Approximative Bayesian Computation (ABC) Methods

Christian P. Robert

Université Paris Dauphine and CREST-INSEE http://www.ceremade.dauphine.fr/~xian

Joint works with M. Beaumont, J.-M. Cornuet, A. Grelaud, J.-M. Marin, F. Rodolphe, \& J.-F. Tally
Athens, September 14, 2009

Outline

(1) Introduction
(2) Population Monte Carlo
(3) ABC
(4) $\mathrm{ABC}-\mathrm{PMC}$
(5) ABC for model choice in GRFs

General purpose

Given a density π known up to a normalizing constant, and an integrable function h, compute

$$
\Pi(h)=\int h(x) \pi(x) \mu(d x)=\frac{\int h(x) \tilde{\pi}(x) \mu(d x)}{\int \tilde{\pi}(x) \mu(d x)}
$$

when $\int h(x) \tilde{\pi}(x) \mu(d x)$ is intractable.

Monte Carlo basics

Generate an iid sample x_{1}, \ldots, x_{N} from π and estimate $\Pi(h)$ by

$$
\hat{\Pi}_{N}^{M C}(h)=N^{-1} \sum_{i=1}^{N} h\left(x_{i}\right) .
$$

$\mathrm{LLN}: \hat{\Pi}_{N}^{M C}(h) \xrightarrow{\text { as }} \Pi(h)$
If $\Pi\left(h^{2}\right)=\int h^{2}(x) \pi(x) \mu(d x)<\infty$,
CLT: $\quad \sqrt{N}\left(\hat{\Pi}_{N}^{M C}(h)-\Pi(h)\right) \stackrel{\mathscr{L}}{\rightsquigarrow} \mathscr{N}\left(0, \Pi\left\{[h-\Pi(h)]^{2}\right\}\right)$.

Monte Carlo basics

Generate an iid sample x_{1}, \ldots, x_{N} from π and estimate $\Pi(h)$ by

$$
\hat{\Pi}_{N}^{M C}(h)=N^{-1} \sum_{i=1}^{N} h\left(x_{i}\right) .
$$

LLN: $\hat{\Pi}_{N}^{M C}(h) \xrightarrow{\text { as }} \Pi(h)$
If $\Pi\left(h^{2}\right)=\int h^{2}(x) \pi(x) \mu(d x)<\infty$,
CLT: $\quad \sqrt{N}\left(\hat{\Pi}_{N}^{M C}(h)-\Pi(h)\right) \stackrel{\mathscr{L}}{\rightsquigarrow} \mathscr{N}\left(0, \Pi\left\{[h-\Pi(h)]^{2}\right\}\right)$.

Caveat

Often impossible or inefficient to simulate directly from Π

Importance Sampling

For Q proposal distribution such that $Q(d x)=q(x) \mu(d x)$, alternative representation

$$
\Pi(h)=\int h(x)\{\pi / q\}(x) q(x) \mu(d x)
$$

Importance Sampling

For Q proposal distribution such that $Q(d x)=q(x) \mu(d x)$, alternative representation

$$
\Pi(h)=\int h(x)\{\pi / q\}(x) q(x) \mu(d x)
$$

Principle

Generate an iid sample $x_{1}, \ldots, x_{N} \sim Q$ and estimate $\Pi(h)$ by

$$
\hat{\Pi}_{Q, N}^{I S}(h)=N^{-1} \sum_{i=1}^{N} h\left(x_{i}\right)\{\pi / q\}\left(x_{i}\right) .
$$

Then
LLN: $\quad \hat{\Pi}_{Q, N}^{I S}(h) \xrightarrow{\text { as }} \Pi(h) \quad$ and if $Q\left((h \pi / q)^{2}\right)<\infty$,
CLT: $\quad \sqrt{N}\left(\hat{\Pi}_{Q, N}^{I S}(h)-\Pi(h)\right) \stackrel{\mathscr{L}}{\rightsquigarrow} \mathscr{N}\left(0, Q\left\{(h \pi / q-\Pi(h))^{2}\right\}\right)$.

Then
LLN: $\quad \hat{\Pi}_{Q, N}^{I S}(h) \xrightarrow{\text { as }} \Pi(h) \quad$ and if $Q\left((h \pi / q)^{2}\right)<\infty$,
CLT: $\quad \sqrt{N}\left(\hat{\Pi}_{Q, N}^{I S}(h)-\Pi(h)\right) \stackrel{\mathscr{L}}{\rightsquigarrow} \mathscr{N}\left(0, Q\left\{(h \pi / q-\Pi(h))^{2}\right\}\right)$.

Caveat

If normalizing constant unknown, impossible to use $\hat{\Pi}_{Q, N}^{I S}$

Generic problem in Bayesian Statistics: $\pi(\theta \mid x) \propto f(x \mid \theta) \pi(\theta)$.

- Introduction

Self-Normalised Importance Sampling

Self normalized version

$$
\hat{\Pi}_{Q, N}^{S N I S}(h)=\left(\sum_{i=1}^{N}\{\pi / q\}\left(x_{i}\right)\right)^{-1} \sum_{i=1}^{N} h\left(x_{i}\right)\{\pi / q\}\left(x_{i}\right) .
$$

Self-Normalised Importance Sampling

Self normalized version

$$
\hat{\Pi}_{Q, N}^{S N I S}(h)=\left(\sum_{i=1}^{N}\{\pi / q\}\left(x_{i}\right)\right)^{-1} \sum_{i=1}^{N} h\left(x_{i}\right)\{\pi / q\}\left(x_{i}\right) .
$$

$L L N: \quad \hat{\Pi}_{Q, N}^{S N I S}(h) \xrightarrow{\text { as }} \Pi(h)$
and if $\Pi\left(\left(1+h^{2}\right)(\pi / q)\right)<\infty$,
$C L T: \quad \sqrt{N}\left(\hat{\Pi}_{Q, N}^{S N I S}(h)-\Pi(h)\right) \stackrel{\mathscr{L}}{\rightsquigarrow} \mathscr{N}\left(0, \pi\left\{(\pi / q)(h-\Pi(h)\}^{2}\right)\right)$.

