Control Variates

for Reversible MCMC Samplers

Petros Dellaportas and Yiannis Kontoyiannis

Athens U of Economics and Business

Control variates in simple (i.i.d.) Monte Carlo

Goal: Compute the expected value of some function F evaluated on i.i.d. samples X_{1}, X_{2}, \ldots
Idea: Variance of the standard ergodic averages $\frac{1}{n} \sum_{i=1}^{n} F\left(X_{i}\right)$ can be reduced by exploiting available zero-mean statistics

Modified estimators: If there is one or more functions $U_{1}, U_{2}, \ldots, U_{k}$ - the control variates for which it is known that $E\left[U\left(X_{i}\right)\right]=0$, then subtracting any linear combination

$$
\frac{1}{n} \sum_{i=1}^{n}\left[F\left(X_{i}\right)-\theta_{1} U_{1}\left(X_{i}\right)-\theta_{2} U_{2}\left(X_{i}\right)-\cdots-\theta_{k} U_{k}\left(X_{i}\right)\right]
$$

does not change the asymptotic mean

Practice: For the optimal choice of $\left\{\theta_{j}\right\}$, the variance is no larger than before and often much smaller. The optimal $\left\{\theta_{j}^{*}\right\}$ are usually estimated adaptively, based on the same samples

Control Variates for Markov chains

- Extension of the above methodology to estimators based on MCMC samples is limited
- Extensions include: Green and Han (1992), Barone and Frigessi (1989), Andradottir et al.(1993), Brooks \& Gelman (1998), Robert \& Casella (2004), Philippe \& Robert (2001, 2004), Fan et al.(2006), Atchade \& Perron (2005), Mira et al.(2003), Hammer and Hakon (2008), Henderson (1997), Henderson et al.(2003), Kim and Henderson (2007), Meyn (2006)

Two fundamental difficulties:

$\rightsquigarrow\left\{U_{j}\right\}$? hard to find (nontrivial and useful) functions with known expectation wrt the stationary distribution of the chain
$\rightsquigarrow\left\{\theta_{j}\right\}$? even in cases where control variates are available, no effective way to obtain useful estimates for the optimal coefficients $\left\{\theta_{j}^{*}\right\}$

Reason: This is a fundamentally difficult problem, because the MCMC variance of ergodic averages is intrinsically an infinite-dimensional object. It cannot be written in closed form as a function of the transition kernel and the stationary distribution

What we do [1/2]

Starting point: For any real-valued function G_{j} defined on the state space of a Markov chain $\left\{X_{n}\right\}$, the functions

$$
U_{j}(x):=G_{j}(x)-E\left[G_{j}\left(X_{n+1}\right) \mid X_{n}=x\right]
$$

have zero mean with respect to the stationary distribution of the chain (Henderson,1997)
Estimating $\left\{\theta_{j}\right\}$: We use control variates of this form conjunction with a new, efficiently implementable and provably optimal estimator for the coefficients $\left\{\theta_{j}^{*}\right\}$ for reversible chains

- Our estimator for $\left\{\theta_{j}^{*}\right\}$ is adaptive, in the sense that is based on the same MCMC output
- Unlike the case of independent sampling where control variates need to be found in an ad hoc manner depending on the specific problem at hand, here the control variates (as well as the estimates of the corresponding optimal coefficients) come for free!

What we do [2/2]

Choice of \mathcal{G} : Identifying particular choices for the functions $\{G\}$ that lead to effective control variates $\left\{U_{j}\right\}$ in specific MCMC scenarios that arise from some of the most common families of Bayesian inference problems.

- Basic methodology: For an MCMC algorithm which simulates from
$\left.\pi(x)=\pi\left(x^{(1)}, x^{(2)}, \ldots, x^{(k)}\right)\right)$, use $G_{j}=x^{(j)}, j=1, \ldots, k$; Control variates are constructed without any cost for nearly ALL random scan Gibbs samplers
- Extension 1: Use of a subset of $\left\{G_{j}\right\}$ functions
- Extension 2: General classes of basis functions G
- Extension 3: general statistics F

The setting [1/2]

- $\left\{X_{n}\right\}$ is a discrete-time Markov chain with initial state $X_{0}=x$, and transition kernel P :

$$
P(x, A):=\operatorname{Pr}\left\{X_{k+1} \in A \mid X_{k}=x\right\}, \quad \text { all } x, A
$$

