Which Spectrum?

I. Kontoyiannis Athens U. of Econ & Business

joint work with S.P. Meyn University of Illinois/Urbana-Champaign

Athens Workshop on MCMC Convergence and Estimation

Motivation

In general:

Geometric ergodicity \Leftrightarrow spectral gap in L_{∞}^{V}

Motivation

In general:

Geometric ergodicity \Leftrightarrow **spectral gap in** L_{∞}^{V} Under *reversibility*:

Geometric ergodicity \Leftrightarrow spectral gap in L_2

Motivation

In general: **Geometric ergodicity** \Leftrightarrow **spectral gap in** L_{∞}^{V} Under *reversibility*: **Geometric ergodicity** \Leftrightarrow **spectral gap in** L_{2}

In the absence of reversibility

Geometric ergodicity \Leftarrow **spectral gap in** L_2 (explicit)

Motivation

In general: **Geometric ergodicity** \Leftrightarrow **spectral gap in** L_{∞}^{V} Under *reversibility*: **Geometric ergodicity** \Leftrightarrow **spectral gap in** L_{2}

In the absence of reversibility

Geometric ergodicity \Leftarrow **spectral gap in** L_2 (explicit)

Geometric ergodicity \Rightarrow **spectral gap in** L_2 (example)

Motivation

In general: **Geometric ergodicity** \Leftrightarrow **spectral gap in** L_{∞}^{V} Under *reversibility*: **Geometric ergodicity** \Leftrightarrow **spectral gap in** L_{2}

In the absence of reversibility

Geometric ergodicity \Leftarrow spectral gap in L_2 (explicit) Geometric ergodicity \Rightarrow spectral gap in L_2 (example)

Convergence rates

Under reversibility: TV finite-*n* bound Without reversibility: Asymptotic *V*-norm bound

The Setting

 $\{X_n\}$ Markov chain with general state space (Σ, S) $X_0 = x \in \Sigma$ initial stateP(x, dy)transition kernel

$$P(x,A) := \mathsf{P}_x\{X_1 \in A\} := \Pr\{X_n \in A | X_{n-1} = x\}$$

The Setting

 $\begin{array}{ll} \{X_n\} & \quad \mbox{Markov chain with general state space } (\Sigma, \mathcal{S}) \\ X_0 = x \in \Sigma & \quad \mbox{initial state} \\ P(x, dy) & \quad \mbox{transition kernel} \end{array}$

$$P(x,A) := \mathsf{P}_x\{X_1 \in A\} := \Pr\{X_n \in A | X_{n-1} = x\}$$

$\psi\text{-}\mathrm{irreducibility}$ and aperiodicity

 $\begin{array}{ll} \text{Assume that there exists } \sigma \text{-finite measure } \psi \text{ on } (\Sigma, \mathcal{S}) \\ \text{such that} & P^n(x, A) > 0 & \text{eventually} \\ \text{for any } x \in \Sigma \text{ and any } A \in \mathcal{S} \text{ with } \psi(A) > 0 \\ \end{array}$

The Setting

 $\begin{array}{ll} \{X_n\} & \quad \mbox{Markov chain with general state space } (\Sigma, \mathcal{S}) \\ X_0 = x \in \Sigma & \quad \mbox{initial state} \\ P(x, dy) & \quad \mbox{transition kernel} \end{array}$

$$P(x, A) := \mathsf{P}_x\{X_1 \in A\} := \Pr\{X_n \in A | X_{n-1} = x\}$$

ψ -irreducibility and aperiodicity

 $\begin{array}{ll} \text{Assume that there exists } \sigma \text{-finite measure } \psi \text{ on } (\Sigma, \mathcal{S}) \\ \text{such that} & P^n(x, A) > 0 & \text{eventually} \\ \text{for any } x \in \Sigma \text{ and any } A \in \mathcal{S} \text{ with } \psi(A) > 0 \\ \end{array}$

Recall

Any kernel Q(x, dy) acts of functions $F : \Sigma \to \mathbb{R}$ and measures μ on (Σ, S) as a linear operator:

$$QF(x) = \int_{\Sigma} Q(x, dy) F(y) \qquad \mu Q(A) = \int_{\Sigma} \mu(dx) Q(x, A)$$

Geometric Ergodicity (GE) Equivalent Conditions

→ There is an invariant measure π and functions $\rho : \Sigma \to (0, 1)$, $C : \Sigma \to [1, \infty)$:

