Christian P. Robert

Université Paris Dauphine and CREST-INSEE http://www.ceremade.dauphine.fr/~xian

Joint works with M. Beaumont, J.-M. Cornuet, A. Grelaud, J.-M. Marin, F. Rodolphe, & J.-F. Tally Athens, September 14, 2009

イロト イポト イヨト イヨト ヨー のくや

Outline

Introduction

2 Population Monte Carlo

5 ABC for model choice in GRFs

General purpose

Given a density π known up to a normalizing constant, and an integrable function h, compute

$$\Pi(h) = \int h(x)\pi(x)\mu(dx) = \frac{\int h(x)\tilde{\pi}(x)\mu(dx)}{\int \tilde{\pi}(x)\mu(dx)}$$

when $\int h(x)\tilde{\pi}(x)\mu(dx)$ is intractable.

Approximative Bayesian Computation (ABC) Methods
Introduction
Monte Carlo basics

Monte Carlo basics

Generate an iid sample x_1, \ldots, x_N from π and estimate $\Pi(h)$ by

$$\hat{\Pi}_N^{MC}(h) = N^{-1} \sum_{i=1}^N h(x_i).$$

$$\begin{split} \mathsf{LLN:} \ \hat{\Pi}_N^{MC}(h) & \stackrel{\mathsf{as}}{\longrightarrow} \Pi(h) \\ \mathsf{If} \ \Pi(h^2) &= \int h^2(x) \pi(x) \mu(dx) < \infty, \\ \mathsf{CLT:} \quad \sqrt{N} \left(\hat{\Pi}_N^{MC}(h) - \Pi(h) \right) & \stackrel{\mathscr{L}}{\leadsto} \mathscr{N} \left(0, \Pi \left\{ [h - \Pi(h)]^2 \right\} \right). \end{split}$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ○□ ● ○○ ○○

Approximative Bayesian Computation (ABC) Methods
Introduction
Monte Carlo basics

Monte Carlo basics

Generate an iid sample x_1, \ldots, x_N from π and estimate $\Pi(h)$ by

$$\hat{\Pi}_N^{MC}(h) = N^{-1} \sum_{i=1}^N h(x_i).$$

$$\begin{split} \mathsf{LLN:} \ \hat{\Pi}_N^{MC}(h) & \stackrel{\mathsf{as}}{\longrightarrow} \Pi(h) \\ \mathsf{If} \ \Pi(h^2) &= \int h^2(x) \pi(x) \mu(dx) < \infty, \\ \mathsf{CLT:} \quad \sqrt{N} \left(\hat{\Pi}_N^{MC}(h) - \Pi(h) \right) & \stackrel{\mathscr{L}}{\leadsto} \mathscr{N} \left(0, \Pi \left\{ [h - \Pi(h)]^2 \right\} \right). \end{split}$$

Caveat

Often impossible or inefficient to simulate directly from $\boldsymbol{\Pi}$

・ロト ・聞ト ・モト ・モト

Introduction

Importance Sampling

Importance Sampling

For Q proposal distribution such that $Q(dx)=q(x)\mu(dx),$ alternative representation

$$\Pi(h) = \int h(x) \{\pi/q\}(x) q(x) \mu(dx).$$

-Introduction

Importance Sampling

Importance Sampling

For Q proposal distribution such that $Q(dx)=q(x)\mu(dx),$ alternative representation

$$\Pi(h) = \int h(x) \{\pi/q\}(x) q(x) \mu(dx).$$

Principle

Generate an iid sample $x_1,\ldots,x_N\sim Q$ and estimate $\Pi(h)$ by

$$\hat{\Pi}_{Q,N}^{IS}(h) = N^{-1} \sum_{i=1}^{N} h(x_i) \{\pi/q\}(x_i).$$

-Introduction

Importance Sampling

$\begin{array}{ll} \text{Then} \\ \text{LLN:} & \hat{\Pi}^{IS}_{Q,N}(h) \xrightarrow{\text{as}} \Pi(h) & \text{ and if } Q((h\pi/q)^2) < \infty, \\ \\ \text{CLT:} & \sqrt{N}(\hat{\Pi}^{IS}_{Q,N}(h) - \Pi(h)) \xrightarrow{\mathscr{L}} \mathscr{N}\left(0, Q\{(h\pi/q - \Pi(h))^2\}\right). \end{array}$

-Introduction

Importance Sampling

Then
LLN:
$$\hat{\Pi}_{Q,N}^{IS}(h) \xrightarrow{\mathsf{as}} \Pi(h)$$
 and if $Q((h\pi/q)^2) < \infty$,
CLT: $\sqrt{N}(\hat{\Pi}_{Q,N}^{IS}(h) - \Pi(h)) \xrightarrow{\mathscr{L}} \mathcal{N}\left(0, Q\{(h\pi/q - \Pi(h))^2\}\right)$

Caveat

If normalizing constant unknown, impossible to use $\hat{\Pi}^{IS}_{Q,N}$

Generic problem in Bayesian Statistics: $\pi(\theta|x) \propto f(x|\theta)\pi(\theta)$.

