Eric MOULINES

Telecom Paris Tech CNRS - LTCI

Joint work with Y. ATCHADE (Univ. Michigan, USA), G. FORT (TELECOM ParisTech, France) and P. PRIOURET (Univ. Paris VI, France)

Outline

- 1. MCMC algorithms are a flexible family of algorithms to sample distributions, known up to a normalisation factor,
- 2. This flexibility comes at a price... badly tuned MCMC can be very slow to converge and the convergence may be difficult to diagnose.
- 3. In the last 10 years, several classes of algorithms have been introduced to *increase* the sampling efficiency of the MCMC, without demanding much additional user supervision. The common idea is to let the algorithms **self-learned** from the past simulations by **adapting** its parameters
- 4. **Problem :** the Markov property is not retained and the convergence is more difficult to study
- 5. Today : the basic ingredients of successful adaptations.

Adaptive SRWM

Adaptive SRWM

- All MCMC algorithms depend on some design parameters...
- For the Symmetric Random Walk Metropolis (SRWM) with normal proposal distribution, the design parameter is the covariance Σ_q of the Gaussian proposal.
- Idea : Tune these design parameters on the fly

Adaptive SRWM

Adaptive SRWM

- The scaling technique (the dimension d of the space → ∞), suggests to set the covariance of the proposal Σ_q proportional to Σ_π.
- In practice Σ_π is unknown : at iteration n, replace it by an estimate obtained from the last simulated samples {X_k, k ≤ n}.
- P_{θ} : kernel of a SRWM algorithm with proposal $\mathcal{N}_d(0, \theta)$,
- ▶ Iteration n
 - draw : $X_{n+1} \sim P_{\theta_n}(X_n, \cdot)$
 - update : $\theta_{n+1} = \phi_n (\theta_n, X_{n+1}).$

Adaptive SRWM

Adaptive MCMC

- A family of transition kernels $\{P_{\theta}, \theta \in \Theta\}$ such that, for all $\theta \in \Theta$, the target distribution π_{\star} is the stationary distribution of P_{θ} : $\pi_{\star}P_{\theta} = \pi_{\star}$.
- ► An adaptive MCMC algorithm : process $\{(X_n, \theta_n), n \ge 0\}$ on the product space X × Θ :
 - Sampling : given the past, draw

$$X_{n+1} \sim P_{\theta_n}(X_n, \cdot)$$

 \blacktriangleright Internal adaptation : update the parameter θ_n from the past values of the X and θ

Two examples

Interacting MCMC

Interacting MCMC

- ▶ a transition kernel P s.t. $\pi_{\star}P = \pi_{\star}$
- \blacktriangleright a probability of swap $\epsilon \in (0,1)$
- ▶ an auxiliary process $\{Y_n, n \ge 0\}$ targeting a **tempered** version π^{β}_{\star}

Two examples

Interacting MCMC

Interacting MCMC

- ▶ a transition kernel P s.t. $\pi_{\star}P = \pi_{\star}$
- \blacktriangleright a probability of swap $\epsilon \in (0,1)$
- ▶ an auxiliary process $\{Y_n, n \ge 0\}$ targeting a **tempered** version π^{β}_{\star}

Two examples

Interacting MCMC

Interacting MCMC

- ▶ a transition kernel P s.t. $\pi_{\star}P = \pi_{\star}$
- \blacktriangleright a probability of swap $\epsilon \in (0,1)$
- ▶ an auxiliary process $\{Y_n, n \ge 0\}$ targeting a **tempered** version π^{β}_{\star}

 $\begin{array}{l} \hline \mathbf{FIGURE:} \ \mathsf{Example}: \ \mathsf{Mixture} \ \mathsf{of} \ \mathsf{a} \ \mathsf{2D}\text{-}\mathsf{Normal} \ \mathsf{distribution} \ [\mathsf{target} \ / \ \mathsf{EE} \ / \ \mathsf{Parallel} \\ \hline \mathsf{Tempering} \ / \ \mathsf{SRWM}] \end{array}$