Typical application: Construct an easy-to-simulate Markov chain $\left\{X_{n}\right\}$ which has a target distribution π as its unique invariant measure

Ergodicity: If we write $P F(x):=E\left[F\left(X_{1}\right) \mid X_{0}=x\right]$, then for appropriate F 's:

$$
P^{n} F(x):=E\left[F\left(X_{n}\right) \mid X_{0}=x\right] \rightarrow \pi(F):=E_{\pi}[F(X)], \quad \text { as } n \rightarrow \infty
$$

- Moreover, $\hat{F}(x)=\sum_{n=0}^{\infty}\left[P^{n} F(x)-\pi(F)\right]$ where \hat{F} satisfies the Poisson equation for F :

$$
P \hat{F}-\hat{F}=-F+\pi(F)
$$

The setting [2/2]

Ergodic averages: Estimate $\pi(F)$ by $\mu_{n}(F):=\frac{1}{n} \sum_{i=0}^{n-1} F\left(X_{i}\right)$
Ergodic theorem: $\mu_{n}(F) \rightarrow \pi(F), \quad$ a.s., as $n \rightarrow \infty$, for appropriate F 's

Central limit theorem:

$$
\sqrt{n}\left[\mu_{n}(F)-\pi(F)\right]=\frac{1}{\sqrt{n}} \sum_{i=0}^{n-1}\left[F\left(X_{i}\right)-\pi(F)\right] \xrightarrow{\mathcal{D}} N\left(0, \sigma_{F}^{2}\right), \quad \text { as } n \rightarrow \infty
$$

where σ_{F}^{2}, the asymptotic variance of F, is given by

$$
\sigma_{F}^{2}:=\lim _{n \rightarrow \infty} \operatorname{Var}_{\pi}\left(\sqrt{n} \mu_{n}(F)\right)=\lim _{n \rightarrow \infty} \operatorname{Var}_{\pi}\left(\frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} F\left(X_{i}\right)\right)=\sum_{n=-\infty}^{\infty} \operatorname{Cov}_{\pi}\left(F\left(X_{0}\right), F\left(X_{n}\right)\right)
$$

Asymptotic variance: An alternative and more useful representation is in terms of the solution \hat{F} to Poisson's equation:

$$
\sigma_{F}^{2}=\pi\left(\hat{F}^{2}-(P \hat{F})^{2}\right)
$$

Construction of control variates for Markov chains

- Suppose the chain $\left\{X_{n}\right\}$ takes values in some space S, typically $S \subset \mathbb{R}^{d}$

Construction of U : Given any $G: S \rightarrow \mathbb{R}$ with $\pi(|G|)<\infty$, if we let

$$
U(x):=G(x)-P G(x)=G(x)-E\left[G\left(X_{1}\right) \mid X_{0}=x\right]
$$

$$
\text { then } \pi(U):=E_{\pi}[U(X)]=0
$$

Modified Estimators: Given such a function U with $\pi(U)=0$ and $\theta \in \mathbb{R}$, define

$$
\begin{aligned}
F_{\theta} & =F-\theta U \\
\mu_{n}\left(F_{\theta}\right) & =\mu_{n}(F)-\theta \mu_{n}(U)
\end{aligned}
$$

Goals: Search for particular choices for: (i) G (with corresponding $U=G-P G$);
(ii) θ, so that the asymptotic variance $\sigma_{F_{\theta}}^{2}$ of the modified estimators is significantly smaller than the variance σ_{F}^{2} of the standard ergodic averages $\mu_{n}(F)$

Ideal U? Zero Variance?

First suppose we have complete freedom in the choice of G. Set $\theta=1$ without loss of generality.
We wish to make the asymptotic variance of

$$
F-U=F-G+P G
$$

as small as possible. But, in view of the Poisson equation

$$
P \hat{F}-\hat{F}=-F+\pi(F)
$$

the choice $G=\hat{F}$ yields

$$
F-U=F-\hat{F}+P \hat{F}=\pi(F)
$$

which has zero variance! Therefore, our first rule of thumb for choosing G is:
Choose a control variate $U=G-P G$ with $G \approx \hat{F}$

After choosing G

- With a choice G that (we hope) approximates \hat{F}, we form the modified estimators $\mu_{n}\left(F_{\theta}\right)$ with respect to the function $F_{\theta}=F-\theta U=F-\theta G+\theta P G$