Self-Normalised Importance Sampling

Self normalized version

$$
\hat{\Pi}_{Q, N}^{S N I S}(h)=\left(\sum_{i=1}^{N}\{\pi / q\}\left(x_{i}\right)\right)^{-1} \sum_{i=1}^{N} h\left(x_{i}\right)\{\pi / q\}\left(x_{i}\right) .
$$

$L L N: \quad \hat{\Pi}_{Q, N}^{S N I S}(h) \xrightarrow{\text { as }} \Pi(h)$
and if $\Pi\left(\left(1+h^{2}\right)(\pi / q)\right)<\infty$,
$C L T: \quad \sqrt{N}\left(\hat{\Pi}_{Q, N}^{S N I S}(h)-\Pi(h)\right) \stackrel{\mathscr{L}}{\rightsquigarrow} \mathscr{N}\left(0, \pi\left\{(\pi / q)(h-\Pi(h)\}^{2}\right)\right)$.
(C) The quality of the SNIS approximation depends on the choice of Q

Iterated importance sampling

Introduction of an algorithmic temporal dimension :

$$
x_{i}^{(t)} \sim q_{t}\left(x \mid x_{i}^{(t-1)}\right) \quad i=1, \ldots, n, \quad t=1, \ldots
$$

and

$$
\hat{\mathfrak{I}}_{t}=\frac{1}{n} \sum_{i=1}^{n} \varrho_{i}^{(t)} h\left(x_{i}^{(t)}\right)
$$

is still unbiased for

$$
\varrho_{i}^{(t)}=\frac{\pi_{t}\left(x_{i}^{(t)}\right)}{q_{t}\left(x_{i}^{(t)} \mid x_{i}^{(t-1)}\right)}, \quad i=1, \ldots, n
$$

PMC: Population Monte Carlo Algorithm

At time $t=0$
Generate $\left(x_{i, 0}\right)_{1 \leq i \leq N} \stackrel{i i d}{\sim} Q_{0}$
Set $\omega_{i, 0}=\left\{\pi / q_{0}\right\}\left(x_{i, 0}\right)$
Generate $\left(J_{i, 0}\right)_{1 \leq i \leq N} \stackrel{\text { iid }}{\sim} \mathcal{M}\left(1,\left(\bar{\omega}_{i, 0}\right)_{1 \leq i \leq N}\right)$
Set $\tilde{x}_{i, 0}=x_{J_{i}, 0}$

PMC: Population Monte Carlo Algorithm

At time $t=0$
Generate $\left(x_{i, 0}\right)_{1 \leq i \leq N} \stackrel{i i d}{\sim} Q_{0}$
Set $\omega_{i, 0}=\left\{\pi / q_{0}\right\}\left(x_{i, 0}\right)$
Generate $\left(J_{i, 0}\right)_{1 \leq i \leq N} \stackrel{\mathrm{iid}}{\sim} \mathcal{M}\left(1,\left(\bar{\omega}_{i, 0}\right)_{1 \leq i \leq N}\right)$
Set $\tilde{x}_{i, 0}=x_{J_{i}, 0}$
At time $t(t=1, \ldots, T)$,
Generate $x_{i, t} \stackrel{\text { ind }}{\sim} Q_{i, t}\left(\tilde{x}_{i, t-1}, \cdot\right)$
Set $\omega_{i, t}=\left\{\pi\left(x_{i, t}\right) / q_{i, t}\left(\tilde{x}_{i, t-1}, x_{i, t}\right)\right\}$
Generate $\left(J_{i, t}\right)_{1 \leq i \leq N} \stackrel{\text { iid }}{\sim} \mathcal{M}\left(1,\left(\bar{\omega}_{i, t}\right)_{1 \leq i \leq N}\right)$
Set $\tilde{x}_{i, t}=x_{J_{i, t}, t}$.
[Cappé, Douc, Guillin, Marin, \& CPR, 2009, Stat.\& Comput.]

Notes on PMC

After T iterations of PMC, PMC estimator of $\Pi(h)$ given by

$$
\bar{\Pi}_{N, T}^{P M C}(h)=\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} \overline{\bar{\omega}}_{i, t} h\left(x_{i, t}\right) .
$$

Notes on PMC

After T iterations of PMC, PMC estimator of $\Pi(h)$ given by

$$
\bar{\Pi}_{N, T}^{P M C}(h)=\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} \overline{\bar{\omega}}_{i, t} h\left(x_{i, t}\right) .
$$

(1) $\overline{\bar{\omega}}_{i, t}$ means normalising over whole sequence of simulations
(2) $Q_{i, t}$'s chosen arbitrarily under support constraint
(3) $Q_{i, t}$'s may depend on whole sequence of simulations

Improving quality

The efficiency of the SNIS approximation depends on the choice of Q, ranging from optimal

$$
q(x) \propto|h(x)-\Pi(h)| \pi(x)
$$

to useless

$$
\operatorname{var} \hat{\Pi}_{Q, N}^{S N I S}(h)=+\infty
$$

Improving quality

The efficiency of the SNIS approximation depends on the choice of Q, ranging from optimal

$$
q(x) \propto|h(x)-\Pi(h)| \pi(x)
$$

to useless

$$
\operatorname{var} \hat{\Pi}_{Q, N}^{S N I S}(h)=+\infty
$$

Example (PMC=adaptive importance sampling)

Population Monte Carlo is producing a sequence of proposals Q_{t} aiming at improving efficiency

$$
\operatorname{Kull}\left(\pi, q_{t}\right) \leq \operatorname{Kull}\left(\pi, q_{t-1}\right) \quad \text { or } \quad \operatorname{var} \hat{\Pi}_{Q_{t}, \infty}^{S N I S}(h) \leq \operatorname{var} \hat{\Pi}_{Q_{t-1}, \infty}^{S N I S}(h)
$$

[Cappé, Douc, Guillin, Marin, Robert, 04, 07a, 07b, 08]

Multiple Importance Sampling

Reycling: given several proposals Q_{1}, \ldots, Q_{T}, for $1 \leq t \leq T$ generate an iid sample

$$
x_{1}^{t}, \ldots, x_{N}^{t} \sim Q_{t}
$$

and estimate $\Pi(h)$ by

$$
\hat{\Pi}_{Q, N}^{M I S}(h)=T^{-1} \sum_{t=1}^{T} N^{-1} \sum_{i=1}^{N} h\left(x_{i}^{t}\right) \omega_{i}^{t}
$$

where

$$
\omega_{i}^{t} \neq \frac{\pi\left(x_{i}^{t}\right)}{q_{t}\left(x_{i}^{t}\right)}
$$

