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Adaptive and non-linear MCMC algorithms

Outline

1. MCMC algorithms are a flexible family of algorithms to sample
distributions, known up to a normalisation factor,

2. This flexibility comes at a price... badly tuned MCMC can be very
slow to converge and the convergence may be difficult to diagnose.

3. In the last 10 years, several classes of algorithms have been
introduced to increase the sampling efficiency of the MCMC,
without demanding much additional user supervision. The common
idea is to let the algorithms self-learned from the past simulations
by adapting its parameters

4. Problem : the Markov property is not retained and the convergence
is more difficult to study

5. Today : the basic ingredients of successful adaptations.
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Adaptive SRWM

Adaptive SRWM

I All MCMC algorithms depend on some design parameters...

I for the Symmetric Random Walk Metropolis (SRWM) with normal
proposal distribution, the design parameter is the covariance Σq of
the Gaussian proposal.

I Idea : Tune these design parameters on the fly
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Adaptive SRWM

I The scaling technique (the dimension d of the space →∞),
suggests to set the covariance of the proposal Σq proportional to Σπ.

I In practice Σπ is unknown : at iteration n, replace it by an estimate
obtained from the last simulated samples {Xk, k ≤ n}.

I Pθ : kernel of a SRWM algorithm with proposal Nd(0, θ),

I Iteration n
I draw : Xn+1 ∼ Pθn(Xn, ·)
I update : θn+1 = φn (θn, Xn+1).
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Adaptive MCMC

I A family of transition kernels {Pθ, θ ∈ Θ} such that, for all θ ∈ Θ,
the target distribution π? is the stationary distribution of Pθ :
π?Pθ = π?.

I An adaptive MCMC algorithm : process {(Xn, θn), n ≥ 0} on the
product space X×Θ :

I Sampling : given the past, draw

Xn+1 ∼ Pθn(Xn, ·)

I Internal adaptation : update the parameter θn from the past
values of the X and θ
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Interacting MCMC

Interacting MCMC
I a transition kernel P s.t. π?P = π?
I a probability of swap ε ∈ (0, 1)
I an auxiliary process {Yn, n ≥ 0} targeting a tempered version πβ?
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Interacting MCMC

I a transition kernel P s.t. π?P = π?
I a probability of swap ε ∈ (0, 1)
I an auxiliary process {Yn, n ≥ 0} targeting a tempered version πβ?
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Figure: Example : Mixture of a 2D-Normal distribution [target / EE / Parallel
Tempering / SRWM]
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Interacting MCMC

I a transition kernel P s.t. π?P = π?
I a probability of swap ε ∈ (0, 1)
I an auxiliary process {Yn, n ≥ 0} targeting a tempered version πβ?

I Iteration n :

(a) with probability (1− ε) draw Xn+1 ∼ P (Xn, ·)

Pθn(Xn, A) = (1− ε)P (Xn, A) + · · ·
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Interacting MCMC

Interacting MCMC
I a transition kernel P s.t. π?P = π?
I a probability of swap ε ∈ (0, 1)
I an auxiliary process {Yn, n ≥ 0} targeting a tempered version πβ?

I Iteration n :

(b) with probability ε, draw a point Y? among {Y1, · · · , Yn} and
accept/reject with probability α(Xn, Y?)

Pθn(Xn, A) = (1− ε)P (Xn, A) + ε

{∫
A

θn(dy) α(Xn, y)

+1A(Xn)
∫
θn(dy) {1− α(Xn, y)}

}
where

θn(dy) =
1
n

n∑
k=1

δYk(dy).
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Non-linear MCMC

I Construct an auxiliary process {Yn, n ≥ 0} s.t. its empirical process
limn θn converges in some appropriate sense to π̃(·) so that
asymptotically,

Pθn ≈ Pπ̃

I The acceptance ratio α(x, y) of the interaction is chosen s.t.
π? Pπ̃ = π?