Next task: Choose θ : Minimize the resulting variance

$$
\sigma_{\theta}^{2}:=\sigma_{F_{\theta}}^{2}=\pi\left(\hat{F}_{\theta}^{2}-\left(P \hat{F}_{\theta}\right)^{2}\right)
$$

From the definitions, $\hat{U}=G \quad$ and $\quad \hat{F}_{\theta}=\hat{F}-\theta G$. Therefore,

$$
\sigma_{\theta}^{2}=\pi\left((\hat{F}-\theta G)^{2}\right)-\pi\left((P \hat{F}-\theta P G)^{2}\right)
$$

Expanding the above quadratic in θ, the optimal value is

$$
\theta^{*}=\frac{\pi(\hat{F} G-(P \hat{F})(P G))}{\pi\left(G^{2}-(P G)^{2}\right)}
$$

- Hard to estimate θ^{*} - it depends on \hat{F}

Interpretation of θ^{*}

$$
\begin{gathered}
\sigma_{\theta}^{2}=\lim _{n \rightarrow \infty} \operatorname{Var}_{\pi}\left(\frac{1}{\sqrt{n}} \sum_{i=0}^{n-1}\left[F\left(X_{i}\right)-\theta U\left(X_{i}\right)\right]\right), \\
\sigma_{\theta}^{2}=\sigma_{F}^{2}+\theta^{2} \sigma_{U}^{2}-2 \theta \sum_{n=-\infty}^{\infty} \operatorname{Cov}_{\pi}\left(F\left(X_{0}\right), U\left(X_{n}\right)\right),
\end{gathered}
$$

so that θ^{*} can also be expressed as

$$
\theta^{*}=\frac{1}{\sigma_{U}^{2}} \sum_{n=-\infty}^{\infty} \operatorname{Cov}_{\pi}\left(F\left(X_{0}\right), U\left(X_{n}\right)\right)
$$

leading to the optimal asymptotic variance

$$
\sigma_{\theta^{*}}^{2}=\sigma_{F}^{2}-\frac{1}{\sigma_{U}^{2}}\left[\sum_{n=-\infty}^{\infty} \operatorname{Cov}_{\pi}\left(F\left(X_{0}\right), U\left(X_{n}\right)\right)\right]^{2}
$$

This leads to our second rule of thumb for selecting control variates:
Choose a control variate $U=G-P G$ so that U and F are highly correlated

A different representation of θ^{*}

$$
\theta^{*}=\frac{\pi(\hat{F} G-(P \hat{F})(P G))}{\pi\left(G^{2}-(P G)^{2}\right)} .
$$

Since $\hat{U}=G$, the denominator is simply σ_{U}^{2}, and the fact that σ_{U}^{2} is always nonnegative suggests that there should be a way to rewrite the expression $\pi\left(G^{2}-(P G)^{2}\right)$ in the denominator of θ^{*} in a way which makes this nonnegativity obvious. Indeed:

Proposition.

$$
\begin{aligned}
\sigma_{U}^{2} & =\pi\left(G^{2}-(P G)^{2}\right)=E_{\pi}\left[\left(G\left(X_{1}\right)-P G\left(X_{0}\right)\right)^{2}\right] \\
\text { and } \quad \theta^{*} & =\frac{\pi(\hat{F} G-(P \hat{F})(P G))}{E_{\pi}\left[\left(G\left(X_{1}\right)-P G\left(X_{0}\right)\right)^{2}\right]}
\end{aligned}
$$

Optimal empirical estimates

Theorem. If the chain $\left\{X_{n}\right\}$ is reversible, then the optimal coefficient θ^{*} for the control variate $U=G-P G$ can be expressed as

$$
\theta^{*}=\theta_{\mathrm{rev}}^{*}:=\frac{\pi((F-\pi(F))(G+P G))}{E_{\pi}\left[\left(G\left(X_{1}\right)-P G\left(X_{0}\right)\right)^{2}\right]}
$$

Therefore, we can estimate:

$$
\begin{aligned}
& \theta^{*} \text { as } \quad \hat{\theta}_{n, \text { rev }}=\frac{\mu_{n}(F(G+P G))-\mu_{n}(F) \mu_{n}(G+P G)}{\frac{1}{n} \sum_{i=0}^{n-1}\left(G\left(X_{i}\right)-P G\left(X_{i-1}\right)\right)^{2}} \\
& \pi(F) \text { as } \mu_{n, \mathrm{rev}}(F):=\mu_{n}\left(F_{\hat{\theta}_{n, \text { rev }}}\right)=\mu_{n}\left(F-\hat{\theta}_{n, \mathrm{rev}} U\right)
\end{aligned}
$$