Multiple Importance Sampling

Reycling: given several proposals Q_{1}, \ldots, Q_{T}, for $1 \leq t \leq T$ generate an iid sample

$$
x_{1}^{t}, \ldots, x_{N}^{t} \sim Q_{t}
$$

and estimate $\Pi(h)$ by

$$
\hat{\Pi}_{Q, N}^{M I S}(h)=T^{-1} \sum_{t=1}^{T} N^{-1} \sum_{i=1}^{N} h\left(x_{i}^{t}\right) \omega_{i}^{t}
$$

where

$$
\omega_{i}^{t}=\frac{\pi\left(x_{i}^{t}\right)}{T^{-1} \sum_{\ell=1}^{T} q_{\ell}\left(x_{i}^{t}\right)}
$$

```
Approximative Bayesian Computation (ABC) Methods
LPopulation Monte Carlo
    LAMIS
```


Mixture representation

Deterministic mixture correction of the weights proposed by Owen and Zhou (JASA, 2000)

- The corresponding estimator is still unbiased [if not self-normalised]
- All particles are on the same weighting scale rather than their own
- Large variance proposals Q_{t} do not take over
- Variance reduction thanks to weight stabilization \& recycling
- [K.o.] removes the randomness in the component choice [=Rao-Blackwellisation]

Global adaptation

Global Adaptation

At iteration $t=1, \cdots, T$,
(1) For $1 \leq i \leq N_{1}$, generate $x_{i}^{t} \sim \mathcal{T}_{3}\left(\hat{\mu}^{t-1}, \hat{\Sigma}^{t-1}\right)$
(2) Calculate the mixture importance weight of particle x_{i}^{t}

$$
\omega_{i}^{t}=\pi\left(x_{i}^{t}\right) / \delta_{i}^{t}
$$

where

$$
\delta_{i}^{t}=\sum_{l=0}^{t-1} q_{\mathcal{T}(3)}\left(x_{i}^{t} ; \hat{\mu}^{l}, \hat{\Sigma}^{l}\right)
$$

Backward reweighting

(3) If $t \geq 2$, actualize the weights of all past particles, x_{i}^{l} $1 \leq l \leq t-1$

$$
\omega_{i}^{l}=\pi\left(x_{i}^{t}\right) / \delta_{i}^{l}
$$

where

$$
\delta_{i}^{l}=\delta_{i}^{l}+q_{\mathcal{T}(3)}\left(x_{i}^{l} ; \hat{\mu}^{t-1}, \hat{\Sigma}^{t-1}\right)
$$

(4) Compute IS estimates of target mean and variance $\hat{\mu}^{t}$ and $\hat{\Sigma}^{t}$, where

$$
\hat{\mu}_{j}^{t}=\sum_{l=1}^{t} \sum_{i=1}^{N_{1}} \omega_{i}^{l}\left(x_{j}\right)_{i}^{l} / \sum_{l=1}^{t} \sum_{i=1}^{N_{1}} \omega_{i}^{l} \ldots
$$

A toy example

Banana shape benchmark: marginal distribution of $\left(x_{1}, x_{2}\right)$ for the parameters $\sigma_{1}^{2}=100$ and $b=0.03$. Contours represent 60% (red), 90% (black) and 99.9% (blue) confidence regions in the marginal space.

A toy example

Banana shape example: boxplots of 10 replicate ESSs for the AMIS scheme (left) and the NOT-AMIS scheme (right) for $p=5,10,20$.

Convergence of the AMIS estimator

Difficulty in establishing the convergence because of the backward structure: the weight of x_{i}^{t} at stage T depends on future as well as past $x_{j}^{\ell \prime} \ldots$
Regular Population Monte Carlo argument does not work for T asymptotics...

Convergence of the AMIS estimator

Difficulty in establishing the convergence because of the backward structure: the weight of x_{i}^{t} at stage T depends on future as well as past $x_{j}^{\ell \prime} \ldots$
Regular Population Monte Carlo argument does not work for T asymptotics...

> [© Amiss estimator?!]

A modified version of the algorithm

Only consider AMIS with $p=1, N=1$ and $h(x)=x$.
Set the variances of the t distributions to be equal to 1 after rescaling, i.e. no learning process on the covariance matrix

Algorithmic setup

Our simplified algorithm then runs as follows:

$$
\begin{aligned}
& x_{0} \sim q_{0}(\cdot), x_{1} \sim T_{3}\left(u_{1}\left(x_{0}\right), 1\right) \quad \text { where } \quad u_{1}\left(x_{0}\right)=\frac{\pi\left(x_{0}\right) x_{0}}{q_{0}\left(x_{0}\right)}=\hat{\mu}^{0}, \\
& x_{2} \sim T_{3}\left(u_{2}\left(x_{0: 1}\right), 1\right) \quad \text { where } \quad u_{2}\left(x_{0: 1}\right)= \\
& \frac{\pi\left(x_{0}\right) x_{0}}{q_{0}\left(x_{0}\right)+t_{3}\left(x_{0} ; u_{1}\left(x_{0}\right), 1\right)}+\frac{\pi\left(x_{1}\right) x_{1}}{q_{0}\left(x_{1}\right)+t_{3}\left(x_{1} ; u_{1}\left(x_{0}\right), 1\right)}=\hat{\mu}^{1},
\end{aligned}
$$

- Population Monte Carlo

- Convergence of the estimator

Algorithmic setup (2)

$x_{t} \sim T_{3}\left(u_{t}\left(x_{0: t-1}\right), 1\right)$
where $u_{t}\left(x_{0: t-1}\right)=\sum_{k=0}^{t-1} \frac{\pi\left(x_{k}\right) x_{k}}{q_{0}\left(x_{k}\right)+\sum_{i=1}^{t-1} t_{3}\left(x_{k} ; u_{i}\left(x_{0: i-1}\right), 1\right)}, \ldots$

Stumbling block

Establishing that
$\hat{\mu}^{T}=\sum_{k=0}^{T} \frac{\pi\left(x_{k}\right) x_{k}}{q_{0}\left(x_{k}\right)+\sum_{i=1}^{T} t_{3}\left(x_{k} ; u_{i}\left(x_{0: i-1}\right), 1\right)} \xrightarrow[T \rightarrow \infty]{\stackrel{L_{2}}{\longrightarrow}} \mu=\int x \pi(x) d x$.
proves to be surprisingly difficult (note that $\mathbb{E}\left(\hat{\mu}^{T}\right) \neq \mu$)
2. Impossible to use PMC convergence theorems on triangular arrays of random variables.