イロト 不得 トイヨト イヨト ヨー うらぐ

Introduction

Importance Sampling

Self-Normalised Importance Sampling

Self normalized version

$$\hat{\Pi}_{Q,N}^{SNIS}(h) = \left(\sum_{i=1}^{N} \{\pi/q\}(x_i)\right)^{-1} \sum_{i=1}^{N} h(x_i)\{\pi/q\}(x_i).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

-Introduction

Importance Sampling

Self-Normalised Importance Sampling

Self normalized version

$$\hat{\Pi}_{Q,N}^{SNIS}(h) = \left(\sum_{i=1}^{N} \{\pi/q\}(x_i)\right)^{-1} \sum_{i=1}^{N} h(x_i)\{\pi/q\}(x_i).$$

$$\begin{split} LLN : & \hat{\Pi}_{Q,N}^{SNIS}(h) \xrightarrow{\text{as}} \Pi(h) \\ \text{and if } \Pi((1+h^2)(\pi/q)) < \infty, \\ CLT : & \sqrt{N}(\hat{\Pi}_{Q,N}^{SNIS}(h) - \Pi(h)) \xrightarrow{\mathscr{L}} \mathscr{N}\left(0, \pi\left\{(\pi/q)(h - \Pi(h)\right\}^2\right)\right). \end{split}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0 </p>

-Introduction

Importance Sampling

Self-Normalised Importance Sampling

Self normalized version

$$\hat{\Pi}_{Q,N}^{SNIS}(h) = \left(\sum_{i=1}^{N} \{\pi/q\}(x_i)\right)^{-1} \sum_{i=1}^{N} h(x_i)\{\pi/q\}(x_i).$$

$$\begin{split} LLN : \quad & \hat{\Pi}_{Q,N}^{SNIS}(h) \stackrel{\text{as}}{\longrightarrow} \Pi(h) \\ \text{and if } \Pi((1+h^2)(\pi/q)) < \infty, \\ CLT : \quad & \sqrt{N}(\hat{\Pi}_{Q,N}^{SNIS}(h) - \Pi(h)) \stackrel{\mathscr{L}}{\leadsto} \mathscr{N}\left(0, \pi\left\{(\pi/q)(h - \Pi(h)\right\}^2\right)\right). \end{split}$$

 $\textcircled{\textbf{C}}$ The quality of the SNIS approximation depends on the choice of Q

-Introduction

Importance Sampling

Iterated importance sampling

Introduction of an algorithmic *temporal dimension* :

$$x_i^{(t)} \sim q_t(x|x_i^{(t-1)}) \qquad i = 1, \dots, n, \quad t = 1, \dots$$

and

$$\hat{\mathfrak{I}}_t = \frac{1}{n} \sum_{i=1}^n \varrho_i^{(t)} h(x_i^{(t)})$$

is still unbiased for

$$\varrho_i^{(t)} = \frac{\pi_t(x_i^{(t)})}{q_t(x_i^{(t)}|x_i^{(t-1)})}, \qquad i = 1, \dots, n$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

PMC: Population Monte Carlo Algorithm

```
At time t = 0

Generate (x_{i,0})_{1 \le i \le N} \stackrel{iid}{\sim} Q_0

Set \omega_{i,0} = \{\pi/q_0\}(x_{i,0})

Generate (J_{i,0})_{1 \le i \le N} \stackrel{\text{iid}}{\sim} \mathcal{M}(1, (\bar{\omega}_{i,0})_{1 \le i \le N})

Set \tilde{x}_{i,0} = x_{J_i,0}
```

イロト 不得 トイヨト イヨト ヨー ろくぐ

PMC: Population Monte Carlo Algorithm At time t = 0Generate $(x_{i,0})_{1 \le i \le N} \stackrel{iid}{\sim} Q_0$ Set $\omega_{i,0} = \{\pi/q_0\}(x_{i,0})$ Generate $(J_{i,0})_{1 \le i \le N} \stackrel{\text{iid}}{\sim} \mathcal{M}(1, (\bar{\omega}_{i,0})_{1 \le i \le N})$ Set $\tilde{x}_{i,0} = x_{J_i,0}$ At time t (t = 1, ..., T), Generate $x_{i,t} \stackrel{\text{ind}}{\sim} Q_{i,t}(\tilde{x}_{i,t-1}, \cdot)$ Set $\omega_{i,t} = \{\pi(x_{i,t})/q_{i,t}(\tilde{x}_{i,t-1}, x_{i,t})\}$ Generate $(J_{i,t})_{1 \le i \le N} \stackrel{\text{iid}}{\sim} \mathcal{M}(1, (\bar{\omega}_{i,t})_{1 \le i \le N})$ Set $\tilde{x}_{i,t} = x_{J_{i,t},t}$.