 $\|P^n(x,\cdot)-\pi\|_{ ext{TV}}\leq C(x)
ho(x)^n$ $n\geq 0,\ \pi- ext{a.s.}$

Geometric Ergodicity (GE) Equivalent Conditions

- $\begin{array}{l} \checkmark \quad \text{There is an invariant measure } \pi \\ \text{ and functions } \rho : \Sigma \to (0,1), \ C : \Sigma \to [1,\infty): \\ \|P^n(x,\cdot) \pi\|_{\mathrm{TV}} \leq C(x)\rho(x)^n \quad n \geq 0, \ \pi \text{a.s.} \end{array}$
- $\begin{array}{l} \checkmark \quad \text{There is an invariant measure } \pi \\ \text{ constants } \rho \in (0,1), \ B < \infty \text{ and a } \pi\text{-a.s. finite } V : \Sigma \rightarrow [1,\infty]: \\ \| P^n(x,\cdot) \pi \|_V \leq BV(x)\rho^n \quad n \geq 0, \ \pi \text{a.s.} \\ \text{where} \quad \| F \|_V := \sup_{x \in \Sigma} \frac{|F(x)|}{V(x)} \quad \| \mu \|_V := \sup_{F : \|F\|_V < \infty} \left| \int F d\mu \right| \\ \end{array}$

Geometric Ergodicity (GE) Equivalent Conditions

- $\begin{array}{l} \checkmark \quad \text{There is an invariant measure } \pi \\ \text{ and functions } \rho: \Sigma \to (0,1), \ C: \Sigma \to [1,\infty): \\ \|P^n(x,\cdot) \pi\|_{\mathrm{TV}} \leq C(x)\rho(x)^n \quad n \geq 0, \ \pi \text{a.s.} \end{array}$
- There is an invariant measure π constants $\rho \in (0,1)$, $B < \infty$ and a π-a.s. finite $V : \Sigma \rightarrow [1,\infty]$: $\|P^n(x,\cdot) - \pi\|_V \leq BV(x)\rho^n \quad n \geq 0, \ \pi - a.s.$ where $\|F\|_V := \sup_{x \in \Sigma} \frac{|F(x)|}{V(x)} \quad \|\mu\|_V := \sup_{F : \|F\|_V < \infty} \left|\int F d\mu\right|$ → Lyapunov condition (V4)

There exist $V : \Sigma \to [1, \infty)$, $\delta > 0$, $b < \infty$ and a "small" $C \subset \Sigma$: $PV(x) \leq (1 - \delta)V(x) + b\mathbb{I}_C$ **Proposition 1:** Geometric ergodicity \Leftrightarrow spectral gap in L_{∞}^{V} [~K-Meyn 2003]

Suppose the chain $\{X_n\}$ is ψ -irreducible and aperiodic.

Then it is GE iff \boldsymbol{P} admits a spectral gap in

$$L_{\infty}^{V} := \{F : \Sigma \to \mathbb{R} \text{ s.t. } \|F\|_{V} < \infty\}$$

Proposition 1: Geometric ergodicity \Leftrightarrow spectral gap in L_{∞}^{V} [~K-Meyn 2003]

Suppose the chain $\{X_n\}$ is ψ -irreducible and aperiodic.

Then it is GE iff \boldsymbol{P} admits a spectral gap in

$$L_{\infty}^{V} := \{F : \Sigma \to \mathbb{R} \text{ s.t. } \|F\|_{V} < \infty\}$$

Recall

- A set $C \subset \Sigma$ is *small* if there exist $n \ge 1$, $\epsilon > 0$ and a probability measure ν on (Σ, S) such that $P^n(x, A) \ge \epsilon \mathbb{I}_C(x)\nu(A)$ for all $x \in \Sigma$, $A \in S$ The *spectrum* S(P) of $P : L^V_{\infty} \to L^V_{\infty}$ is the set of $\lambda \in \mathbb{C}$ s.t. $(I - \lambda P)^{-1} : L^V_{\infty} \to L^V_{\infty}$ does *not* exist $P : L^V_{\infty} \to L^V_{\infty}$ admits a *spectral gap* if $S(P) \cap \{z \in \mathbb{C} : |z| \ge 1 - \epsilon\}$
 - contains only poles of finite multiplicity for some $\epsilon > 0$

Proof ideas (\Rightarrow)

Consider the *potential operator*

$$U_z := [Iz - (P - \mathbb{I}_C \otimes \nu)]^{-1}, \quad z \in \mathbb{C}$$

Iterating the contraction provided (V4) gives a bound on $|||U_z|||_{_V}$ for $z \sim 1$

Use U_z to check that $f_0 \equiv 1$ is an eigenfunction corresponding to $\lambda_0 = 1$

Using an operator-inversion formula a la Nummelin

$$[Iz - P]^{-1} = [Iz - (P - \mathbb{I}_C \otimes \nu)]^{-1} \left(I + \frac{1}{1 - \kappa} \mathbb{I}_C \otimes \nu \right)$$

show $\lambda=1$ is maximal, isolated, and non-repeated

$$\kappa = \nu [Iz - (P - \mathbb{I}_C \otimes \nu)]^{-1} \mathbb{I}_C$$

Proposition 2: Under reversibility: $GE \Leftrightarrow$ spectral gap in L_2 [Roberts-Rosenthal 1997] [Roberts-Tweedie 2001] [K-Meyn 2003]

