt)$$

LDP question translated to the scaled process

Duffy and M 2009, ...

Scaled process

$$\psi^n(t) = n^{-1}X(nt)$$

LDP question translated to the scaled process

$$\eta(n) \approx An \iff \int_0^1 \psi^n(t) \, dt \approx A$$

Scaled process

$$\psi^n(t) = n^{-1}X(nt)$$

LDP question translated to the scaled process

$$\eta(n) \approx An \iff \int_0^1 \psi^n(t) \, dt \approx A$$

Basic assumption: The sample paths for the unconstrained random walk with increments Δ satisfy the LDP in D[0,1] with good rate function I_X

Scaled process

$$\psi^n(t) = n^{-1}X(nt)$$

LDP question translated to the scaled process

$$\eta(n) \approx An \iff \int_0^1 \psi^n(t) \, dt \approx A$$

Basic assumption: The sample paths for the unconstrained random walk with increments Δ satisfy the LDP in D[0,1] with good rate function I_X

$$I_X(\psi) = \bar{\vartheta}^+ \psi(0+) + \int_0^1 I_\Delta(\dot{\psi}(t)) dt$$

For concave ψ , with no downward jumps

Most Likely Path Via Dynamic Programming

min
$$\bar{\vartheta}^+ \psi(0+) + \int_0^1 I_\Delta(\dot{\psi}(t)) dt$$

s.t. $\int_0^1 \psi(t) dt = A$

Better...

0

Dynamic programming formulation

min
$$\overline{\vartheta}^+ \psi(0+) + \int_0^1 I_\Delta(\dot{\psi}(t)) dt$$

s.t. $\int_0^1 \psi(t) dt = A$

Better...

Solution: Integration by parts + Lagrangian relaxation:

$$\min \,\overline{\vartheta}^+ \,\psi(0+) + \int_0^1 I_\Delta(\dot{\psi}(t)) \,dt + \lambda \Big(\psi(1) - A - \int_0^1 t \dot{\psi}(t) \,dt\Big)$$

Most Likely Path Via Dynamic Programming

$$\min \,\overline{\vartheta}^+ \,\psi(0+) + \int_0^1 I_\Delta(\dot{\psi}(t)) \,dt + \lambda \Big(\psi(1) - A - \int_0^1 t \dot{\psi}(t) \,dt\Big)$$

Variational arguments where ψ is strictly concave:

Strictly concave on (T_0^0, T_1)

Most Likely Path Via Dynamic Programming

$$\min \,\overline{\vartheta}^+ \,\psi(0+) + \int_0^1 I_\Delta(\dot{\psi}(t)) \,dt + \lambda \Big(\psi(1) - A - \int_0^1 t \dot{\psi}(t) \,dt\Big)$$

Variational arguments where ψ is strictly concave:

Strictly concave on (T_0^0, T_1)

$$\nabla I(\dot{\psi}(t)) = b - \lambda^* t \quad \text{for a.e. } t \in (T_0^0, T_1)$$

Most Likely Paths - Examples

Most Likely Paths - Examples

Selected Sample Paths:

RRW: Gaussian Increments

RRW: MM1 queue

The observed path has the largest simulated mean out of $10^8 \ {\rm sample} \ {\rm paths}$

Conclusions

It is widely known that simulation variance is high in "heavy traffic" for queueing models

Large deviation asymptotics are exotic, regardless of load

Sample-path behavior is identified for RRW when the sample mean is large. *This behavior is very different than previously seen in "buffer overflow" analysis of queues*

It is widely known that simulation variance is high in "heavy traffic" for queueing models

Large deviation asymptotics are exotic, regardless of load

Sample-path behavior is identified for RRW when the sample mean is large. *This behavior is very different than previously seen in "buffer overflow" analysis of queues*

What about other Markov models?

What about other Markov models?

- Reversible
- Skip-free
- Monotone

 $\Delta(n) = \begin{cases} 1 & \text{with prob. } \alpha \\ -1 & \text{with prob. } \mu \end{cases}$

- Marginal distribution geometric
- Geometrically ergodic

What about other Markov models?