[Cappé, Douc, Guillin, Marin, & CPR, 2009, Stat.& Comput.]

イロト 不得 トイヨト イヨト ヨー ろくぐ

Notes on PMC

After T iterations of PMC, PMC estimator of $\Pi(h)$ given by

$$\bar{\Pi}_{N,T}^{PMC}(h) = \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} \bar{\bar{\omega}}_{i,t} h(x_{i,t}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Notes on PMC

After T iterations of PMC, PMC estimator of $\Pi(h)$ given by

$$\bar{\Pi}_{N,T}^{PMC}(h) = \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} \bar{\bar{\omega}}_{i,t} h(x_{i,t}).$$

\$\bar{\overline{\overlin{\overline{\overline{\overline{\overline{\overline{\overline{\overlin}\overlin{\overlin{\overline{\overlin}\o

イロト 不得 トイヨト イヨト ヨー ろくぐ

Improving quality

The efficiency of the SNIS approximation depends on the choice of $Q_{\rm r}$ ranging from optimal

$$q(x) \propto |h(x) - \Pi(h)| \pi(x)$$

to useless

$$\operatorname{var}\hat{\Pi}_{Q,N}^{SNIS}(h)=+\infty$$

Improving quality

The efficiency of the SNIS approximation depends on the choice of $Q_{\rm r}$ ranging from optimal

$$q(x) \propto |h(x) - \Pi(h)| \pi(x)$$

to useless

$$\mathrm{var}\,\hat{\Pi}^{SNIS}_{Q,N}(h)=+\infty$$

Example (PMC=adaptive importance sampling)

Population Monte Carlo is producing a sequence of proposals Q_t aiming at improving efficiency

$$\operatorname{Kull}(\pi,q_t) \leq \operatorname{Kull}(\pi,q_{t-1}) \quad \text{or} \quad \operatorname{var} \hat{\Pi}^{SNIS}_{Q_t,\infty}(h) \leq \operatorname{var} \hat{\Pi}^{SNIS}_{Q_{t-1},\infty}(h)$$

[Cappé, Douc, Guillin, Marin, Robert, 04, 07a, 07b, 08]

Approximative Bayesian Computation (ABC) Methods
Population Monte Carlo
AMIS

Multiple Importance Sampling

Reycling: given several proposals Q_1, \ldots, Q_T , for $1 \le t \le T$ generate an iid sample

$$x_1^t, \ldots, x_N^t \sim Q_t$$

and estimate $\Pi(h)$ by

$$\hat{\Pi}_{Q,N}^{MIS}(h) = T^{-1} \sum_{t=1}^{T} N^{-1} \sum_{i=1}^{N} h(x_i^t) \omega_i^t$$

where

$$\omega_i^t \neq \frac{\pi(x_i^t)}{q_t(x_i^t)}$$

1 1

correct...

Approximative Bayesian Computation (ABC) Methods
Population Monte Carlo
AMIS

Multiple Importance Sampling

Reycling: given several proposals Q_1, \ldots, Q_T , for $1 \le t \le T$ generate an iid sample

$$x_1^t, \ldots, x_N^t \sim Q_t$$

and estimate $\Pi(h)$ by

$$\hat{\Pi}_{Q,N}^{MIS}(h) = T^{-1} \sum_{t=1}^{T} N^{-1} \sum_{i=1}^{N} h(x_i^t) \omega_i^t$$

where

$$\omega_i^t = \frac{\pi(x_i^t)}{T^{-1} \sum_{\ell=1}^T q_\ell(x_i^t)}$$
 still correct!

Mixture representation

Deterministic mixture correction of the weights proposed by Owen and Zhou (JASA, 2000)

- The corresponding estimator is still unbiased [if not self-normalised]
- All particles are on the same weighting scale rather than their own
- Large variance proposals Q_t do not take over
- Variance reduction thanks to weight stabilization & recycling
- [K.o.] removes the randomness in the component choice [=Rao-Blackwellisation]

Approximative Bayesian Computation (ABC) Methods
Population Monte Carlo
AMIS

Global adaptation

Global Adaptation

At iteration $t = 1, \cdots, T$,

① For
$$1 \le i \le N_1$$
, generate $x_i^t \sim \mathcal{T}_3(\hat{\mu}^{t-1}, \hat{\Sigma}^{t-1})$