I Heuristic :

1. if these two conditions are satisfied, then the distribution of (Xk)k≥0

converges to π? as k →∞.
2. wishful thinking The convergence might be faster in π̃ is well chosen

and if the convergence of the auxiliary process is fast.
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Interacting MCMC

Non-linear MCMC : refinements

When sampling from the past of the auxiliary process, select the points :
introduce a selection g(x, y) function (satisfying g(x, y) = g(y, x))

Pθn(Xn, A) = (1− ε)P (Xn, A) + ε

{∫
A

g(x, y)θn(dy)∫
g(x, y)θn(dy)

α(Xn, y)

+1A(Xn)
∫

g(x, y)θn(dy)∫
g(x, y)θn(dy)

{1− α(Xn, y)}
}

where

θn(dy) =
1
n

n∑
k=1

δYk(dy) α(x, y) = 1 ∧ π(y) π̃(x)
π̃(y) π(x)
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Interacting MCMC

Non-linear MCMC : refinements

When sampling from the past of the auxiliary process, select the points :
introduce a selection g(x, y) function (satisfying g(x, y) = g(y, x))
This yields :

Pθn(Xn, A) = (1−εθn(x))P (Xn, A)+εθn(x)
{∫

A

g(x, y)θn(dy)∫
g(x, y)θn(dy)

α(Xn, y)

+1A(Xn)
∫

g(x, y)θn(dy)∫
g(x, y)θn(dy)

{1− α(Xn, y)}
}

where

θn(dy) =
1
n

n∑
k=1

δYk(dy) α(x, y) = 1∧π(y) π̃(x)
π̃(y) π(x)

εθ(x) := ε1∫
θ(dy)g(x,y)>0.
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Non-linear MCMC

I A family of transition kernels {Pθ, θ ∈ Θ} with invariant probability
distribution πθ : πθPθ = πθ

I A non-linear MCMC is a process {(Xn, θn), n ≥ 0} on the product
space X×Θ defined as

I Simulation Given the past , draw

Xn+1 ∼ Pθn(Xn, ·)

I External adaptation update the parameter θn (here, a probability
distribution) according to

θn+1 ←→ computed from an auxiliary process {Yk, k ≤ n}
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Interacting MCMC

Adaptive and non-linear MCMC in a nutshell

I A family of transition kernels {Pθ, θ ∈ Θ} with invariant
distribution : π? (internal adaptation) or πθ (external
adaptation).

We define a filtration Fn, and a process {(Xn, θn), n ≥ 0} s.t.

I component θn : Fn adapted with internal / external adaptation

I component Xn (process of interest) :

E [f(Xn+1)| Fn] =
∫
Pθn(Xn, dy) f(y).
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Convergence of the marginals

I Key ingredients to prove the ergodicity of an MCMC algorithms :

1. Markov Chain
2. the transition kernel is reversible w.r.t the target distribution

I These properties are lost when adapting the algorithms...

I Questions : Conditions to guarantee that the adaptation does not
destroy the convergence ?
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Convergence of the marginals

Adaptive MCMC : πθ = π?

E [f(Xn)] = E [E [f(Xn)|Fn−N ]]

= E

 E [f(Xn)|Fn−N ]− PNθn−N f(Xn−N )︸ ︷︷ ︸
comparison with a frozen chain with transition Pθn−N

+PNθn−N f(Xn−N )− π?(f)︸ ︷︷ ︸
ergodicity of the frozen chain

+ π?(f).
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Convergence of the marginals

Diminishing adaptation

sup
x
‖Pθn(x, ·)− Pθn−1(x, ·)‖TV −→P 0

I Generally problem specific

I ... But most often, amounts to check a condition of the type

sup
x
‖Pθn(x, ·)− Pθn−1(x, ·)‖TV ≤ C ‖θn − θn−1‖xxx

so that convergence in probability is implied by the adaptation
scheme.



Adaptive and non-linear MCMC algorithms

Convergence of the marginals

Containment condition

lim
M

lim sup
n

P (Mε(Xn, θn) ≥M) = 0,

Mε(x, θ) := inf{n ≥ 1, ‖Pnθ (x, ·)− π?‖TV ≤ ε}

I Most often, deduced from ergodicity + homogeneity

I The easy case is when the ergodicity is uniform in θ :

sup
θ
‖Pnθ (x, ·)− π?‖TV ≤ ρ(n) U(x) lim

n
ρ(n) = 0

then
Mε(x, θ) ≤ ρ−1

(
εC−1U−1(x)

)
.
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Convergence of the marginals

Adaptive MCMC

Theorem
Assume

1. (Diminishing adaptation)

sup
x
‖Pθn(x, ·)− Pθn−1(x, ·)‖TV −→P 0

2. (Containment condition)

lim
M

lim sup
n

P (Mε(Xn, θn) ≥M) = 0.