- Reversible
- Skip-free
- Monotone

- Marginal distribution geometric
- Geometrically ergodic

The skip-free property makes

the fluid model analysis possible. Similar behavior in

- Fixed-gain SA
- Some MCMC algorithms

 $\Delta(n) = \begin{cases} 1 & \text{with prob. } \alpha \\ -1 & \text{with prob. } \mu \end{cases}$

• *Heavy-tailed* and/or *long-memory* settings?

Heavy-tailed and/or long-memory settings?

• Variance reduction, such as control variates

Heavy-tailed and/or long-memory settings?

• Variance reduction, such as control variates

Smoothed estimator using fluid value function in CV: g = h - Ph = -Dh,

Henderson, M., and Tadi'c 2003 **CTCN**

Heavy-tailed and/or long-memory settings?

• Variance reduction, such as control variates

• Original question? Conjecture,

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \log \mathsf{P}\{\eta(n) \ge r\} = -J_{\eta}(r) < 0, \qquad r > \eta$$

for some range of \boldsymbol{r}

 P. Hon, Longe deviation asymptotic and control variaties for simulating large functions. Ann. App Product, 10(1):103–100.
 P. Hono, Cantral Thompson for Complex Networks. Cambridge University Press, Cambridge, 2007 (8): R. B. Daly and F. Maya, March Hally guids to rener when estimating the same of a reflected randow with http://arciv.org/abs/0006.6134, http://arciv.org/abs/0006.6134

 Kontopiania and S. P. Maya. Spectral theory and limit theorems for geometrically eigedic Markov processes. Am. Appl. Proba., 12:394–362, 2003. Presented at the USFORMS Appl. Probability Conference, NYC, July, 2001.
 Kontopiania and S. P. Meyn. Large deviations sepurptotics and the spectral theory of multiplicatively regular Markov processes. *Electron.*, 19:094a, 10(2):61–125 (determin), 2005.

G. Fort, S. Meyn, E. Moulines, and P. Priozzet. ODE methods for skip-free Markov chain stability with applications to MCMC. Arm. Appl. Probab., 18(2):664–707, 2008.
V. S. Bochar and S. P. Myn. The Oxfe. method for consequence of stochastic approximation and reinforcement learning. SIAM J. Context Optims, 202(2):447–409, 2000.

- [1] S. P. Meyn. Large deviation asymptotics and control variates for simulating large functions. Ann. Appl. Probab., 16(1):310–339, 2006.
- [2] S. P. Meyn. Control Techniques for Complex Networks. Cambridge University Press, Cambridge, 2007.
- [3] K. R. Duffy and S. P. Meyn. Most likely paths to error when estimating the mean of a reflected random walk. http://arxiv.org/abs/0906.4514, June 2009.
- [1] I. Kontoyiannis and S. P. Meyn. Spectral theory and limit theorems for geometrically ergodic Markov processes. Ann. Appl. Probab., 13:304–362, 2003.
- [2] I. Kontoyiannis and S. P. Meyn. Large deviations asymptotics and the spectral theory of multiplicatively regular Markov processes. *Electron. J. Probab.*, 10(3):61–123 (electronic), 2005.
- [1] S. G. Henderson, S. P. Meyn, and V. B. Tadić. Performance evaluation and policy selection in multiclass networks. *Discrete Event Dynamic Systems: Theory and Applications*, 13(1-2):149–189, 2003. Special issue on learning, optimization and decision making (invited).
- [2] S. P. Meyn. Control Techniques for Complex Networks. Cambridge University Press, Cambridge, 2007.

- [1] G. Fort, S. Meyn, E. Moulines, and P. Priouret. ODE methods for skip-free Markov chain stability with applications to MCMC. Ann. Appl. Probab., 18(2):664–707, 2008.
- [2] V. S. Borkar and S. P. Meyn. The ODE method for convergence of stochastic approximation and reinforcement learning. *SIAM J. Control Optim.*, 38(2):447–469, 2000.