Two examples

Interacting MCMC

Interacting MCMC

- ▶ a transition kernel P s.t. $\pi_{\star}P = \pi_{\star}$
- \blacktriangleright a probability of swap $\epsilon \in (0,1)$
- ▶ an auxiliary process $\{Y_n, n \ge 0\}$ targeting a **tempered** version π_\star^β

▶ Iteration n :

(a) with probability $(1 - \epsilon)$ draw $X_{n+1} \sim P(X_n, \cdot)$

$$P_{\theta_n}(X_n, A) = (1 - \epsilon)P(X_n, A) + \cdots$$

Two examples

Interacting MCMC

Interacting MCMC

- ▶ a transition kernel P s.t. $\pi_{\star}P = \pi_{\star}$
- a probability of swap $\epsilon \in (0,1)$
- ▶ an auxiliary process $\{Y_n, n \ge 0\}$ targeting a **tempered** version π_\star^β
- \blacktriangleright Iteration n :

(b) with probability ϵ , draw a point Y_* among $\{Y_1, \dots, Y_n\}$ and accept/reject with probability $\alpha(X_n, Y_*)$

$$P_{\theta_n}(X_n, A) = (1 - \epsilon)P(X_n, A) + \epsilon \left\{ \int_A \theta_n(dy) \ \alpha(X_n, y) \right. \\ \left. + \mathbb{1}_A(X_n) \int \theta_n(dy) \ \left\{ 1 - \alpha(X_n, y) \right\} \right\}$$

where

$$\theta_n(dy) = \frac{1}{n} \sum_{k=1}^n \delta_{Y_k}(dy).$$

Two examples

Interacting MCMC

Non-linear MCMC

• Construct an auxiliary process $\{Y_n, n \ge 0\}$ s.t. its empirical process $\lim_n \theta_n$ converges in some appropriate sense to $\tilde{\pi}(\cdot)$ so that asymptotically,

 $P_{\theta_n} \approx P_{\tilde{\pi}}$

► The acceptance ratio $\alpha(x,y)$ of the interaction is chosen s.t. $\pi_{\star} \ P_{\tilde{\pi}} = \pi_{\star}$

► Heuristic :

- 1. If these two conditions are satisfied, then the distribution of $(X_k)_{k\geq 0}$ converges to π_{\star} as $k \to \infty$.
- 2. wishful thinking The convergence might be faster in $\tilde{\pi}$ is well chosen and if the convergence of the auxiliary process is fast.

- Two examples

Interacting MCMC

Non-linear MCMC : refinements

When sampling from the past of the auxiliary process, select the points : introduce a selection g(x, y) function (satisfying g(x, y) = g(y, x))

$$P_{\theta_n}(X_n, A) = (1 - \epsilon)P(X_n, A) + \epsilon \left\{ \int_A \frac{g(x, y)\theta_n(dy)}{\int g(x, y)\theta_n(dy)} \alpha(X_n, y) \right. \\ \left. + \mathbb{1}_A(X_n) \int \frac{g(x, y)\theta_n(dy)}{\int g(x, y)\theta_n(dy)} \{1 - \alpha(X_n, y)\} \right\}$$

where

$$heta_n(dy) = rac{1}{n} \sum_{k=1}^n \delta_{Y_k}(dy) \qquad lpha(x,y) = 1 \wedge rac{\pi(y) \ ilde{\pi}(x)}{ ilde{\pi}(y) \ \pi(x)}$$

Two examples

Interacting MCMC

Non-linear MCMC : refinements

When sampling from the past of the auxiliary process, select the points : introduce a selection g(x, y) function (satisfying g(x, y) = g(y, x)) This yields :

$$P_{\theta_n}(X_n, A) = (1 - \epsilon_{\theta_n}(x)) P(X_n, A) + \epsilon_{\theta_n}(x) \left\{ \int_A \frac{g(x, y)\theta_n(dy)}{\int g(x, y)\theta_n(dy)} \alpha(X_n, y) \right. \\ \left. + \mathbb{1}_A(X_n) \int \frac{g(x, y)\theta_n(dy)}{\int g(x, y)\theta_n(dy)} \{1 - \alpha(X_n, y)\} \right\}$$

where

$$\theta_n(dy) = \frac{1}{n} \sum_{k=1}^n \delta_{Y_k}(dy) \qquad \alpha(x, y) = 1 \wedge \frac{\pi(y) \ \tilde{\pi}(x)}{\tilde{\pi}(y) \ \pi(x)} \qquad \epsilon_{\theta}(x) := \epsilon \mathbb{1}_{\int \theta(dy)g(x, y) dy}$$