Suppose the chain $\{X_n\}$ is reversible, ψ -irreducible and aperiodic. Then it is GE iff P admits a spectral gap in $L_2(\pi)$ **Proposition 2:** Under reversibility: $GE \Leftrightarrow$ spectral gap in L_2 [Roberts-Rosenthal 1997] [Roberts-Tweedie 2001] [K-Meyn 2003]

Suppose the chain $\{X_n\}$ is reversible, ψ -irreducible and aperiodic. Then it is GE iff P admits a spectral gap in $L_2(\pi)$

Proof

Analogous definitions, proof outline similar to Proposition 1 Big difference:

In the Hilbert space setting, the spectral gap is simply

$$1 - \sup \left\{ \frac{\|\nu P\|_2}{\|\nu\|_2} : \nu \text{ s.t. } \nu(\Sigma) = 1, \ \|\nu\|_2 \neq 0 \right\}$$
 where $\|\nu\|_2 := \|d\nu/d\pi\|_2$

Suppose the chain $\{X_n\}$ is ψ -irreducible and aperiodic and that P admits a spectral gap in L_2 Then the chain is geometrically ergodic [w.r.t. so some Lyapunov function V]

Suppose the chain $\{X_n\}$ is ψ -irreducible and aperiodic and that P admits a spectral gap in L_2

Then for any $h \in L_2(\pi)$ there is a $V_h \in L_1(\pi)$ s.t.: \rightarrow (V4) holds w.r.t. V_h \rightarrow $h \in L_{\infty}^{V_h}$

Suppose the chain $\{X_n\}$ is ψ -irreducible and aperiodic and that P admits a spectral gap in L_2 Then for any $h \in L_2(\pi)$ there is a $V_h \in L_1(\pi)$ s.t.: \rightsquigarrow (V4) holds w.r.t. V_h \rightsquigarrow $h \in L_{\infty}^{V_h}$

Proof

Prove "soft" GE

Get explicit exponential bounds on explicit Kendall sets

Let

$$V_h(x) := E_x \left[\sum_{n=0}^{\sigma_C} \left(1 + |h(X(x))| \right) \exp\{\frac{1}{2}\theta n\} \right]$$

There is a (non-reversible) ψ -irreducible and aperiodic chain $\{X_n\}$ on a countable state space Σ , which is geometrically ergodic but its transition kernel P does *not* admit a spectral gap in L_2

There is a (non-reversible) ψ -irreducible and aperiodic chain $\{X_n\}$ on a countable state space Σ , which is geometrically ergodic but its transition kernel P does *not* admit a spectral gap in L_2

Proof

Start with an example of Häggström or of Bradley: GE chain $\{X_n\}$ but CLT fails for some $G \in L_2$

Spectral gap exists

 \Rightarrow autocorrelation function of $\{G(X_n)\}$ decays exponentially

 \Rightarrow normalized partial sums of $\{G(X_n)\}$ bdd in L_2

 $\Rightarrow \mathsf{CLT} \Rightarrow \mathsf{contradiction}$

Theorem 3. [Roberts-Rosenthal 1997]

Suppose the chain $\{X_n\}$ is reversible, ψ -irreducible and aperiodic If P admits a spectral gap $\delta_2 > 0$ in L_2 Then for any $X_0 \sim \mu$: $\|\mu P^n - \pi\|_{TV} \leq \|\mu - \pi\|_2 (1 - \delta_2)^n$

Theorem 3. [Roberts-Rosenthal 1997]

Suppose the chain $\{X_n\}$ is reversible, ψ -irreducible and aperiodic If P admits a spectral gap $\delta_2 > 0$ in L_2 Then for any $X_0 \sim \mu$: $\|\mu P^n - \pi\|_{TV} \leq \|\mu - \pi\|_2 (1 - \delta_2)^n$

Theorem 4.

Suppose the chain $\{X_n\}$ is ψ -irreducible and aperiodic If P admits a spectral gap $\delta_V > 0$ in L_{∞}^V Then for π -a.e. x:

$$\lim_{n \to \infty} \frac{1}{n} \log \|P^n(x, \cdot) - \pi\|_V = \log(1 - \delta_V)$$

In fact:

$$\lim_{n \to \infty} \frac{1}{n} \log \left(\sup_{x \in \mathsf{X}, \, \|F\|_V = 1} \frac{|P^n F(x) - \int F \, d\pi|}{V(x)} \right) = \log(1 - \delta_V)$$