Unbiased version of the estimator

Modified version of previous algorithm with two sequences:
$x_{0} \sim q_{0}(\cdot) \quad$ and $\quad \tilde{x}_{0} \sim q_{0}(\cdot)$,
$x_{1} \sim T_{3}\left(u_{1}\left(\tilde{x}_{0}\right), 1\right) \quad$ and $\quad \tilde{x}_{1} \sim T_{3}\left(u_{1}\left(\tilde{x}_{0}\right), 1\right)$
where $u_{1}\left(\tilde{x}_{0}\right)=\frac{\pi\left(\tilde{x}_{0}\right) \tilde{x}_{0}}{q_{0}\left(\tilde{x}_{0}\right)}=\hat{\mu}^{0}$,
$x_{2} \sim T_{3}\left(u_{2}\left(\tilde{x}_{0: 1}\right), 1\right) \quad$ and $\quad \tilde{x}_{2} \sim T_{3}\left(u_{2}\left(\tilde{x}_{0: 1}\right), 1\right)$ where $u_{2}\left(\tilde{x}_{0: 1}\right)=$
$\frac{\pi\left(\tilde{x}_{0}\right) \tilde{x}_{0}}{q_{0}\left(\tilde{x}_{0}\right)+t_{3}\left(\tilde{x}_{0} ; u_{1}\left(\tilde{x}_{0}\right), 1\right)}+\frac{\pi\left(\tilde{x}_{1}\right) \tilde{x}_{1}}{q_{0}\left(\tilde{x}_{1}\right)+t_{3}\left(\tilde{x}_{1} ; u_{1}\left(\tilde{x}_{0}\right), 1\right)}=\hat{\mu}^{1}$,

Population Monte Carlo

LAn unbiased estimator

Unbiased version of the estimator (2)

$x_{t} \sim T_{3}\left(u_{t}\left(x_{0: t-1}\right), 1\right) \quad$ and $\quad \tilde{x}_{t} \sim T_{3}\left(u_{t}\left(\tilde{x}_{0: t-1}\right), 1\right)$
where $u_{t}\left(\tilde{x}_{0: t-1}\right)=\sum_{k=0}^{t-1} \frac{\pi\left(\tilde{x}_{k}\right) \tilde{x}_{k}}{q_{0}\left(\tilde{x}_{k}\right)+\sum_{i=1}^{t-1} t_{3}\left(\tilde{x}_{k} ; u_{i}\left(\tilde{x}_{0: i-1}\right), 1\right)}, \ldots$
Let

$$
\hat{\mu}_{U}^{T}=\sum_{k=0}^{T} \frac{\pi\left(x_{k}\right) x_{k}}{q_{0}\left(x_{k}\right)+\sum_{i=1}^{T} t_{3}\left(x_{k} ; u_{i}\left(\tilde{x}_{0: i-1}\right), 1\right)} .
$$

My questions

Clearly, we have

$$
\mathbb{E}\left(\hat{\mu}_{U}^{T}\right)=\mu
$$

and under mild conditions we should have

$$
\hat{\mu}_{U}^{T} \underset{T \rightarrow \infty}{\stackrel{L_{2}}{\longrightarrow}} \mu
$$

My questions

Clearly, we have

$$
\mathbb{E}\left(\hat{\mu}_{U}^{T}\right)=\mu
$$

and under mild conditions we should have

$$
\hat{\mu}_{U}^{T} \xrightarrow[T \rightarrow \infty]{L_{2}} \mu
$$

Except for the compact case, i.e. when $\operatorname{supp}(\pi)$ is compact, this also proves impossible to establish...
The only indication we have is that $\operatorname{var}\left(\hat{\mu}_{U}^{T}\right)$ is decreasing at each iteration

The ABC method

Bayesian setting: target is $\pi(\theta) f(x \mid \theta)$

The $A B C$ method

Bayesian setting: target is $\pi(\theta) f(x \mid \theta)$
When likelihood $f(x \mid \theta)$ not in closed form, likelihood-free rejection technique:

The ABC method

Bayesian setting: target is $\pi(\theta) f(x \mid \theta)$
When likelihood $f(x \mid \theta)$ not in closed form, likelihood-free rejection technique:

ABC algorithm

For an observation $y \sim f(y \mid \theta)$, under the prior $\pi(\theta)$, keep jointly simulating

$$
\theta^{\prime} \sim \pi(\theta), x \sim f\left(x \mid \theta^{\prime}\right)
$$

until the auxiliary variable x is equal to the observed value, $x=y$.
[Pritchard et al., 1999]

A as approximative

When y is a continuous random variable, equality $x=y$ is replaced with a tolerance condition,

$$
\varrho(x, y) \leq \epsilon
$$

where ϱ is a distance between summary statistics

A as approximative

When y is a continuous random variable, equality $x=y$ is replaced with a tolerance condition,

$$
\varrho(x, y) \leq \epsilon
$$

where ϱ is a distance between summary statistics
Output distributed from

$$
\pi(\theta) P_{\theta}\{\varrho(x, y)<\epsilon\} \propto \pi(\theta \mid \varrho(x, y)<\epsilon)
$$

ABC improvements

Simulating from the prior is often poor in efficiency

ABC improvements

Simulating from the prior is often poor in efficiency
Either modify the proposal distribution on θ to increase the density of x 's within the vicinity of $y \ldots$
[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]

ABC improvements

Simulating from the prior is often poor in efficiency
Either modify the proposal distribution on θ to increase the density of x 's within the vicinity of $y \ldots$
[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]
...or by viewing the problem as a conditional density estimation and by developing techniques to allow for larger ϵ
[Beaumont et al., 2002]

ABC improvements

Simulating from the prior is often poor in efficiency
Either modify the proposal distribution on θ to increase the density of x 's within the vicinity of $y \ldots$
[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]
...or by viewing the problem as a conditional density estimation and by developing techniques to allow for larger ϵ
[Beaumont et al., 2002]
...or even by including ϵ in the inferential framework $\left[\mathrm{ABC}_{\mu}\right]$
[Ratmann et al., 2009]

ABC-MCMC

Markov chain $\left(\theta^{(t)}\right)$ created via the transition function

$$
\theta^{(t+1)}= \begin{cases}\theta^{\prime} \sim K\left(\theta^{\prime} \mid \theta^{(t)}\right) & \text { if } x \sim f\left(x \mid \theta^{\prime}\right) \text { is such that } x=y \\ & \text { and } u \sim \mathcal{U}(0,1) \leq \frac{\pi\left(\theta^{\prime}\right) K\left(\theta^{(t)} \mid \theta^{\prime}\right)}{\pi\left(\theta^{(t)}\right) K\left(\theta^{\prime} \mid \theta^{(t)}\right)}, \\ \theta^{(t)} & \text { otherwise, }\end{cases}
$$