Key: Expressions do not involve the solution \hat{F} to Poisson's equation

Proof

Let $\Delta=P$ - I denote the generator of a discrete time Markov chain $\left\{X_{n}\right\}$ with transition kernel P.
Reversibility $\Longleftrightarrow \Delta$ is a self-adjoint linear operator on the space $L_{2}(\pi)$:

$$
\pi(F \Delta G)=\pi(\Delta F G), \quad \text { for any two functions } F, G \in L_{2}(\pi)
$$

Let $\bar{F}=F-\pi(F)$ denote the centered version of F, and recall that \hat{F} solves Poisson's equation for F, so $P \hat{F}=\hat{F}-\bar{F}$. Therefore, the numerator in the expression for θ^{*} can be expressed as

$$
\begin{aligned}
\pi(\hat{F} G-(P \hat{F})(P G)) & =\pi(\hat{F} G-(\hat{F}-\bar{F})(P G)) \\
& =\pi(\bar{F} P G-\hat{F} \Delta G) \\
& =\pi(\bar{F} P G-\Delta \hat{F} G) \\
& =\pi(\bar{F} P G+\bar{F} G) \\
& =\pi(\bar{F}(G+P G))
\end{aligned}
$$

Generalisation

Let $K(G)$ denote the covariance matrix of the random variables

$$
Y_{j}:=G_{j}\left(X_{1}\right)-P G_{j}\left(X_{0}\right), \quad j=1,2, \ldots, k
$$

where $X_{0} \sim \pi$. Then the optimal coefficient vector θ^{*} can also be expressed as,

$$
\theta^{*}=\mathrm{K}(G)^{-1} \pi(\hat{F} G-(P \hat{F})(P G))
$$

and assuming that the chain $\left\{X_{n}\right\}$ is reversible,

$$
\begin{gathered}
\theta^{*}=\theta_{\mathrm{rev}}^{*}:=\mathrm{K}(G)^{-1} \pi((F-\pi(F))(G+P G)), \\
\hat{\theta}_{n, \mathrm{~K}}=\mathrm{K}_{n}(G)^{-1}\left[\mu_{n}(F(G+P G))-\mu_{n}(F) \mu_{n}(G+P G)\right],
\end{gathered}
$$

where the $k \times k$ matrix $\mathrm{K}_{n}(G)$ is defined by

$$
\left(K_{n}(G)\right)_{i j}=\frac{1}{n} \sum_{t=0}^{n-1}\left(G_{i}\left(X_{t}\right)-P G_{i}\left(X_{t-1}\right)\right)\left(G_{j}\left(X_{t}\right)-P G_{j}\left(X_{t-1}\right)\right)
$$

Normal posterior, random scan Gibbs

Theorem: Let $\left\{X_{n}\right\}$ denote the Markov chain constructed from the random-scan Gibbs sampler used to simulate from an arbitrary multivariate normal distribution $\pi \sim N(\mu, \Sigma)$ in \mathbb{R}^{k}. If the goal is to estimate the mean of the first component of π, then letting $F(x)=x^{(1)}$ for each $x=\left(x^{(1)}, x^{(2)}, \ldots, x^{(k)}\right)^{t} \in \mathbb{R}^{k}$, the solution \hat{F} of the Poisson equation for F can be expressed as linear combination of the basis functions $G_{j}(x):=x^{(j)}, x \in \mathbb{R}^{k}, 1 \leq j \leq k$,

$$
\hat{F}=\sum_{j=1}^{k} \theta_{j} G_{j}
$$

Moreover, writing $Q=\Sigma^{-1}$, the coefficient vector θ is given by the first row of the matrix $k(I-A)^{-1}$ where A has entries $A_{i j}=-Q_{i j} / Q_{i i}, 1 \leq i \neq j \leq k, A_{i i}=0$ for all i, and $(I-A)$ is always invertible.