Two examples

Interacting MCMC

Non-linear MCMC

- A family of transition kernels {P_θ, θ ∈ Θ} with invariant probability distribution π_θ : π_θP_θ = π_θ
- ▶ A non-linear MCMC is a process $\{(X_n, \theta_n), n \ge 0\}$ on the product space X × Θ defined as
 - Simulation Given the past , draw

$$X_{n+1} \sim P_{\theta_n}(X_n, \cdot)$$

External adaptation update the parameter θ_n (here, a probability distribution) according to

 $\theta_{n+1} \longleftrightarrow$ computed from an auxiliary process $\{Y_k, k \leq n\}$

Interacting MCMC

Adaptive and non-linear MCMC in a nutshell

A family of transition kernels {P_θ, θ ∈ Θ} with invariant distribution : π_{*} (internal adaptation) or π_θ (external adaptation).

We define a filtration \mathcal{F}_n , and a process $\{(X_n, \theta_n), n \ge 0\}$ s.t.

- component $\theta_n : \mathcal{F}_n$ adapted with internal / external adaptation
- component X_n (process of interest) :

$$\mathbb{E}\left[f(X_{n+1})|\mathcal{F}_n\right] = \int P_{\theta_n}(X_n, dy) f(y).$$

Convergence of the marginals

• Key ingredients to prove the ergodicity of an MCMC algorithms :

- 1. Markov Chain
- 2. the transition kernel is reversible w.r.t the target distribution
- These properties are lost when adapting the algorithms...
- Questions : Conditions to guarantee that the adaptation does not destroy the convergence ?

Adaptive MCMC : $\pi_{\theta} = \pi_{\star}$

$$\mathbb{E}\left[f(X_n)\right] = \mathbb{E}\left[\mathbb{E}\left[f(X_n)|\mathcal{F}_{n-N}\right]\right]$$

$$= \mathbb{E}\left[\underbrace{\mathbb{E}\left[f(X_n)|\mathcal{F}_{n-N}\right] - P_{\theta_{n-N}}^N f(X_{n-N})}_{\text{comparison with a frozen chain with transition } P_{\theta_{n-N}}\right]$$

$$+\underbrace{P_{\theta_{n-N}}^N f(X_{n-N}) - \pi_{\star}(f)}_{\text{ergodicity of the frozen chain}}\right] + \pi_{\star}(f).$$

Diminishing adaptation

$$\sup_{x} \|P_{\theta_n}(x,\cdot) - P_{\theta_{n-1}}(x,\cdot)\|_{\mathrm{TV}} \longrightarrow_{\mathbb{P}} 0$$

- Generally problem specific
- ... But most often, amounts to check a condition of the type

$$\sup_{x} \|P_{\theta_n}(x,\cdot) - P_{\theta_{n-1}}(x,\cdot)\|_{\mathrm{TV}} \le C \|\theta_n - \theta_{n-1}\|_{\mathbf{xxx}}$$

so that convergence in probability is implied by the **adaptation scheme**.

Containment condition

$$\lim_{M} \limsup_{n} \mathbb{P}\left(M_{\epsilon}(X_{n}, \theta_{n}) \geq M\right) = 0,$$
$$M_{\epsilon}(x, \theta) := \inf\{n \geq 1, \|P_{\theta}^{n}(x, \cdot) - \pi_{\star}\|_{\mathrm{TV}} \leq \epsilon\}$$

- ► Most often, deduced from **ergodicity** + homogeneity
- The easy case is when the ergodicity is **uniform** in θ :

$$\sup_{\theta} \|P_{\theta}^{n}(x,\cdot) - \pi_{\star}\|_{\mathrm{TV}} \le \rho(n) \ U(x) \qquad \qquad \lim_{n} \rho(n) = 0$$

then

$$M_{\epsilon}(x,\theta) \le \rho^{-1} \left(\epsilon C^{-1} U^{-1}(x) \right).$$