ABC-MCMC

Markov chain $\left(\theta^{(t)}\right)$ created via the transition function

$$
\theta^{(t+1)}= \begin{cases}\theta^{\prime} \sim K\left(\theta^{\prime} \mid \theta^{(t)}\right) & \text { if } x \sim f\left(x \mid \theta^{\prime}\right) \text { is such that } x=y \\ & \text { and } u \sim \mathcal{U}(0,1) \leq \frac{\pi\left(\theta^{\prime}\right) K\left(\theta^{(t)} \mid \theta^{\prime}\right)}{\pi\left(\theta^{(t)}\right) K\left(\theta^{\prime} \mid \theta^{(t)}\right)}, \\ \theta^{(t)} & \text { otherwise, }\end{cases}
$$

has the posterior $\pi(\theta \mid y)$ as stationary distribution
[Marjoram et al, 2003]

ABC_{μ}

[Ratmann, Andrieu, Wiuf and Richardson, 2009, PNAS]

Use of a joint density

$$
f\left(\theta, \epsilon \mid x_{0}\right) \propto \xi\left(\epsilon \mid x_{0}, \theta\right) \times \pi_{\theta}(\theta) \times \pi_{\epsilon}(\epsilon)
$$

where x_{0} is the data, and $\xi\left(\epsilon \mid x_{0}, \theta\right)$ is the prior predictive density of $\rho\left(S(x), S\left(x_{0}\right)\right)$ given θ and x_{0} when $x \sim f(x \mid \theta)$
Replacement of $\xi\left(\epsilon \mid x_{0}, \theta\right)$ with a non-parametric kernel approximation.

Questions about ABC_{μ}

For each model under comparison, marginal posterior on ϵ used to assess the fit of the model (HPD includes 0 or not).

Questions about ABC_{μ}

For each model under comparison, marginal posterior on ϵ used to assess the fit of the model (HPD includes 0 or not).

- Is the data informative about ϵ ? [Identifiability]
- How is the prior $\pi(\epsilon)$ impacting the comparison?
- How is using both $\xi\left(\epsilon \mid x_{0}, \theta\right)$ and $\pi_{\epsilon}(\epsilon)$ compatible with a standard probability model?
- Where is there a penalisation for complexity in the model comparison?

ABC-PRC

Another sequential version producing a sequence of Markov transition kernels K_{t} and of samples $\left(\theta_{1}^{(t)}, \ldots, \theta_{N}^{(t)}\right)(1 \leq t \leq T)$

ABC-PRC

Another sequential version producing a sequence of Markov transition kernels K_{t} and of samples $\left(\theta_{1}^{(t)}, \ldots, \theta_{N}^{(t)}\right)(1 \leq t \leq T)$

ABC-PRC Algorithm

(1) Pick a θ^{\star} is selected at random among the previous $\theta_{i}^{(t-1)}$,s with probabilities $\omega_{i}^{(t-1)}(1 \leq i \leq N)$.
(2) Generate

$$
\theta_{i}^{(t)} \sim K_{t}\left(\theta \mid \theta^{\star}\right), x \sim f\left(x \mid \theta_{i}^{(t)}\right),
$$

(3) Check that $\varrho(x, y)<\epsilon$, otherwise start again.

ABC-PRC weight

Probability $\omega_{i}^{(t)}$ computed as

$$
\omega_{i}^{(t)} \propto \pi\left(\theta_{i}^{(t)}\right) L_{t-1}\left(\theta^{\star} \mid \theta_{i}^{(t)}\right)\left\{\pi\left(\theta^{\star}\right) K_{t}\left(\theta_{i}^{(t)} \mid \theta^{\star}\right)\right\}^{-1}
$$

where L_{t-1} is an arbitrary transition kernel.

ABC-PRC weight

Probability $\omega_{i}^{(t)}$ computed as

$$
\omega_{i}^{(t)} \propto \pi\left(\theta_{i}^{(t)}\right) L_{t-1}\left(\theta^{\star} \mid \theta_{i}^{(t)}\right)\left\{\pi\left(\theta^{\star}\right) K_{t}\left(\theta_{i}^{(t)} \mid \theta^{\star}\right)\right\}^{-1}
$$

where L_{t-1} is an arbitrary transition kernel.
In case

$$
L_{t-1}\left(\theta^{\prime} \mid \theta\right)=K_{t}\left(\theta \mid \theta^{\prime}\right)
$$

all weights are equal under a uniform prior.

ABC-PRC weight

Probability $\omega_{i}^{(t)}$ computed as

$$
\omega_{i}^{(t)} \propto \pi\left(\theta_{i}^{(t)}\right) L_{t-1}\left(\theta^{\star} \mid \theta_{i}^{(t)}\right)\left\{\pi\left(\theta^{\star}\right) K_{t}\left(\theta_{i}^{(t)} \mid \theta^{\star}\right)\right\}^{-1}
$$

where L_{t-1} is an arbitrary transition kernel.
In case

$$
L_{t-1}\left(\theta^{\prime} \mid \theta\right)=K_{t}\left(\theta \mid \theta^{\prime}\right)
$$

all weights are equal under a uniform prior. Inspired from Del Moral et al. (2006), who use backward kernels L_{t-1} in SMC to achieve unbiasedness

Approximative Bayesian Computation (ABC) Methods
$\left\llcorner_{A B C}\right.$

ABC-PRC bias

Lack of unbiasedness of the method

ABC-PRC bias

Lack of unbiasedness of the method

Joint density of the accepted pair $\left(\theta^{(t-1)}, \theta^{(t)}\right)$ proportional to

$$
\pi\left(\theta^{(t-1)} \mid y\right) K_{t}\left(\theta^{(t)} \mid \theta^{(t-1)}\right) f\left(y \mid \theta^{(t)}\right)
$$