② Calculate the mixture importance weight of particle x_i^t

$$\omega_i^t = \pi \left(x_i^t \right) / \delta_i^t$$

where

$$\delta_i^t = \sum_{l=0}^{t-1} q_{\mathcal{T}(3)} \left(x_i^t; \hat{\mu}^l, \hat{\Sigma}^l \right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Approximative Bayesian Computation (ABC) Methods
Population Monte Carlo
AMIS

Backward reweighting

3 If $t \ge 2$, actualize the weights of all past particles, x_i^l $1 \le l \le t - 1$ $\omega_i^l = \pi (x_i^t) / \delta_i^l$

where

$$\delta_i^l = \delta_i^l + q_{\mathcal{T}(3)} \left(x_i^l; \hat{\mu}^{t-1}, \hat{\Sigma}^{t-1} \right)$$

④ Compute IS estimates of target mean and variance $\hat{\mu}^t$ and $\hat{\Sigma}^t$, where

$$\hat{\mu}_{j}^{t} = \sum_{l=1}^{t} \sum_{i=1}^{N_{1}} \omega_{i}^{l} (x_{j})_{i}^{l} / \sum_{l=1}^{t} \sum_{i=1}^{N_{1}} \omega_{i}^{l} \dots$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Approximative Bayesian Computation (ABC) Methods - Population Monte Carlo

A toy example

Banana shape benchmark: marginal distribution of (x_1, x_2) for the parameters $\sigma_1^2 = 100$ and b = 0.03. Contours represent 60% (red), 90% (black) and 99.9% (blue) confidence regions in the marginal space.

A toy example

Banana shape example: boxplots of 10 replicate ESSs for the AMIS scheme (left) and the NOT-AMIS scheme (right) for p = 5, 10, 20.

Population Monte Carlo

Convergence of the estimator

Convergence of the AMIS estimator

Difficulty in establishing the convergence because of the backward structure: the weight of x_i^t at stage T depends on future as well as past x_j^ℓ ...

イロト 不得 トイヨト イヨト ヨー ろくぐ

Regular Population Monte Carlo argument does not work for ${\cal T}$ asymptotics...

Population Monte Carlo

Convergence of the estimator

Convergence of the AMIS estimator

Difficulty in establishing the convergence because of the backward structure: the weight of x_i^t at stage T depends on future as well as past $x_j^{\ell'}$...

Regular Population Monte Carlo argument does not work for ${\cal T}$ asymptotics...

[C Amiss estimator?!]

イロト 不得 トイヨト イヨト ヨー ろくぐ

Population Monte Carlo

Convergence of the estimator

A modified version of the algorithm

Only consider AMIS with p = 1, N = 1 and h(x) = x.

Set the variances of the t distributions to be equal to 1 after rescaling, i.e. no learning process on the covariance matrix

Approximative Bayesian Computation (ABC) Methods
Population Monte Carlo
Convergence of the estimator

Algorithmic setup

Our simplified algorithm then runs as follows:

$$x_0 \sim q_0(\cdot), x_1 \sim T_3(u_1(x_0), 1)$$
 where $u_1(x_0) = \frac{\pi(x_0)x_0}{q_0(x_0)} = \hat{\mu}^0,$

 $x_2 \sim T_3(u_2(x_{0:1}), 1) \quad \text{where} \quad u_2(x_{0:1}) =$

$$\frac{\pi(x_0)x_0}{q_0(x_0) + t_3(x_0; u_1(x_0), 1)} + \frac{\pi(x_1)x_1}{q_0(x_1) + t_3(x_1; u_1(x_0), 1)} = \hat{\mu}^1,$$

イロト 不得 トイヨト イヨト ヨー うらぐ

Population Monte Carlo

Convergence of the estimator

Algorithmic setup (2)

$$\begin{aligned} x_t &\sim T_3(u_t(x_{0:t-1}), 1) \\ \text{where} \quad u_t(x_{0:t-1}) = \sum_{k=0}^{t-1} \frac{\pi(x_k) x_k}{q_0(x_k) + \sum_{i=1}^{t-1} t_3(x_k; u_i(x_{0:i-1}), 1)} , \dots \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ○□ ● ○○ ○○

Convergence of the estimator

Stumbling block

Establishing that

$$\hat{\mu}^T = \sum_{k=0}^T \frac{\pi(x_k) x_k}{q_0(x_k) + \sum_{i=1}^T t_3(x_k; u_i(x_{0:i-1}), 1)} \xrightarrow{L_2}_{T \to \infty} \mu = \int x \pi(x) dx.$$

proves to be surprisingly difficult (note that $\mathbb{E}(\hat{\mu}^T) \neq \mu$)

Impossible to use PMC convergence theorems on triangular arrays of random variables.