Adaptive MCMC

Theorem

Assume

1. (Diminishing adaptation)

$$\sup_{x} \|P_{\theta_n}(x,\cdot) - P_{\theta_{n-1}}(x,\cdot)\|_{\mathrm{TV}} \longrightarrow_{\mathbb{P}} 0$$

2. (Containment condition)

$$\lim_{M} \limsup_{n} \mathbb{P}\left(M_{\epsilon}(X_{n}, \theta_{n}) \geq M\right) = 0.$$

Then

$$\lim_{n} \sup_{f,|f|_{\infty} \le 1} |\mathbb{E} \left[f(X_n) \right] - \pi_{\star}(f)| = 0$$

Convergence of the marginals

Non-Linear MCMC

Non-Linear MCMC : $\pi_{\theta}P_{\theta} = \pi_{\theta}$

$$\mathbb{E}\left[f(X_{n})\right] = \mathbb{E}\left[\mathbb{E}\left[f(X_{n})|\mathcal{F}_{n-N}\right]\right]$$

$$= \mathbb{E}\left[\underbrace{\mathbb{E}\left[f(X_{n})|\mathcal{F}_{n-N}\right] - P_{\theta_{n-N}}^{N}f(X_{n-N})}_{\text{comparison with a frozen chain with transition } P_{\theta_{n-N}}\right]$$

$$+\underbrace{P_{\theta_{n-N}}^{N}f(X_{n-N}) - \pi_{\theta_{n-N}}(f)}_{\text{ergodicity of the frozen chain}}$$

$$+\pi_{\theta_{n-N}}(f) - \pi_{\star}(f)\right] + \pi_{\star}(f).$$

Convergence of the marginals

Non-Linear MCMC

Non-Linear MCMC : $\pi_{\theta}P_{\theta} = \pi_{\theta}$

$$\mathbb{E}\left[f(X_n)\right] = \mathbb{E}\left[\mathbb{E}\left[f(X_n)|\mathcal{F}_{n-N}\right]\right]$$

$$= \mathbb{E}\left[\underbrace{\mathbb{E}\left[f(X_n)|\mathcal{F}_{n-N}\right] - P_{\theta_{n-N}}^N f(X_{n-N})}_{\text{comparison with a frozen chain with transition } P_{\theta_{n-N}}\right]$$

$$+ \underbrace{P_{\theta_{n-N}}^N f(X_{n-N}) - \pi_{\theta_{n-N}}(f)}_{\text{ergodicity of the frozen chain}}$$

$$+ \pi_{\theta_{n-N}}(f) - \pi_{\star}(f) + \pi_{\star}(f).$$

- ▶ (same) : Diminishing adaptation, Containment condition
- Convergence of the invariant measures $\{\pi_{\theta_n}, n \ge 0\}$ to some π_*

Convergence of the marginals

Non-Linear MCMC

Non linear MCMC

Theorem

Assume

1. (Diminishing adaptation)

$$\sup_{x} \|P_{\theta_n}(x,\cdot) - P_{\theta_{n-1}}(x,\cdot)\|_{\mathrm{TV}} \longrightarrow_{\mathbb{P}} 0$$

2. (Containment condition)

$$\lim_{M} \limsup_{n} \mathbb{P}\left(M_{\epsilon}(X_{n}, \theta_{n}) \geq M\right) = 0.$$

3. (Convergence of the invariant distributions)

$$\pi_{\theta_n}(f) - \pi_\star(f) \to_{\mathbb{P}} 0.$$

Then

$$\lim_{n} |\mathbb{E}[f(X_{n})] - \pi_{\star}(f)| = 0$$

Convergence of the marginals

How to check these conditions?

How to check these conditions?