Outline of the Basic Methodology

(i) Given:

- A multivariate posterior distribution $\left.\pi(x)=\pi\left(x^{(1)}, x^{(2)}, \ldots, x^{(d)}\right)\right)$
- A reversible Markov chain $\left\{X_{n}\right\}$ with stationary distribution π
- A sample of length n from the chain $\left\{X_{n}\right\}$
(ii) Goal:
- Estimate the posterior mean $\mu^{(i)}$ of $x^{(i)}$
(iii) Define:
- $F(x)=x^{(i)}$
- Basis functions $G_{j}(x)=x^{(j)}$ for all components j
for which $P G_{j}(x)=E\left[X_{n+1}^{(j)} \mid X_{n}=x\right]$ is computable in closed form
- The corresponding control variates $U_{j}=G_{j}-P G_{j}$
(iv) Estimate:
- The optimal coefficient vector θ^{*} by $\hat{\theta}_{n, \mathrm{~K}}$
- The quantity of interest $\mu^{(i)}$ by the adaptive estimators $\mu_{n, \mathrm{~K}}(F)$

Example: bivariate Gaussian [1/2]

- Let $(X, Y) \sim \pi(x, y)$ be an arbitrary bivariate normal distribution, with $E(X)=E(Y)=0$, $\operatorname{Var}(X)=1, \operatorname{Var}(Y)=10$ and $\operatorname{Corr}(X, Y)=.99$.
- Random-scan Gibbs sampler, initial values $x_{0}=y_{0}=0.5$
- $F(x, y)=x, G_{1}(x, y)=x$ and $G_{2}(x, y)=y$.
- $P G_{1}(x, y)=\frac{1}{2}\left[x+\frac{.99 y}{10}\right]$ and $P G_{2}(x, y)=\frac{1}{2}(y+.99 \times 10 x)$,

Example: bivariate Gaussian [2/2]

Variance reduction factors						
	Simulation steps					
Estimator	$n=10^{3}$	$n=10^{4}$	$n=5 \times 10^{4}$	$n=10^{5}$	$n=2 \times 10^{5}$	$n=5 \times 10^{5}$
$\mu_{n, \mathrm{~K}}(F)$	4.13	27.91	122.4	262.5	445.0	1196.6

Example: hierarchical normal [1/2]

- $N=5$ weekly weight measurements of $k=30$ young rats whose weight is assumed to increase linearly in time (Gelfand, Smith and Hills, 1990, JASA)
- $Y_{i j} \sim N\left(\alpha_{i}+\beta_{i} x_{i j}, \sigma_{c}^{2}\right), \quad 1 \leq i \leq k, 1 \leq j \leq N$,

$$
\begin{aligned}
\phi_{i} & =\binom{\alpha_{i}}{\beta_{i}} \sim N\left(\mu_{c}, \Sigma_{c}\right) \\
\mu_{c} & =\binom{\alpha_{c}}{\beta_{c}} \sim N(\eta, C) \\
\Sigma_{c}^{-1} & \sim \mathrm{~W}\left((\rho R)^{-1}, \rho\right) \\
\sigma_{c}^{2} & \sim \operatorname{IG}\left(\frac{\nu_{0}}{2}, \frac{\nu_{0} \tau_{0}^{2}}{2}\right)
\end{aligned}
$$

with known values for $\eta, C, \nu_{0}, \rho, R$ and τ_{0}.

- The posterior has $2 k+2+3+1=66$ parameters
- random scan Gibbs samples from $\left(\left(\phi_{i}\right), \mu_{c}, \Sigma_{c}, \sigma_{c}^{2}\right)$

Variance reduction factors						
Parameter	$n=1000$	$n=10000$	$n=20000$	$n=50000$	$n=100000$	$n=200000$
$\left(\phi_{i}\right)$	$1.59-3.58$	$9.12-31.02$	$11.73-61.08$	$10.04-81.36$	$12.44-85.99$	$9.38-109.2$
α_{c}	2.99	15.49	32.28	31.14	28.82	36.48
β_{c}	3.05	19.96	34.05	39.22	32.33	36.04
Σ_{c}	$1.15-1.38$	$4.92-5.74$	$5.36-7.60$	$3.88-5.12$	$4.91-5.34$	$3.65-6.50$
σ_{c}^{2}	2.01	5.06	5.23	5.17	4.75	5.79

Example: Metropolis-within-Gibbs, heavy-tailed posterior

- Roberts and Rosenthal (2006, Can. J. of Stats, with discussion)
- N i.i.d. observations $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ are drawn from a $N(\phi, V)$
- $\phi \sim \operatorname{Cauchy}(0,1), V \sim \operatorname{IG}(1,1)$

$$
\begin{aligned}
& \pi(\phi \mid V, x) \quad \propto\left(\frac{1}{1+\phi^{2}}\right) \exp \left\{-\frac{1}{2 V} \sum_{i}\left(\phi-x_{i}\right)^{2}\right\}, \\
& \text { and } \pi(V \mid \phi, x) \sim \mathrm{IG}\left(1+\frac{N}{2}, 1+\frac{1}{2} \sum_{i}\left(\phi-x_{i}\right)^{2}\right) .
\end{aligned}
$$