Then
lim
n

sup
f,|f |∞≤1

|E [f(Xn)]− π?(f)| = 0
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Convergence of the marginals

Non-Linear MCMC

Non-Linear MCMC : πθPθ = πθ

E [f(Xn)] = E [E [f(Xn)|Fn−N ]]

= E

 E [f(Xn)|Fn−N ]− PNθn−N f(Xn−N )︸ ︷︷ ︸
comparison with a frozen chain with transition Pθn−N

+PNθn−N f(Xn−N )− πθn−N (f)︸ ︷︷ ︸
ergodicity of the frozen chain

+πθn−N (f)− π?(f)
]

+ π?(f).

I (same) : Diminishing adaptation, Containment condition

I Convergence of the invariant measures {πθn , n ≥ 0} to some π?
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I Convergence of the invariant measures {πθn , n ≥ 0} to some π?
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Non-Linear MCMC

Non linear MCMC

Theorem
Assume

1. (Diminishing adaptation)

sup
x
‖Pθn(x, ·)− Pθn−1(x, ·)‖TV −→P 0

2. (Containment condition)

lim
M

lim sup
n

P (Mε(Xn, θn) ≥M) = 0.

3. (Convergence of the invariant distributions)

πθn(f)− π?(f)→P 0.

Then
lim
n
|E [f(Xn)]− π?(f)| = 0
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How to check these conditions ?

How to check these conditions ?
I (Convergence of the invariant distributions)

πθn(f)− π?(f)→P 0.

We proved that if

(i) there exist x s.t.

lim
n

sup
θ
‖Pnθ (x, ·)− πθ‖TV = 0,

(ii) there exist θ? ∈ Θ and a set A such that P(A) = 1 and

∀ω ∈ A, x ∈ X, B ∈ B(X) lim
n
Pθn(ω)(x,B) = Pθ?(x,B)

(iii) the state space X is Polish

then for any bounded function f ,

πθn(f) −→a.s. πθ?(f)
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Convergence of the marginals

Conclusion of Section II

Back to the Interacting MCMC

Let π? be positive and continuous on X s.t. supX π? < +∞.
Let β ∈ (0, 1).

I On the auxiliary process :

I On the transition kernel P :

I On the probability of swap ε :
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Back to the Interacting MCMC

Let π? be positive and continuous on X s.t. supX π? < +∞.
Let β ∈ (0, 1).

I On the auxiliary process : for any bounded function f ,

1
n

n∑
k=1

f(Yk) −→a.s. π
β
? (f).

I On the transition kernel P :

I On the probability of swap ε :



Adaptive and non-linear MCMC algorithms

Convergence of the marginals

Conclusion of Section II

Back to the Interacting MCMC

Let π? be positive and continuous on X s.t. supX π? < +∞.
Let β ∈ (0, 1).

I On the auxiliary process : for any bounded function f ,

1
n

n∑
k=1

f(Yk) −→a.s. π
β
? (f).

I On the transition kernel P : P is phi-irreducible, π?P = π?, the
level sets {π ≥ p} are 1-small and

PV (x) ≤ λV (x) + b1C(x) V (x) =
(
π(x)

supX π

)−τ(1−β)

for some λ ∈ (0, 1), b < +∞, a set C, τ ∈ (0, 1].

I On the probability of swap ε :
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Back to the Interacting MCMC
Let π? be positive and continuous on X s.t. supX π? < +∞.
Let β ∈ (0, 1).

I On the auxiliary process : for any bounded function f ,

1
n

n∑
k=1

f(Yk) −→a.s. π
β
? (f).

I On the transition kernel P : P is phi-irreducible, π?P = π?, the
level sets {π ≥ p} are 1-small and

PV (x) ≤ λV (x) + b1C(x) V (x) =
(
π(x)

supX π

)−τ(1−β)

for some λ ∈ (0, 1), b < +∞, a set C, τ ∈ (0, 1].

I On the probability of swap ε :

0 ≤ ε < 1− λ
1− λ+ τ(1− τ)(1−τ)/τ
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Convergence of the marginals

Conclusion of Section II

Under these conditions,

I the diminishing adaptation condition holds

I a uniform-in-θ drift condition holds

λ̃ ∈ (0, 1), PθV (x) ≤ λ̃V (x) + b1C(x),

and we prove the containment condition.

I the invariant measures a.s. converge : limn πθn(f) = π?(f) a.s. for
any bounded function.