• (Convergence of the invariant distributions)

$$\pi_{\theta_n}(f) - \pi_\star(f) \to_{\mathbb{P}} 0.$$

We proved that if

(i) there exist x s.t.

$$\lim_{n} \sup_{\theta} \|P_{\theta}^{n}(x,\cdot) - \pi_{\theta}\|_{\mathrm{TV}} = 0,$$

(ii) there exist $\theta_{\star} \in \Theta$ and a set A such that $\mathbb{P}(A) = 1$ and

 $\forall \omega \in A, x \in \mathsf{X}, B \in \mathcal{B}(\mathsf{X}) \qquad \qquad \lim_{n} P_{\theta_n(\omega)}(x, B) = P_{\theta_\star}(x, B)$

(iii) the state space X is Polish then for any bounded function f,

$$\pi_{\theta_n}(f) \longrightarrow_{\mathbf{a.s.}} \pi_{\theta_\star}(f)$$

Convergence of the marginals

Conclusion of Section II

Back to the Interacting MCMC

- ► On the auxiliary process :
- ► On the transition kernel *P* :
- On the probability of swap ϵ :

Convergence of the marginals

Conclusion of Section II

Back to the Interacting MCMC

Let π_{\star} be positive and continuous on X s.t. $\sup_{X} \pi_{\star} < +\infty$. Let $\beta \in (0, 1)$.

▶ On the auxiliary process : for any bounded function *f*,

$$\frac{1}{n}\sum_{k=1}^{n}f(Y_{k})\longrightarrow_{a.s.}\pi_{\star}^{\beta}(f).$$

- ► On the transition kernel *P* :
- On the probability of swap ϵ :

Convergence of the marginals

Conclusion of Section II

Back to the Interacting MCMC

Let π_{\star} be positive and continuous on X s.t. $\sup_{X} \pi_{\star} < +\infty$. Let $\beta \in (0, 1)$.

▶ On the auxiliary process : for any bounded function *f*,

$$\frac{1}{n}\sum_{k=1}^{n}f(Y_{k})\longrightarrow_{a.s.}\pi_{\star}^{\beta}(f).$$

On the transition kernel P : P is phi-irreducible, π_⋆P = π_⋆, the level sets {π ≥ p} are 1-small and

$$PV(x) \le \lambda V(x) + b\mathbb{1}_{\mathcal{C}}(x) \qquad V(x) = \left(\frac{\pi(x)}{\sup_{\mathbf{X}} \pi}\right)^{-\tau(1-\beta)}$$

for some $\lambda \in (0,1)$, $b < +\infty$, a set \mathcal{C} , $\tau \in (0,1]$.

• On the probability of swap ϵ :

Convergence of the marginals

Conclusion of Section II

Back to the Interacting MCMC

Let π_{\star} be positive and continuous on X s.t. $\sup_{X} \pi_{\star} < +\infty$. Let $\beta \in (0, 1)$.

▶ On the auxiliary process : for any bounded function *f*,

$$\frac{1}{n}\sum_{k=1}^{n}f(Y_k)\longrightarrow_{a.s.}\pi_{\star}^{\beta}(f).$$

On the transition kernel P : P is phi-irreducible, π_{*}P = π_{*}, the level sets {π ≥ p} are 1-small and

$$PV(x) \le \lambda V(x) + b \mathbb{1}_{\mathcal{C}}(x) \qquad V(x) = \left(\frac{\pi(x)}{\sup_{\mathbf{X}} \pi}\right)^{-\tau(1-\beta)}$$

for some $\lambda \in (0,1)$, $b < +\infty$, a set \mathcal{C} , $\tau \in (0,1]$.

• On the probability of swap ϵ :

$$0 \le \epsilon < \frac{1-\lambda}{1-\lambda+\tau(1-\tau)^{(1-\tau)/\tau}}$$

Conclusion of Section II

Under these conditions,

- the diminishing adaptation condition holds
- a <u>uniform-in- θ drift</u> condition holds

 $\tilde{\lambda} \in (0,1), \qquad P_{\theta}V(x) \le \tilde{\lambda}V(x) + b\mathbb{1}_{\mathcal{C}}(x),$

and we prove the containment condition.

► the invariant measures a.s. converge : $\lim_{n} \pi_{\theta_n}(f) = \pi_{\star}(f)$ a.s. for any bounded function.