イロト 不得 トイヨト イヨト ヨー ろくぐ

An unbiased estimator

Unbiased version of the estimator

Modified version of previous algorithm with two sequences:

$$x_0 \sim q_0(\cdot)$$
 and $\tilde{x}_0 \sim q_0(\cdot)$,

$$\begin{split} &x_1 \sim T_3(u_1(\tilde{x}_0), 1) \quad \text{and} \quad \tilde{x}_1 \sim T_3(u_1(\tilde{x}_0), 1) \\ &\text{where} \ u_1(\tilde{x}_0) = \frac{\pi(\tilde{x}_0)\tilde{x}_0}{q_0(\tilde{x}_0)} = \hat{\mu}^0 \,, \end{split}$$

$$\begin{split} & x_2 \sim T_3(u_2(\tilde{x}_{0:1}), 1) \quad \text{and} \quad \tilde{x}_2 \sim T_3(u_2(\tilde{x}_{0:1}), 1) \text{ where } u_2(\tilde{x}_{0:1}) = \\ & \frac{\pi(\tilde{x}_0)\tilde{x}_0}{q_0(\tilde{x}_0) + t_3(\tilde{x}_0; u_1(\tilde{x}_0), 1)} + \frac{\pi(\tilde{x}_1)\tilde{x}_1}{q_0(\tilde{x}_1) + t_3(\tilde{x}_1; u_1(\tilde{x}_0), 1)} = \hat{\mu}^1 \,, \end{split}$$

Population Monte Carlo

An unbiased estimator

Unbiased version of the estimator (2)

$$\begin{aligned} x_t &\sim T_3(u_t(x_{0:t-1}), 1) \quad \text{and} \quad \tilde{x}_t \sim T_3(u_t(\tilde{x}_{0:t-1}), 1) \\ \text{where } u_t(\tilde{x}_{0:t-1}) &= \sum_{k=0}^{t-1} \frac{\pi(\tilde{x}_k)\tilde{x}_k}{q_0(\tilde{x}_k) + \sum_{i=1}^{t-1} t_3(\tilde{x}_k; u_i(\tilde{x}_{0:i-1}), 1)}, \dots \end{aligned}$$

Let

$$\hat{\mu}_U^T = \sum_{k=0}^T \frac{\pi(x_k) x_k}{q_0(x_k) + \sum_{i=1}^T t_3(x_k; u_i(\tilde{x}_{0:i-1}), 1)}.$$

< □ > < □ > < 臣 > < 臣 > < 臣 > < 臣 > < ○ < ○

Approximative Bayesian Computation (ABC) Methods
Population Monte Carlo
An unbiased estimator

My questions

Clearly, we have

$$\mathbb{E}(\hat{\mu}_U^T) = \mu$$

and under mild conditions we should have

$$\hat{\mu}_U^T \xrightarrow[T \to \infty]{L_2} \mu$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Approximative Bayesian Computation (ABC) Methods
Population Monte Carlo
An unbiased estimator

My questions

Clearly, we have

$$\mathbb{E}(\hat{\mu}_U^T) = \mu$$

and under mild conditions we should have

$$\hat{\mu}_U^T \xrightarrow[T \to \infty]{L_2} \mu$$

Except for the compact case, i.e. when $\mathrm{supp}(\pi)$ is compact, this also proves impossible to establish...

The only indication we have is that $\mathrm{var}(\hat{\mu}_U^T)$ is decreasing at each iteration

イロト 不得 トイヨト イヨト ヨー ろくぐ

The ABC method

Bayesian setting: target is $\pi(\theta)f(x|\theta)$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ○□ ● ○○ ○○

The ABC method

Bayesian setting: target is $\pi(\theta)f(x|\theta)$ When likelihood $f(x|\theta)$ not in closed form, likelihood-free rejection technique:

The ABC method

Bayesian setting: target is $\pi(\theta)f(x|\theta)$ When likelihood $f(x|\theta)$ not in closed form, likelihood-free rejection technique:

ABC algorithm

For an observation $y \sim f(y|\theta),$ under the prior $\pi(\theta),$ keep jointly simulating

$$\theta' \sim \pi(\theta), x \sim f(x|\theta'),$$

until the auxiliary variable x is equal to the observed value, x = y.

[Pritchard et al., 1999]

A as approximative

When y is a continuous random variable, equality x = y is replaced with a tolerance condition,

$$\varrho(x,y) \le \epsilon$$

where ρ is a distance between summary statistics

A as approximative

When y is a continuous random variable, equality x = y is replaced with a tolerance condition,

$$\varrho(x,y) \le \epsilon$$

where ϱ is a distance between summary statistics Output distributed from

$$\pi(\theta) P_{\theta} \{ \varrho(x, y) < \epsilon \} \propto \pi(\theta | \varrho(x, y) < \epsilon)$$

Simulating from the prior is often poor in efficiency

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 「臣」 のへで

Simulating from the prior is often poor in efficiency Either modify the proposal distribution on θ to increase the density of x's within the vicinity of y...