Hence, for any bounded function f

E [f(Xn)] −→n π?(f).
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Strong LLN

Sufficient Conditions for the existence of π? s.t. the strong LLN

1
n

n∑
k=1

f(Xk) −→a.s. π?(f)

is satisfied for any function f in a (hopefully large) class of functions.
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Strong LLN

Idea

Idea : use the Poisson equation

1
n

n∑
k=1

f(Xk)−π?(f) =
1
n

n∑
k=1

{f(Xk)− πθk−1(f)}︸ ︷︷ ︸
“Poisson term”

+
1
n

n∑
k=1

πθk−1(f)− π?(f)︸ ︷︷ ︸
Cesaro mean (is null when πθ = π?)

if

(i) uniform-in-θ V -ergodicity for some x,

lim
n

sup
θ
‖Pnθ (x, ·)− πθ‖V = 0,

(ii) There exist θ? ∈ Ω0 and A s.t. P(Ω0) = 1 and

∀ω ∈ A, x,B Pθn(ω)(x,B) −→ Pθ?(x,B)

(iii) Polish state space X

then

πθn(f) −→a.s. πθ?(f) for any f ∈ LV α , α ∈ [0, 1)
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Strong LLN

Idea

Decomposition

1
n

n∑
k=1

{f(Xk)− πθk−1(f)}

= n−1
n∑
k=1

{f̂θk−1(Xk)− Pθk−1 f̂θk−1(Xk−1)}︸ ︷︷ ︸
martingale term

+
1
n

n−1∑
k=1

{Pθk f̂θk(Xk)− Pθk−1 f̂θk−1(Xk)}︸ ︷︷ ︸
Remainder term (I)

+ n−1{Pθ0fθ0(X0)− Pθn−1fθn−1(Xn−1)}︸ ︷︷ ︸
Remainder term (II)

where f̂θ solves f − πθ(f) = f̂θ − Pθf̂θ.

I a.s. convergence of the martingale : conditions on the Lp-moments
of the increment ↪→ uniform-in-θ drift conditions on the
kernels Pθ.

I a.s. convergence of the remainder terms : regularity in θ of the
solution to the Poisson equation ↪→ strenghtened
diminishing adaptation condition.
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solution to the Poisson equation ↪→ strenghtened
diminishing adaptation condition.
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Strong LLN

Result

Define

DV (θ, θ′) := sup
x

‖Pθ(x, ·)− Pθ′(x, ·)‖V
V (x)

Theorem
Assume

(i) (uniform ergodic behavior) Pθ is phi-irreducible,

PθV ≤ λV + b1C λ ∈ (0, 1), b < +∞,

and level sets of V are 1-small.

(ii) (strenghtened D.A.)
∑
k

1
kV

α(Xk) DV α(θk, θk−1) < +∞ a.s.

(iii) (convergence of the invariant measures)

Then : if E[V (X0)] <∞, for any α ∈ [0, 1) and any f ∈ LV α

1
n

n∑
k=1

f(Xk) −→a.s. π?(f),
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Strong LLN

Conclusion of Section III

Conclusion : when applied to the Equi-Energy sampler

Let π? be positive and continuous on X s.t. supX π? < +∞.
Let β ∈ (0, 1).

I On the transition kernel P :

I On the probability of swap ε :

I On the auxiliary process :

Note that : it is assumed that a strong LLN holds for the auxiliary
process and any function f ∈ LV α , α ∈ (0, 1) ; in order to prove a strong
LLN for the process of interest and any function f ∈ LV α , α ∈ (0, 1).

↪→ repeat the mecanism and prove the convergence of the marginals + a
strong LLN for the K-levels Equi-Energy sampler
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Conclusion : when applied to the Equi-Energy sampler
Let π? be positive and continuous on X s.t. supX π? < +∞.
Let β ∈ (0, 1).

I On the transition kernel P : (same as those for the convergence of
the marginals)

I On the probability of swap ε : (same as those for the convergence of
the marginals)

I On the auxiliary process : for any α ∈ [0, 1) and f ∈ LV α

1
n

n∑
k=1

f(Yk) −→a.s. π
β
? (f).

Note that : it is assumed that a strong LLN holds for the auxiliary
process and any function f ∈ LV α , α ∈ (0, 1) ; in order to prove a strong
LLN for the process of interest and any function f ∈ LV α , α ∈ (0, 1).

↪→ repeat the mecanism and prove the convergence of the marginals + a
strong LLN for the K-levels Equi-Energy sampler
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Overall conclusion

Conclusion of the talk

I We prove convergence of the marginals for general adaptive MCMC
samplers with the main ingredients

I diminishing adaptation
I ergodicity of the kernels + some form of uniformity in θ
I For external adaptation : a.s. convergence of the invariant measures
πθn

I Under the same assumptions, a L.L.N can be established.
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