For an arbitrary function $h(\theta), E\left[\omega_{t} h\left(\theta^{(t)}\right)\right]$ proportional to

$$
\begin{aligned}
& \iint h\left(\theta^{(t)}\right) \frac{\pi\left(\theta^{(t)}\right) L_{t-1}\left(\theta^{(t-1)} \mid \theta^{(t)}\right)}{\pi\left(\theta^{(t-1)}\right) K_{t}\left(\theta^{(t)} \mid \theta^{(t-1)}\right)} \pi\left(\theta^{(t-1)} \mid y\right) K_{t}\left(\theta^{(t)} \mid \theta^{(t-1)}\right) f\left(y \mid \theta^{(t)}\right) \mathrm{d} \theta^{(t-1)} \mathrm{d} \theta^{(t)} \\
& \propto \iint h\left(\theta^{(t)}\right) \frac{\pi\left(\theta^{(t)}\right) L_{t-1}\left(\theta^{(t-1)} \mid \theta^{(t)}\right)}{\pi\left(\theta^{(t-1)}\right) K_{t}\left(\theta^{(t)} \mid \theta^{(t-1)}\right)} \pi\left(\theta^{(t-1)}\right) f\left(y \mid \theta^{(t-1)}\right) \\
& \quad \times K_{t}\left(\theta^{(t)} \mid \theta^{(t-1)}\right) f\left(y \mid \theta^{(t)}\right) \mathrm{d} \theta^{(t-1)} \mathrm{d} \theta^{(t)} \\
& \propto \int h\left(\theta^{(t)}\right) \pi\left(\theta^{(t)} \mid y\right)\left\{\int L_{t-1}\left(\theta^{(t-1)} \mid \theta^{(t)}\right) f\left(y \mid \theta^{(t-1)}\right) \mathrm{d} \theta^{(t-1)}\right\} \mathrm{d} \theta^{(t)}
\end{aligned}
$$

A mixture example

Comparison of $\tau=0.15$ and $\tau=1 / 0.15$ in K_{t}

A PMC version

Use of the same kernel idea as ABC-PRC but with IS correction Generate a sample at iteration t by

$$
\hat{\pi}_{t}\left(\theta^{(t)}\right) \propto \sum_{j=1}^{N} \omega_{j}^{(t-1)} K_{t}\left(\theta^{(t)} \mid \theta_{j}^{(t-1)}\right)
$$

modulo acceptance of the associated x_{t}, and use an importance weight associated with an accepted simulation $\theta_{i}^{(t)}$

$$
\omega_{i}^{(t)} \propto \pi\left(\theta_{i}^{(t)}\right) / \hat{\pi}_{t}\left(\theta_{i}^{(t)}\right)
$$

(c) Still likelihood free
[Beaumont et al., 2008, arXiv:0805.2256]

The ABC-PMC algorithm

Given a decreasing sequence of approximation levels $\epsilon_{1} \geq \ldots \geq \epsilon_{T}$,

1. At iteration $t=1$,

$$
\text { For } i=1, \ldots, N
$$

Simulate $\theta_{i}^{(1)} \sim \pi(\theta)$ and $x \sim f\left(x \mid \theta_{i}^{(1)}\right)$ until $\varrho(x, y)<\epsilon_{1}$ Set $\omega_{i}^{(1)}=1 / N$
Take τ^{2} as twice the empirical variance of the $\theta_{i}^{(1)}$'s
2. At iteration $2 \leq t \leq T$,

$$
\begin{aligned}
& \text { For } i=1, \ldots, N \text {, repeat } \\
& \quad \text { Pick } \theta_{i}^{\star} \text { from the } \theta_{j}^{(t-1)} \text { 's with probabilities } \omega_{j}^{(t-1)} \\
& \quad \text { generate } \theta_{i}^{(t)} \mid \theta_{i}^{\star} \sim \mathcal{N}\left(\theta_{i}^{\star}, \sigma_{t}^{2}\right) \text { and } x \sim f\left(x \mid \theta_{i}^{(t)}\right) \\
& \text { until } \varrho(x, y)<\epsilon_{t} \\
& \text { Set } \left.\omega_{i}^{(t)} \propto \pi\left(\theta_{i}^{(t)}\right) / \sum_{j=1}^{N} \omega_{j}^{(t-1)} \varphi\left(\sigma_{t}^{-1}\left\{\theta_{i}^{(t)}-\theta_{j}^{(t-1)}\right)\right\}\right)
\end{aligned}
$$

Take τ_{t+1}^{2} as twice the weighted empirical variance of the $\theta_{i}^{(t)}$,s

ABC-SMC

[Del Moral, Doucet \& Jasra, 2009]
True derivation of an SMC-ABC algorithm
Use of a kernel K_{n} associated with target $\pi_{\epsilon_{n}}$ and derivation of the backward kernel

$$
L_{n-1}\left(z, z^{\prime}\right)=\frac{\pi_{\epsilon_{n}}\left(z^{\prime}\right) K_{n}\left(z^{\prime}, z\right)}{\pi_{n}(z)}
$$

Update of the weights

$$
w_{i n} \propto_{i(n-1)} \frac{\sum_{m=1}^{M} \mathbb{A}_{\epsilon_{\ltimes}}\left(x_{i n}^{m}\right.}{\sum_{m=1}^{M} \mathbb{A}_{\epsilon_{\ltimes-\nVdash}}\left(x_{i(n-1)}^{m}\right.}
$$

when $x_{i n}^{m} \sim K\left(x_{i(n-1)}, \cdot\right)$

A mixture example (0)

Toy model of Sisson et al. (2007): if

$$
\theta \sim \mathcal{U}(-10,10), \quad x \mid \theta \sim 0.5 \mathcal{N}(\theta, 1)+0.5 \mathcal{N}(\theta, 1 / 100)
$$

then the posterior distribution associated with $y=0$ is the normal mixture

$$
\theta \mid y=0 \sim 0.5 \mathcal{N}(0,1)+0.5 \mathcal{N}(0,1 / 100)
$$

restricted to $[-10,10]$.
Furthermore, true target available as
$\pi(\theta||x|<\epsilon) \propto \Phi(\epsilon-\theta)-\Phi(-\epsilon-\theta)+\Phi(10(\epsilon-\theta))-\Phi(-10(\epsilon+\theta))$.

A mixture example (2)

Recovery of the target, whether using a fixed standard deviation of $\tau=0.15$ or $\tau=1 / 0.15$, or a sequence of adaptive τ_{t} 's.