[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]

イロト イポト イヨト イヨト ヨー わらぐ

Simulating from the prior is often poor in efficiency Either modify the proposal distribution on θ to increase the density of x's within the vicinity of y...

[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]

...or by viewing the problem as a conditional density estimation and by developing techniques to allow for larger ϵ

[Beaumont et al., 2002]

イロト 不得 トイヨト イヨト ヨー ろくぐ

Simulating from the prior is often poor in efficiency Either modify the proposal distribution on θ to increase the density of x's within the vicinity of y...

[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]

...or by viewing the problem as a conditional density estimation and by developing techniques to allow for larger ϵ [Beaumont et al., 2002]

...or even by including ϵ in the inferential framework [ABC_µ] [Ratmann et al., 2009]

イロア 不通 アメヨア メヨア ヨー ろくぐ

ABC-MCMC

Markov chain $(\theta^{(t)})$ created via the transition function

$$\theta^{(t+1)} = \begin{cases} \theta' \sim K(\theta'|\theta^{(t)}) & \text{if } x \sim f(x|\theta') \text{ is such that } x = y \\ & \text{and } u \sim \mathcal{U}(0,1) \leq \frac{\pi(\theta')K(\theta^{(t)}|\theta')}{\pi(\theta^{(t)})K(\theta'|\theta^{(t)})} \,, \\ \theta^{(t)} & \text{otherwise,} \end{cases}$$

イロト イロト イミト イミト ニミー のへぐ

ABC-MCMC

Markov chain $(\theta^{(t)})$ created via the transition function

$$\theta^{(t+1)} = \begin{cases} \theta' \sim K(\theta'|\theta^{(t)}) & \text{if } x \sim f(x|\theta') \text{ is such that } x = y \\ & \text{and } u \sim \mathcal{U}(0,1) \leq \frac{\pi(\theta')K(\theta^{(t)}|\theta')}{\pi(\theta^{(t)})K(\theta'|\theta^{(t)})}, \\ \theta^{(t)} & \text{otherwise,} \end{cases}$$

has the posterior $\pi(\theta|y)$ as stationary distribution [Marjoram et al, 2003]

 ABC_{μ}

[Ratmann, Andrieu, Wiuf and Richardson, 2009, PNAS]

Use of a joint density

$$f(\theta, \epsilon | x_0) \propto \xi(\epsilon | x_0, \theta) \times \pi_{\theta}(\theta) \times \pi_{\epsilon}(\epsilon)$$

where x_0 is the data, and $\xi(\epsilon|x_0,\theta)$ is the prior predictive density of $\rho(S(x), S(x_0))$ given θ and x_0 when $x \sim f(x|\theta)$ Replacement of $\xi(\epsilon|x_0,\theta)$ with a non-parametric kernel approximation.

Questions about ABC_{μ}

For each model under comparison, marginal posterior on ϵ used to assess the fit of the model (HPD includes 0 or not).

Questions about ABC_{μ}

For each model under comparison, marginal posterior on ϵ used to assess the fit of the model (HPD includes 0 or not).

- Is the data informative about ϵ ? [Identifiability]
- How is the prior $\pi(\epsilon)$ impacting the comparison?
- How is using both $\xi(\epsilon|x_0, \theta)$ and $\pi_{\epsilon}(\epsilon)$ compatible with a standard probability model?
- Where is there a penalisation for complexity in the model comparison?

イロト 不得 トイヨト イヨト ヨー ろくぐ

ABC-PRC

Another sequential version producing a sequence of Markov transition kernels K_t and of samples $(\theta_1^{(t)}, \ldots, \theta_N^{(t)})$ $(1 \le t \le T)$

ABC-PRC

Another sequential version producing a sequence of Markov transition kernels K_t and of samples $(\theta_1^{(t)}, \ldots, \theta_N^{(t)})$ $(1 \le t \le T)$

ABC-PRC Algorithm

1 Pick a θ^* is selected at random among the previous $\theta_i^{(t-1)}$'s with probabilities $\omega_i^{(t-1)}$ $(1 \le i \le N)$.

② Generate

$$\theta_i^{(t)} \sim K_t(\theta | \theta^{\star}), x \sim f(x | \theta_i^{(t)}),$$

3 Check that $\varrho(x,y) < \epsilon$, otherwise start again.

[Sisson et al., 2007]

ABC-PRC weight

Probability $\omega_i^{(t)}$ computed as

$$\omega_i^{(t)} \propto \pi(\theta_i^{(t)}) L_{t-1}(\theta^* | \theta_i^{(t)}) \{ \pi(\theta^*) K_t(\theta_i^{(t)} | \theta^*) \}^{-1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

where L_{t-1} is an arbitrary transition kernel.