Hence, for any bounded function \boldsymbol{f}

$$\mathbb{E}\left[f(X_n)\right] \longrightarrow_n \pi_\star(f).$$

Strong LLN

Sufficient Conditions for the existence of π_{\star} s.t. the strong LLN

$$\frac{1}{n}\sum_{k=1}^n f(X_k) \longrightarrow_{a.s.} \pi_\star(f)$$

is satisfied for any function f in a (hopefully large) class of functions.

Idea : use the Poisson equation

Idea : use the Poisson equation

if

(i) uniform-in- θ V-ergodicity for some x,

$$\lim_{n} \sup_{\theta} \|P_{\theta}^{n}(x, \cdot) - \pi_{\theta}\|_{V} = 0,$$

(ii) There exist $\theta_{\star} \in \Omega_0$ and A s.t. $\mathbb{P}(\Omega_0) = 1$ and

$$\forall \omega \in A, x, B \qquad P_{\theta_n(\omega)}(x, B) \longrightarrow P_{\theta_\star}(x, B)$$

(iii) Polish state space X then

 $\pi_{\theta_n}(f) \longrightarrow_{a.s.} \pi_{\theta_\star}(f) \qquad \qquad \text{for any } f \in \mathcal{L}_{V^{\alpha}} \text{, } \alpha \in [0,1)$

Decomposition

Decomposition

$$\begin{split} \frac{1}{n} \sum_{k=1}^{n} \{f(X_{k}) - \pi_{\theta_{k-1}}(f)\} \\ &= n^{-1} \sum_{k=1}^{n} \{\hat{f}_{\theta_{k-1}}(X_{k}) - P_{\theta_{k-1}}\hat{f}_{\theta_{k-1}}(X_{k-1})\} \\ &\xrightarrow{\text{martingale term}} \\ &+ \underbrace{\frac{1}{n} \sum_{k=1}^{n-1} \{P_{\theta_{k}}\hat{f}_{\theta_{k}}(X_{k}) - P_{\theta_{k-1}}\hat{f}_{\theta_{k-1}}(X_{k})\}}_{\text{Remainder term (I)}} \\ &+ \underbrace{n^{-1} \{P_{\theta_{0}}f_{\theta_{0}}(X_{0}) - P_{\theta_{n-1}}f_{\theta_{n-1}}(X_{n-1})\}}_{\text{Remainder term (II)}} \\ &\text{where } \hat{f}_{\theta} \text{ solves} \qquad f - \pi_{\theta}(f) = \hat{f}_{\theta} - P_{\theta}\hat{f}_{\theta}. \end{split}$$

► a.s. convergence of the martingale : conditions on the L^p -moments of the increment \hookrightarrow uniform-in- θ drift conditions on the

Decomposition

$$\begin{split} \frac{1}{n} \sum_{k=1}^{n} \{f(X_{k}) - \pi_{\theta_{k-1}}(f)\} \\ &= n^{-1} \sum_{k=1}^{n} \{\hat{f}_{\theta_{k-1}}(X_{k}) - P_{\theta_{k-1}}\hat{f}_{\theta_{k-1}}(X_{k-1})\} \\ &\xrightarrow{\text{martingale term}} \\ &+ \underbrace{\frac{1}{n} \sum_{k=1}^{n-1} \{P_{\theta_{k}}\hat{f}_{\theta_{k}}(X_{k}) - P_{\theta_{k-1}}\hat{f}_{\theta_{k-1}}(X_{k})\}}_{\text{Remainder term (I)}} \\ &+ \underbrace{n^{-1} \{P_{\theta_{0}}f_{\theta_{0}}(X_{0}) - P_{\theta_{n-1}}f_{\theta_{n-1}}(X_{n-1})\}}_{\text{Remainder term (II)}} \\ &\text{where } \hat{f}_{\theta} \text{ solves} \qquad f - \pi_{\theta}(f) = \hat{f}_{\theta} - P_{\theta}\hat{f}_{\theta}. \end{split}$$

► a.s. convergence of the martingale : conditions on the L^p -moments of the increment \hookrightarrow uniform-in- θ drift conditions on the