θ

θ

θ

θ

θ

θ

ABC for model choice

(1) Introduction
(2) Population Monte Carlo
(3) ABC
(4) $\mathrm{ABC}-\mathrm{PMC}$
(5) ABC for model choice in GRFs

- Gibbs random fields
- Model choice via ABC
- Illustrations

Gibbs random fields

Gibbs distribution

The $r v \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ is a Gibbs random field associated with the graph \mathfrak{G} if

$$
f(\mathbf{y})=\frac{1}{\mathfrak{Z}} \exp \left\{-\sum_{c \in \mathscr{C}} V_{c}\left(\mathbf{y}_{c}\right)\right\}
$$

where \mathfrak{Z} is the normalising constant, \mathscr{C} is the set of cliques of \mathfrak{G} and V_{c} is any function also called potential $U(\mathbf{y})=\sum_{c \in \mathscr{C}} V_{c}\left(\mathbf{y}_{c}\right)$ is the energy function

Gibbs random fields

Gibbs distribution

The $r v \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ is a Gibbs random field associated with the graph \mathfrak{G} if

$$
f(\mathbf{y})=\frac{1}{\mathfrak{Z}} \exp \left\{-\sum_{c \in \mathscr{C}} V_{c}\left(\mathbf{y}_{c}\right)\right\}
$$

where \mathfrak{Z} is the normalising constant, \mathscr{C} is the set of cliques of \mathfrak{G} and V_{c} is any function also called potential $U(\mathbf{y})=\sum_{c \in \mathscr{C}} V_{c}\left(\mathbf{y}_{c}\right)$ is the energy function

(C) \mathcal{Z} is usually unavailable in closed form

$L_{A B C}$ for model choice in GRFs
Gibbs random fields

Potts model

Potts model

$V_{c}(\mathbf{y})$ is of the form

$$
V_{c}(\mathbf{y})=\theta S(\mathbf{y})=\theta \sum_{l \sim i} \delta_{y_{l}=y_{i}}
$$

where $l \sim i$ denotes a neighbourhood structure

Potts model

Potts model

$V_{c}(\mathbf{y})$ is of the form

$$
V_{c}(\mathbf{y})=\theta S(\mathbf{y})=\theta \sum_{l \sim i} \delta_{y_{l}=y_{i}}
$$

where $l \sim i$ denotes a neighbourhood structure
In most realistic settings, summation

$$
Z_{\theta}=\sum_{\mathbf{x} \in \mathcal{X}} \exp \left\{\theta^{\top} S(\mathbf{x})\right\}
$$

involves too many terms to be manageable and numerical approximations cannot always be trusted
[Cucala, Marin, CPR \& Titterington, 2009]

Bayesian Model Choice

Comparing a model with potential S_{0} taking values in $\mathbb{R}^{p_{0}}$ versus a model with potential S_{1} taking values in $\mathbb{R}^{p_{1}}$ can be done through the Bayes factor corresponding to the priors π_{0} and π_{1} on each parameter space

$$
\mathfrak{B}_{m_{0} / m_{1}}(\mathbf{x})=\frac{\int \exp \left\{\theta_{0}^{\top} S_{0}(\mathbf{x})\right\} / Z_{\theta_{0}, 0} \pi_{0}\left(\mathrm{~d} \theta_{0}\right)}{\int \exp \left\{\theta_{1}^{\top} S_{1}(\mathbf{x})\right\} / Z_{\theta_{1}, 1} \pi_{1}\left(\mathrm{~d} \theta_{1}\right)}
$$

Bayesian Model Choice

Comparing a model with potential S_{0} taking values in $\mathbb{R}^{p_{0}}$ versus a model with potential S_{1} taking values in $\mathbb{R}^{p_{1}}$ can be done through the Bayes factor corresponding to the priors π_{0} and π_{1} on each parameter space

$$
\mathfrak{B}_{m_{0} / m_{1}}(\mathbf{x})=\frac{\int \exp \left\{\theta_{0}^{\top} S_{0}(\mathbf{x})\right\} / Z_{\theta_{0}, 0} \pi_{0}\left(\mathrm{~d} \theta_{0}\right)}{\int \exp \left\{\theta_{1}^{\top} S_{1}(\mathbf{x})\right\} / Z_{\theta_{1}, 1} \pi_{1}\left(\mathrm{~d} \theta_{1}\right)}
$$

Use of Jeffreys' scale to select most appropriate model

Neighbourhood relations

Choice to be made between M neighbourhood relations

$$
i \stackrel{m}{\sim} i^{\prime} \quad(0 \leq m \leq M-1)
$$

with

$$
S_{m}(\mathbf{x})=\sum_{\substack{m \\ i \sim i^{\prime}}} \mathbb{I}_{\left\{x_{i}=x_{i^{\prime}}\right\}}
$$

driven by the posterior probabilities of the models.
$L_{A B C}$ for model choice in GRFs
$\square_{\text {Model choice via } A B C}$

Model index

Formalisation via a model index \mathcal{M} that appears as a new parameter with prior distribution $\pi(\mathcal{M}=m)$ and
$\pi(\theta \mid \mathcal{M}=m)=\pi_{m}\left(\theta_{m}\right)$

Model index

Formalisation via a model index \mathcal{M} that appears as a new parameter with prior distribution $\pi(\mathcal{M}=m)$ and
$\pi(\theta \mid \mathcal{M}=m)=\pi_{m}\left(\theta_{m}\right)$
Computational target:

$$
\mathbb{P}(\mathcal{M}=m \mid \mathbf{x}) \propto \int_{\Theta_{m}} f_{m}\left(\mathbf{x} \mid \theta_{m}\right) \pi_{m}\left(\theta_{m}\right) \mathrm{d} \theta_{m} \pi(\mathcal{M}=m)
$$

Sufficient statistics

By definition, if $S(\mathbf{x})$ sufficient statistic for the joint parameters $\left(\mathcal{M}, \theta_{0}, \ldots, \theta_{M-1}\right)$,

$$
\mathbb{P}(\mathcal{M}=m \mid \mathbf{x})=\mathbb{P}(\mathcal{M}=m \mid S(\mathbf{x}))
$$

Sufficient statistics

By definition, if $S(\mathbf{x})$ sufficient statistic for the joint parameters $\left(\mathcal{M}, \theta_{0}, \ldots, \theta_{M-1}\right)$,

$$
\mathbb{P}(\mathcal{M}=m \mid \mathbf{x})=\mathbb{P}(\mathcal{M}=m \mid S(\mathbf{x}))
$$

For each model m, own sufficient statistic $S_{m}(\cdot)$ and $S(\cdot)=\left(S_{0}(\cdot), \ldots, S_{M-1}(\cdot)\right)$ also sufficient.

