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Convergence rates
Under reversibility:

TV finite-n bound

Without reversibility:

Asymptotic V -norm bound
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The Setting

{Xn} Markov chain with general state space (Σ,S)

X0 = x ∈ Σ initial state

P (x, dy) transition kernel

P (x,A) := Px{X1 ∈ A} := Pr{Xn ∈ A|Xn−1 = x}
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The Setting

{Xn} Markov chain with general state space (Σ,S)

X0 = x ∈ Σ initial state

P (x, dy) transition kernel

P (x,A) := Px{X1 ∈ A} := Pr{Xn ∈ A|Xn−1 = x}

ψ-irreducibility and aperiodicity

Assume that there exists σ-finite measure ψ on (Σ,S)

such that Pn(x,A) > 0 eventually

for any x ∈ Σ and any A ∈ S with ψ(A) > 0

Recall

Any kernel Q(x, dy) acts of functions F : Σ → R

and measures μ on (Σ,S) as a linear operator:

QF (x) =
∫
Σ

Q(x, dy)F (y) μQ(A) =
∫
Σ

μ(dx)Q(x,A)
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Geometric Ergodicity (GE) Equivalent Conditions

� There is an invariant measure π

and functions ρ : Σ → (0, 1), C : Σ → [1,∞):

‖P n(x, ·) − π‖TV ≤ C(x)ρ(x)n n ≥ 0, π − a.s.
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‖P n(x, ·) − π‖TV ≤ C(x)ρ(x)n n ≥ 0, π − a.s.
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Geometric Ergodicity (GE) Equivalent Conditions

� There is an invariant measure π

and functions ρ : Σ → (0, 1), C : Σ → [1,∞):

‖P n(x, ·) − π‖TV ≤ C(x)ρ(x)n n ≥ 0, π − a.s.

� There is an invariant measure π

constants ρ ∈ (0, 1), B <∞ and a π-a.s. finite V : Σ → [1,∞]:

‖P n(x, ·) − π‖V ≤ BV (x)ρn n ≥ 0, π − a.s.

where ‖F‖V := sup
x∈Σ

|F (x)|
V (x)

‖μ‖V := sup
F : ‖F‖V <∞

∣∣∣ ∫ Fdμ
∣∣∣

� Lyapunov condition (V4)

There exist V : Σ → [1,∞), δ > 0, b <∞ and a “small” C ⊂ Σ:

PV (x) ≤ (1 − δ)V (x) + bIC
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GE and the LV∞ Spectrum

Proposition 1: Geometric ergodicity ⇔ spectral gap in LV
∞

[∼K-Meyn 2003]

Suppose the chain {Xn} is ψ-irreducible and aperiodic.

Then it is GE iff P admits a spectral gap in

LV∞ := {F : Σ → R s.t. ‖F‖V <∞}
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GE and the LV∞ Spectrum

Proposition 1: Geometric ergodicity ⇔ spectral gap in LV
∞

[∼K-Meyn 2003]

Suppose the chain {Xn} is ψ-irreducible and aperiodic.

Then it is GE iff P admits a spectral gap in

LV∞ := {F : Σ → R s.t. ‖F‖V <∞}

Recall

A set C ⊂ Σ is small if there exist n ≥ 1, ε > 0 and a probability measure ν

on (Σ,S) such that Pn(x,A) ≥ εIIC(x)ν(A) for all x ∈ Σ, A ∈ S
The spectrum S(P ) of P : LV∞ → LV∞ is the set of λ ∈ C s.t.

(I − λP )−1 : LV∞ → LV∞ does not exist

P : LV∞ → LV∞ admits a spectral gap if S(P ) ∩ {z ∈ C : |z| ≥ 1 − ε}
contains only poles of finite multiplicity for some ε > 0
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Proof ideas (⇒)

Consider the potential operator

Uz := [Iz − (P − IC ⊗ ν)]−1, z ∈ C

Iterating the contraction provided (V4) gives a bound on |||Uz|||
V

for z ∼ 1

Use Uz to check that f0 ≡ 1 is an eigenfunction

corresponding to λ0 = 1

Using an operator-inversion formula a la Nummelin

[Iz − P ]−1 = [Iz − (P − IC ⊗ ν)]−1

(
I +

1

1 − κ
IC ⊗ ν

)
show λ = 1 is maximal, isolated, and non-repeated

κ = ν[Iz − (P − IC ⊗ ν)]−1
IC

�
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GE, Reversibility and the L2(π) Spectrum

Proposition 2: Under reversibility: GE ⇔ spectral gap in L2

[Roberts-Rosenthal 1997] [Roberts-Tweedie 2001] [K-Meyn 2003]

Suppose the chain {Xn} is reversible, ψ-irreducible and aperiodic.