Strong LLN

Result

Define

$$D_V(\theta, \theta') := \sup_x \frac{\|P_\theta(x, \cdot) - P_{\theta'}(x, \cdot)\|_V}{V(x)}$$

Theorem

Assume

(i) (uniform ergodic behavior) P_{θ} is phi-irreducible,

$$P_{\theta}V \leq \lambda V + b\mathbb{1}_{\mathcal{C}} \qquad \lambda \in (0,1), b < +\infty,$$

and level sets of V are 1-small. (ii) (strenghtened D.A.) $\sum_k \frac{1}{k} V^{\alpha}(X_k) \quad D_{V^{\alpha}}(\theta_k, \theta_{k-1}) < +\infty$ a.s. (iii) (convergence of the invariant measures) Then : if $\mathbb{E}[V(X_0)] < \infty$, for any $\alpha \in [0, 1)$ and any $f \in \mathcal{L}_{V^{\alpha}}$

$$\frac{1}{n}\sum_{k=1}^{n}f(X_k)\longrightarrow_{a.s.}\pi_{\star}(f),$$

Conclusion : when applied to the Equi-Energy sampler

- On the transition kernel P :
- On the probability of swap ϵ :
- ► On the auxiliary process :

Conclusion : when applied to the Equi-Energy sampler

- ► On the transition kernel *P* : (same as those for the convergence of the marginals)
- On the probability of swap ϵ :
- ► On the auxiliary process :

Conclusion : when applied to the Equi-Energy sampler

- ► On the transition kernel *P* : (same as those for the convergence of the marginals)
- On the probability of swap ϵ : (same as those for the convergence of the marginals)
- ► On the auxiliary process :

Strong LLN

Conclusion of Section III

$\begin{array}{l} \mbox{Conclusion}: \mbox{ when applied to the Equi-Energy sampler} \\ \mbox{Let } \pi_{\star} \mbox{ be positive and continuous on X s.t. } \sup_{\mathsf{X}} \pi_{\star} < +\infty. \\ \mbox{Let } \beta \in (0,1). \end{array}$

- ► On the transition kernel P : (same as those for the convergence of the marginals)
- On the probability of swap ϵ : (same as those for the convergence of the marginals)
- \blacktriangleright On the auxiliary process : for any $\alpha \in [0,1)$ and $f \in \mathcal{L}_{V^{\alpha}}$

$$\frac{1}{n}\sum_{k=1}^{n}f(Y_k)\longrightarrow_{a.s.}\pi_{\star}^{\beta}(f).$$

Strong LLN

Conclusion of Section III

$\begin{array}{l} \mbox{Conclusion}: \mbox{ when applied to the Equi-Energy sampler} \\ \mbox{Let } \pi_{\star} \mbox{ be positive and continuous on X s.t. } \sup_{\mathsf{X}} \pi_{\star} < +\infty. \\ \mbox{Let } \beta \in (0,1). \end{array}$

- ► On the transition kernel *P* : (same as those for the convergence of the marginals)
- On the probability of swap ϵ : (same as those for the convergence of the marginals)
- ▶ On the auxiliary process : for any $\alpha \in [0,1)$ and $f \in \mathcal{L}_{V^{\alpha}}$

$$\frac{1}{n}\sum_{k=1}^{n}f(Y_k)\longrightarrow_{a.s.}\pi_{\star}^{\beta}(f).$$

Note that : it is assumed that a strong LLN holds for the auxiliary process and any function $f \in \mathcal{L}_{V^{\alpha}}$, $\alpha \in (0, 1)$; in order to prove a strong LLN for the process of interest and any function $f \in \mathcal{L}_{V^{\alpha}}$, $\alpha \in (0, 1)$.

 \hookrightarrow repeat the mecanism and prove the convergence of the marginals + a strong LLN for the K-levels Equi-Energy sampler

Conclusion of the talk

- We prove convergence of the marginals for general adaptive MCMC samplers with the main ingredients
 - diminishing adaptation
 - ergodicity of the kernels + some form of uniformity in θ
 - For external adaptation : a.s. convergence of the invariant measures π_{θ_n}
- Under the same assumptions, a L.L.N can be established.