- Random scan: update V from its conditional (Gibbs step), or update ϕ in a random walk-Metropolis step with a $\phi^{\prime} \sim N(\phi, 1)$ proposal, each case chosen with probability $1 / 2$.
- Simulate data of $N=100$ i.i.d. $N(2,4)$ observations, initial values $\phi_{0}=0$ and $V_{0}=1$.
- $F(\phi, V)=V, G(\phi, V)=V$.
- Variance reduction factors, estimated from $T=100$ repetitions of the same experiment, are 7.89, 7.48, 10.46 and 8.54 , after $n=10000,50000,100000$ and 200000 MCMC steps.

Non-conjugate Normal-Gamma

In the iid case, it is well known that the use of many control variates may be problematic since the variance increases due to the use of estimated coefficients; (see the notion of loss factors).

- Body temperature data, Mackowiak et al.(1992), JASA.
- $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right) \sim$ i.i.d. $N\left(\mu, \sigma^{2}\right), N=130$.
- Priors $\mu \sim N(0,100)$ and $\sigma^{2} \sim \operatorname{IG}(0.001,0.001)$
- $F(\mu, \gamma)=\mu$, random-scan Gibbs sampler

Use of a subset of variates G

Example: Gaussian-Gamma posterior

Variance reduction factors						
Simulation steps						
$\mu_{n, \mathrm{~K}}(F)$	$n=10^{3}$	$n=10^{4}$	$n=5 \times 10^{4}$	$n=10^{5}$	$n=2 \times 10^{5}$	$n=5 \times 10^{5}$
G_{1}	1.40	18.15	49.06	1578.6	4474.6	69659
G_{1}, G_{2}	0.02	0.05	0.06	0.33	0.47	0.68

Model space search with Metropolis

- Two-threshold AR model, Data U.S. 3-month treasury bill rates 1962-1999

$$
\Delta r_{t}=\left\{\begin{array}{ll}
\alpha_{10}+\alpha_{11} r_{t-1} & r_{t-1}<c_{1} \tag{1}\\
\alpha_{20}+\alpha_{21} r_{t-1} & r_{t-1} \geq c_{1}
\end{array}\right\}+\left\{\begin{array}{ll}
\sigma \epsilon_{t} & r_{t-1}<c_{2} \\
\sigma(1+\gamma)^{1 / 2} \epsilon_{t} & r_{t-1} \geq c_{2}
\end{array}\right\}
$$

where $\gamma \geq-1$ characterizes the jump in σ^{2} between the two volatility regimes.

- Sampling: 6-dim'al integration, and a discrete Metropolis-Hastings algorithm over (a, c_{2}) (we replace the 8-dimensional Gibbs sampler of Pfann et al.(1996, J of Econometrics) by a five-dimensional analytical integration over α and σ, a numerical integration over γ, and a Metropolis-Hastings algorithm over $\left(c_{1}, c_{2}\right)$).
- Control variates: Indicator functions of the three most likely models (a, c_{2}) Variance reduction factors: In estimating the posterior prob of MAP model, around 30-120

A log-linear model

Data: $2 \times 3 \times 4$ table of Knuiman and Speed (1988): 491 subjects classified according to hypertension (yes, no), obesity (low, average, high) and alcohol consumption (0, 1-2, 3-5, or 6+ drinks/day)
"Best" (main effects) model: $y_{i} \sim$ Poisson $\left(\mu_{i}\right), \log \left(\mu_{i}\right)=x_{i}^{t} \beta, \quad i=1,2 \ldots, 24$
Prior: Flat improper prior on $\beta \in \mathbb{R}^{7}$
Sampling: Standard Bayesian inference via MCMC performed either by a Gibbs sampler (full conditional densities are log-concave) or by a multivariate random walk Metropolis-Hastings sampler

Coplex G_{j} : A log-linear model

- Sampling: Here we use a simple random-scan Gibbs sampler, noting that a sample from the full conditional density of each β_{j} can be obtained directly as the logarithm of a

$$
\operatorname{Gamma}\left(\sum_{i} y_{i} x_{i j}, \sum_{i: x_{i j}=1} \exp \left\{\sum_{\ell \neq j} \beta_{\ell} x_{i \ell}\right\}\right) \quad \text { random variable }
$$