Sufficient statistics

By definition, if $S(\mathbf{x})$ sufficient statistic for the joint parameters $\left(\mathcal{M}, \theta_{0}, \ldots, \theta_{M-1}\right)$,

$$
\mathbb{P}(\mathcal{M}=m \mid \mathbf{x})=\mathbb{P}(\mathcal{M}=m \mid S(\mathbf{x}))
$$

For each model m, own sufficient statistic $S_{m}(\cdot)$ and $S(\cdot)=\left(S_{0}(\cdot), \ldots, S_{M-1}(\cdot)\right)$ also sufficient.
For Gibbs random fields,

$$
\begin{aligned}
x \mid \mathcal{M}=m \sim f_{m}\left(\mathbf{x} \mid \theta_{m}\right) & =f_{m}^{1}(\mathbf{x} \mid S(\mathbf{x})) f_{m}^{2}\left(S(\mathbf{x}) \mid \theta_{m}\right) \\
& =\frac{1}{n(S(\mathbf{x}))} f_{m}^{2}\left(S(\mathbf{x}) \mid \theta_{m}\right)
\end{aligned}
$$

where

$$
n(S(\mathbf{x}))=\sharp\{\tilde{\mathbf{x}} \in \mathcal{X}: S(\tilde{\mathbf{x}})=S(\mathbf{x})\}
$$

(C) $S(\mathrm{x})$ is therefore also sufficient for the joint parameters
[Specific to Gibbs random fields!]

ABC model choice Algorithm

ABC-MC

- Generate m^{*} from the prior $\pi(\mathcal{M}=m)$.
- Generate $\theta_{m^{*}}^{*}$ from the prior $\pi_{m^{*}}(\cdot)$.
- Generate x^{*} from the model $f_{m^{*}}\left(\cdot \mid \theta_{m^{*}}^{*}\right)$.
- Compute the distance $\rho\left(S\left(\mathbf{x}^{0}\right), S\left(\mathbf{x}^{*}\right)\right)$.
- Accept $\left(\theta_{m^{*}}^{*}, m^{*}\right)$ if $\rho\left(S\left(\mathbf{x}^{0}\right), S\left(\mathbf{x}^{*}\right)\right)<\epsilon$.

Note When $\epsilon=0$ the algorithm is exact
$L_{A B C}$ for model choice in GRFs
$\square_{\text {Model choice via } A B C}$

ABC approximation to the Bayes factor

Frequency ratio:

$$
\begin{aligned}
\overline{B F}_{m_{0} / m_{1}}\left(\mathbf{x}^{0}\right) & =\frac{\hat{\mathbb{P}}\left(\mathcal{M}=m_{0} \mid \mathbf{x}^{0}\right)}{\hat{\mathbb{P}}\left(\mathcal{M}=m_{1} \mid \mathbf{x}^{0}\right)} \times \frac{\pi\left(\mathcal{M}=m_{1}\right)}{\pi\left(\mathcal{M}=m_{0}\right)} \\
& =\frac{\sharp\left\{m^{i *}=m_{0}\right\}}{\sharp\left\{m^{i *}=m_{1}\right\}} \times \frac{\pi\left(\mathcal{M}=m_{1}\right)}{\pi\left(\mathcal{M}=m_{0}\right)},
\end{aligned}
$$

ABC approximation to the Bayes factor

Frequency ratio:

$$
\begin{aligned}
\overline{B F}_{m_{0} / m_{1}}\left(\mathbf{x}^{0}\right) & =\frac{\hat{\mathbb{P}}\left(\mathcal{M}=m_{0} \mid \mathbf{x}^{0}\right)}{\hat{\mathbb{P}}\left(\mathcal{M}=m_{1} \mid \mathbf{x}^{0}\right)} \times \frac{\pi\left(\mathcal{M}=m_{1}\right)}{\pi\left(\mathcal{M}=m_{0}\right)} \\
& =\frac{\sharp\left\{m^{i *}=m_{0}\right\}}{\sharp\left\{m^{i *}=m_{1}\right\}} \times \frac{\pi\left(\mathcal{M}=m_{1}\right)}{\pi\left(\mathcal{M}=m_{0}\right)},
\end{aligned}
$$

replaced with

$$
\widehat{B F}_{m_{0} / m_{1}}\left(\mathbf{x}^{0}\right)=\frac{1+\sharp\left\{m^{i *}=m_{0}\right\}}{1+\sharp\left\{m^{i *}=m_{1}\right\}} \times \frac{\pi\left(\mathcal{M}=m_{1}\right)}{\pi\left(\mathcal{M}=m_{0}\right)}
$$

to avoid indeterminacy (also Bayes estimate).

Toy example

iid Bernoulli model versus two-state first-order Markov chain, i.e.

$$
f_{0}\left(\mathbf{x} \mid \theta_{0}\right)=\exp \left(\theta_{0} \sum_{i=1}^{n} \mathbb{I}_{\left\{x_{i}=1\right\}}\right) /\left\{1+\exp \left(\theta_{0}\right)\right\}^{n}
$$

versus

$$
f_{1}\left(\mathbf{x} \mid \theta_{1}\right)=\frac{1}{2} \exp \left(\theta_{1} \sum_{i=2}^{n} \mathbb{I}_{\left\{x_{i}=x_{i-1}\right\}}\right) /\left\{1+\exp \left(\theta_{1}\right)\right\}^{n-1}
$$

with priors $\theta_{0} \sim \mathcal{U}(-5,5)$ and $\theta_{1} \sim \mathcal{U}(0,6)$ (inspired by "phase transition" boundaries).

Toy example (2)

(left) Comparison of the true $B F_{m_{0} / m_{1}}\left(\mathrm{x}^{0}\right)$ with $\widehat{B F}_{m_{0} / m_{1}}\left(\mathrm{x}^{0}\right)$ (in logs) over 2,000 simulations and 4.10^{6} proposals from the prior. (right) Same when using tolerance ϵ corresponding to the 1% quantile on the distances.

Protein folding

Superposition of the native structure (grey) with the ST1 structure (red.), the ST2 structure (orange), the ST3 structure (green), and the DT structure (blue).

Protein folding (2)

	\% seq . Id.	TM-score	FROST score
1i5nA (ST1)	32	0.86	75.3
11s1A1 (ST2)	5	0.42	8.9
1jr8A (ST3)	4	0.24	8.9
1s7oA (DT)	10	0.08	7.8

Characteristics of dataset. \% seq. Id.: percentage of identity with the query sequence. TM-score.: similarity between predicted and native structure (uncertainty between 0.17 and 0.4) FROST score: quality of alignment of the query onto the candidate structure (uncertainty between 7 and 9).

Protein folding (3)

	NS/ST1	NS/ST2	NS/ST3	NS/DT
$\widehat{B F}$	1.34	1.22	2.42	2.76
$\widehat{\mathbb{P}}\left(\mathcal{M}=\mathbf{N S} \mid \mathbf{x}^{0}\right)$	0.573	0.551	0.708	0.734

Estimates of the Bayes factors between model NS and models ST1, ST2, ST3, and DT, and corresponding posterior probabilities of model NS based on an ABC-MC algorithm using 1.210^{6} simulations and a tolerance ϵ equal to the 1% quantile of the distances.