ABC-PRC weight

Probability $\omega_i^{(t)}$ computed as

$$\omega_i^{(t)} \propto \pi(\theta_i^{(t)}) L_{t-1}(\theta^* | \theta_i^{(t)}) \{ \pi(\theta^*) K_t(\theta_i^{(t)} | \theta^*) \}^{-1} ,$$

where ${\cal L}_{t-1}$ is an arbitrary transition kernel. In case

$$L_{t-1}(\theta'|\theta) = K_t(\theta|\theta'),$$

イロト 不得 トイヨト イヨト ヨー うらぐ

all weights are equal under a uniform prior.

ABC-PRC weight

Probability $\omega_i^{(t)}$ computed as

 $\omega_i^{(t)} \propto \pi(\theta_i^{(t)}) L_{t-1}(\theta^* | \theta_i^{(t)}) \{ \pi(\theta^*) K_t(\theta_i^{(t)} | \theta^*) \}^{-1} ,$

where ${\cal L}_{t-1}$ is an arbitrary transition kernel. In case

$$L_{t-1}(\theta'|\theta) = K_t(\theta|\theta'),$$

all weights are equal under a uniform prior. Inspired from Del Moral et al. (2006), who use backward kernels L_{t-1} in SMC to achieve unbiasedness

イロト 不得 トイヨト イヨト ヨー ろくぐ

ABC-PRC bias

Lack of unbiasedness of the method

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

ABC-PRC bias

Lack of unbiasedness of the method

Joint density of the accepted pair $(\theta^{(t-1)}, \theta^{(t)})$ proportional to

 $\pi(\theta^{(t-1)}|y)K_t(\theta^{(t)}|\theta^{(t-1)})f(y|\theta^{(t)}),$

For an arbitrary function $h(\theta)$, $E[\omega_t h(\theta^{(t)})]$ proportional to

$$\begin{split} &\iint h(\theta^{(t)}) \, \frac{\pi(\theta^{(t)}) L_{t-1}(\theta^{(t-1)} | \theta^{(t)})}{\pi(\theta^{(t-1)}) K_t(\theta^{(t)} | \theta^{(t-1)})} \, \pi(\theta^{(t-1)} | y) K_t(\theta^{(t)} | \theta^{(t-1)}) f(y | \theta^{(t)}) \mathrm{d}\theta^{(t-1)} \mathrm{d}\theta^{(t)}} \\ & \propto \iint h(\theta^{(t)}) \, \frac{\pi(\theta^{(t)}) L_{t-1}(\theta^{(t-1)} | \theta^{(t)})}{\pi(\theta^{(t-1)}) K_t(\theta^{(t)} | \theta^{(t-1)})} \pi(\theta^{(t-1)}) f(y | \theta^{(t-1)}) \\ & \times K_t(\theta^{(t)} | \theta^{(t-1)}) f(y | \theta^{(t)}) \mathrm{d}\theta^{(t-1)} \mathrm{d}\theta^{(t)} \\ & \propto \int h(\theta^{(t)}) \pi(\theta^{(t)} | y) \left\{ \int L_{t-1}(\theta^{(t-1)} | \theta^{(t)}) f(y | \theta^{(t-1)}) \mathrm{d}\theta^{(t-1)} \right\} \, \mathrm{d}\theta^{(t)} \, . \end{split}$$

イロト 不得 トイヨト イヨト ヨー ろくぐ

A mixture example

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

A PMC version

Use of the same kernel idea as ABC-PRC but with IS correction Generate a sample at iteration t by

$$\hat{\pi}_t(\theta^{(t)}) \propto \sum_{j=1}^N \omega_j^{(t-1)} K_t(\theta^{(t)} | \theta_j^{(t-1)})$$

modulo acceptance of the associated $x_t,$ and use an importance weight associated with an accepted simulation $\theta_i^{(t)}$

$$\omega_i^{(t)} \propto \pi(\theta_i^{(t)}) / \hat{\pi}_t(\theta_i^{(t)}).$$

© Still likelihood free

[Beaumont et al., 2008, arXiv:0805.2256]

The ABC-PMC algorithm

Given a decreasing sequence of approximation levels $\epsilon_1 \geq \ldots \geq \epsilon_T$,

1. At iteration
$$t = 1$$
,

2.