- Estimation: To estimate the posterior means of the β_{j}, set $F_{j}(\beta)=\beta_{j}$ for each $j=1,2, \ldots, 7$ and use the same seven control variates $U_{1}, U_{2}, \ldots, U_{7}$ for each F_{j}, where each $U_{\ell}=G_{\ell}-P G_{\ell}$ is defined in terms of $G_{\ell}(\beta)=\exp \left(\beta_{\ell}\right)$
- Computing PG: The computation of $P G_{\ell}$ is straightforward, since the mean of $\exp \left(\beta_{j}\right)$ under the full conditional density of β_{j} is

$$
\frac{\sum_{i} y_{i} x_{i j}}{\sum_{i: x_{i j}=1} \exp \left(\sum_{\ell \neq j} \beta_{\ell} x_{i \ell}\right)}
$$

A log-linear model

The variance reduction factors obtained by our estimator $\mu_{n, \text { rev }}(F)$ for different parameters β_{j} are in the range $3.55-5.57,38.2-57.69,66.20-135.51,57.16-170.34$ and $85.41-179.11$, after $n=1000,10000,50000,100000$ and 200000 simulation steps, respectively

Coplex G_{j} : Gaussian mixtures

- Still numerous unresolved issues in inference for finite mixtures. Such models are often ill-posed or non-identifiable. Difficulties reflect important problems in prior specifications and label switching
- Improper priors are hard to use, and proper mixing over all (many!) posterior modes may require enforcing label-switching moves through Metropolis steps
- We begin with $N=500$ data points $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ generated from the mixture $\frac{7}{10} N\left(0, \frac{1}{4}\right)+\frac{3}{10}(0.1,9)$
- Assume the means, variances and mixing proportions are all unknown. Usual conjugate prior setting with non-informative priors based on Richardson and Green (1997)
- Impose a priori restriction $\mu_{1}<\mu_{2}$
- To facilitate sampling from the posterior, introduce latent indicator variables Z, Z_{2}, \ldots, Z_{N}
- Problem: Estimate the two means μ_{1}, μ_{2}

Gaussian mixtures: Sampling

- Standard random-scan Gibbs sampler that selects one of the four parameter blocks $\left(\mu_{\mu}, \mu_{2}\right)$, $\left(\sigma_{1}, \sigma_{2}\right), Z$ or p, each with probability $1 / 4$
- Preferable to first obtain draws from the unconstrained posterior distribution and then to impose the identifiability (ordering) constraint at the post-processing stage
- The data x have been generated so that the two means are very close, which results in frequent label switching throughout the MCMC run and in near-identical (unordered) marginal densities of μ_{1} and μ_{2}
- We perform a post-processing relabelling of the sampled values according to the above restriction, and we denote the ordered sampled vector by ($\mu_{1}^{\circ}, \mu_{2}^{o}, \sigma_{1}^{\circ}, \sigma_{2}^{o}, Z^{\circ}, p^{\circ}$)

Gaussian mixtures: Estimation

- In order to estimate the posterior mean of the smaller of the two means, we let,

$$
F\left(\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, Z, p\right):=\mu_{1}^{o}=\min \left\{\mu_{1}, \mu_{2}\right\}
$$

- To reduce the variance of $\mu_{n}(F)$ we use a bivariate control variate $U=G-P G$, where

$$
G=\left(G_{1}, G_{2}\right)=\left(\mu_{1}^{o}, \sigma_{1}^{o}\right)
$$

- $P G_{1}\left(\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, Z, p\right)$ is the one-step expected value of $\min \left\{\mu_{1}, \mu_{2}\right\}$

$$
\frac{3}{4} \mu_{1}^{o}+\frac{\nu_{1}}{4} \Phi\left(\frac{\nu_{2}-\nu_{1}}{\sqrt{\tau_{1}^{2}+\tau_{2}^{2}}}\right)+\frac{\nu_{2}}{4} \Phi\left(\frac{\nu_{1}-\nu_{2}}{\sqrt{\tau_{1}^{2}+\tau_{2}^{2}}}\right)-\frac{1}{4} \sqrt{\tau_{1}^{2}+\tau_{2}^{2}} \phi\left(\frac{\nu_{2}-\nu_{1}}{\sqrt{\tau_{1}^{2}+\tau_{2}^{2}}}\right)
$$

where ν_{j} and τ_{j}^{2} are the means and variances of μ_{j}, respectively, for $j=1,2$, under the corresponding full conditional densities