Then it is GE iff P admits a spectral gap in L2(π)
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GE, Reversibility and the L2(π) Spectrum

Proposition 2: Under reversibility: GE ⇔ spectral gap in L2

[Roberts-Rosenthal 1997] [Roberts-Tweedie 2001] [K-Meyn 2003]

Suppose the chain {Xn} is reversible, ψ-irreducible and aperiodic.

Then it is GE iff P admits a spectral gap in L2(π)

Proof

Analogous definitions, proof outline similar to Proposition 1

Big difference:

In the Hilbert space setting, the spectral gap is simply

1 − sup
{‖νP‖2

‖ν‖2
: ν s.t. ν(Σ) = 1, ‖ν‖2 = 0

}
where ‖ν‖2 := ‖dν/dπ‖2 �
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L2 Spectral Gap Always Implies GE

Theorem 1

Suppose the chain {Xn} is ψ-irreducible and aperiodic

and that P admits a spectral gap in L2

Then the chain is geometrically ergodic

[w.r.t. so some Lyapunov function V ]
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L2 Spectral Gap Always Implies GE

Theorem 1

Suppose the chain {Xn} is ψ-irreducible and aperiodic

and that P admits a spectral gap in L2

Then for any h ∈ L2(π) there is a Vh ∈ L1(π) s.t.:

� (V4) holds w.r.t. Vh
� h ∈ L

Vh∞

19



L2 Spectral Gap Always Implies GE

Theorem 1

Suppose the chain {Xn} is ψ-irreducible and aperiodic

and that P admits a spectral gap in L2

Then for any h ∈ L2(π) there is a Vh ∈ L1(π) s.t.:

� (V4) holds w.r.t. Vh
� h ∈ L

Vh∞

Proof

Prove “soft” GE

Get explicit exponential bounds on explicit Kendall sets

Let

Vh(x) := Ex

[ σC∑
n=0

(
1 + |h(X(x))|

)
exp{1

2θn}
]

�
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L2 Spectral Gap ⇐ GE

Theorem 2

There is a (non-reversible) ψ-irreducible and aperiodic chain {Xn}
on a countable state space Σ, which is geometrically ergodic

but its transition kernel P does not admit a spectral gap in L2
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L2 Spectral Gap ⇐ GE

Theorem 2

There is a (non-reversible) ψ-irreducible and aperiodic chain {Xn}
on a countable state space Σ, which is geometrically ergodic

but its transition kernel P does not admit a spectral gap in L2

Proof

Start with an example of Häggström or of Bradley:

GE chain {Xn} but CLT fails for some G ∈ L2

Spectral gap exists

⇒ autocorrelation function of {G(Xn)} decays exponentially

⇒ normalized partial sums of {G(Xn)} bdd in L2

⇒ CLT ⇒ contradiction �
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Why do we care?

Theorem 3. [Roberts-Rosenthal 1997]

Suppose the chain {Xn} is reversible, ψ-irreducible and aperiodic

If P admits a spectral gap δ2 > 0 in L2

Then for any X0 ∼ μ: ‖μPn − π‖TV ≤ ‖μ− π‖2(1 − δ2)
n
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Why do we care?

Theorem 3. [Roberts-Rosenthal 1997]

Suppose the chain {Xn} is reversible, ψ-irreducible and aperiodic

If P admits a spectral gap δ2 > 0 in L2

Then for any X0 ∼ μ: ‖μPn − π‖TV ≤ ‖μ− π‖2(1 − δ2)
n

Theorem 4.

Suppose the chain {Xn} is ψ-irreducible and aperiodic

If P admits a spectral gap δV > 0 in LV∞
Then for π-a.e. x:

lim
n→∞

1

n
log ‖Pn(x, ·) − π‖V = log(1 − δV )

In fact:

lim
n→∞

1

n
log

(
sup

x∈X, ‖F‖V=1

|PnF (x) − ∫ F dπ|
V (x)

)
= log(1 − δV )
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