Gaussian mixtures: $P G_{2}$

First calculate the probability \boldsymbol{p} (order) that $\mu_{1}<\mu_{2}$:

$$
p(\text { order })=\frac{\Phi\left(E\left(\mu_{2} \mid \cdot\right)-E\left(\mu_{1} \mid \cdot\right)\right)}{\sqrt{E\left(\sigma_{1}^{2} \mid \cdot\right)+E\left(\sigma_{2}^{2} \mid \cdot\right)}}
$$

where all four expectations above are taken under the corresponding full conditional densities, and, since the full conditional of each σ_{j}^{-2} is a Gamma density, the expectations of $\sigma_{1}, \sigma_{2}, \sigma_{1}^{2}$, and σ_{2}^{2}, are all available in closed form. Therefore, p (order) can be computed explicitly, and, $P G_{\mathbf{2}}$ is:

$$
\frac{\sigma_{1}^{o}}{2}+\frac{1}{4}\left[\mathbb{I}_{\left\{\mu_{1}<\mu_{2}\right\}} E\left(\sigma_{1} \mid \cdot\right)+\mathbb{I}_{\left\{\mu_{1}>\mu_{2}\right\}} E\left(\sigma_{2} \mid \cdot\right)\right]+\frac{1}{4}\left[p(\text { order }) \sigma_{1}+(1-p(\text { order })) \sigma_{2}\right]
$$

where all expectations are taken under the corresponding full conditional densities

Gaussian mixtures: Variance reduction

With this choice for G_{1}, G_{2} and corresponding control variates U_{1}, U_{2}, the variance reduction factors obtained by $\mu_{n, \text { rev }}(F)$ are 16.17, 25.36, 38.99, 44.5 and 36.16, after $n=1000,10000,50000,100000$ and 200000 simulation steps, respectively

Discussion: Applicability

(1) The methodology presented applies immediately to any reversible MCMC sampler, as long as it is possible to compute the one-step expectation of some function G of the parameters, in closed form

2 These estimators can be used in a "black-box" fashion to various state-of-the-art samplers used in Bayesian inference via MCMC:
\leadsto all conjugate Gibbs samplers
\leadsto all random-walk Metropolis-Hastings samplers with a discrete proposal
\leadsto many hybrid, Metropolis-within-Gibbs samplers
(3) As in the iid case, blind use of all available control variates is not a good idea -standard hypothesis testing for zero-mean θ_{j} can be used
4. Beyond black-box: Rules of thumb should be used to derive good control variates in broad families of models as demonstrated in log-linear and finite mixture models
(5) See next talk for some interesting ongoing research with many open problems

Theorem: "Under minimal assumptions, it all works"

Suppose $\left\{X_{n}\right\}$ is ψ-irreducible, aperiodic, reversible and satisfies the Lyapunov drift condition (V3), $P V \leq V-W+b \mathbb{I}_{C}$. If $F, G \in L_{\infty}^{W}$ and they are non-degenerate, then:
(i) [ERGODICITY] The chain is positive Harris recurrent, it has a unique invariant measure π, and it converges in distribution to π in a strong sense
(ii) [LLN] The ergodic averages $\mu_{n}(F)$, as well as the adaptive averages $\mu_{n, \text { rev }}(F)$, both converge to $\pi(F)$ a.s., as $n \rightarrow \infty$.
(iii) [Poisson Equation] There is an essentially unique solution $\hat{F} \in L_{\infty}^{V+1}$ to the Poisson eqn
(iv) [CLT FOR $\mu_{n}(F)$] The normalized ergodic averages $\sqrt{n}\left[\mu_{n}(F)-\pi(F)\right]$ converge in distribution to $N\left(0, \sigma_{F}^{2}\right)$
(v) [CLT FOR $\mu_{n, \text { rev }}(F)$] The normalized adaptive averages $\sqrt{n}\left[\mu_{n, \text { rev }}(F)-\pi(F)\right]$ converge in distribution to $N\left(0, \sigma_{F_{\theta^{*}}}^{2}\right)$, where the variance $\sigma_{F_{\theta^{*}}}^{2}$ is minimal among all estimators based on the control variate $U=G-P G$