For
$$i = 1, ..., N$$

Simulate $\theta_i^{(1)} \sim \pi(\theta)$ and $x \sim f(x|\theta_i^{(1)})$ until $\varrho(x, y) < \epsilon_1$
Set $\omega_i^{(1)} = 1/N$

Take au^2 as twice the empirical variance of the $heta_i^{(1)}$'s

At iteration
$$2 \leq t \leq T$$
,
For $i = 1, ..., N$, repeat
Pick θ_i^* from the $\theta_j^{(t-1)}$'s with probabilities $\omega_j^{(t-1)}$
generate $\theta_i^{(t)} | \theta_i^* \sim \mathcal{N}(\theta_i^*, \sigma_t^2)$ and $x \sim f(x|\theta_i^{(t)})$
until $\varrho(x, y) < \epsilon_t$
Set $\omega_i^{(t)} \propto \pi(\theta_i^{(t)}) / \sum_{j=1}^N \omega_j^{(t-1)} \varphi\left(\sigma_t^{-1}\left\{\theta_i^{(t)} - \theta_j^{(t-1)}\right)\right\}$
Take τ_{t+1}^2 as twice the weighted empirical variance of the $\theta_i^{(t)}$

900

's

ABC-SMC

[Del Moral, Doucet & Jasra, 2009]

イロト 不得 トイヨト イヨト ヨー うらぐ

True derivation of an SMC-ABC algorithm Use of a kernel K_n associated with target π_{ϵ_n} and derivation of the backward kernel

$$L_{n-1}(z, z') = \frac{\pi_{\epsilon_n}(z')K_n(z', z)}{\pi_n(z)}$$

Update of the weights

$$w_{in} \propto_{i(n-1)} \frac{\sum_{m=1}^{M} \mathbb{A}_{\epsilon_{\kappa}}(x_{in}^{m})}{\sum_{m=1}^{M} \mathbb{A}_{\epsilon_{\kappa} - \mu}(x_{i(n-1)}^{m})}$$

when $x_{in}^m \sim K(x_{i(n-1)}, \cdot)$

A mixture example (0)

Toy model of Sisson et al. (2007): if

$$\theta \sim \mathcal{U}(-10, 10), \quad x|\theta \sim 0.5 \mathcal{N}(\theta, 1) + 0.5 \mathcal{N}(\theta, 1/100),$$

then the posterior distribution associated with y = 0 is the normal mixture

$$\theta | y = 0 \sim 0.5 \mathcal{N}(0, 1) + 0.5 \mathcal{N}(0, 1/100)$$

restricted to [-10, 10]. Furthermore, true target available as

$$\pi(\theta||x|<\epsilon) \propto \Phi(\epsilon-\theta) - \Phi(-\epsilon-\theta) + \Phi(10(\epsilon-\theta)) - \Phi(-10(\epsilon+\theta)) \,.$$

イロト 不得 トイヨト イヨト ヨー うらぐ

A mixture example (2)

ABC for model choice

- 1 Introduction
- 2 Population Monte Carlo
- 3 ABC
- 4 ABC-PMC
- ABC for model choice in GRFs
 Gibbs random fields

- Model choice via ABC
- Illustrations

ABC for model choice in GRFs

Gibbs random fields

Gibbs random fields

Gibbs distribution

The rv $\mathbf{y} = (y_1, \dots, y_n)$ is a Gibbs random field associated with the graph \mathfrak{G} if

$$f(\mathbf{y}) = rac{1}{3} \exp\left\{-\sum_{c \in \mathscr{C}} V_c(\mathbf{y}_c)
ight\},$$

where \mathfrak{Z} is the normalising constant, \mathscr{C} is the set of cliques of \mathfrak{G} and V_c is any function also called **potential** $U(\mathbf{y}) = \sum_{c \in \mathscr{C}} V_c(\mathbf{y}_c)$ is the **energy function**

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

ABC for model choice in GRFs

Gibbs random fields

Gibbs random fields

Gibbs distribution

The rv $\mathbf{y} = (y_1, \dots, y_n)$ is a Gibbs random field associated with the graph \mathfrak{G} if

$$f(\mathbf{y}) = rac{1}{3} \exp\left\{-\sum_{c \in \mathscr{C}} V_c(\mathbf{y}_c)
ight\}\,,$$

where \mathfrak{Z} is the normalising constant, \mathscr{C} is the set of cliques of \mathfrak{G} and V_c is any function also called **potential** $U(\mathbf{y}) = \sum_{c \in \mathscr{C}} V_c(\mathbf{y}_c)$ is the **energy function**

イロト 不得 トイヨト イヨト ヨー ろくぐ

 \bigcirc 3 is usually unavailable in closed form

ABC for model choice in GRFs

Gibbs random fields

Potts model

Potts model

 $V_c(\mathbf{y})$ is of the form

$$V_c(\mathbf{y}) = \theta S(\mathbf{y}) = \theta \sum_{l \sim i} \delta_{y_l = y_i}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

where $l{\sim}i$ denotes a neighbourhood structure

ABC for model choice in GRFs

-Gibbs random fields

Potts model

Potts model

 $V_c(\mathbf{y})$ is of the form

$$V_c(\mathbf{y}) = \theta S(\mathbf{y}) = \theta \sum_{l \sim i} \delta_{y_l = y_i}$$

where $l{\sim}i$ denotes a neighbourhood structure

In most realistic settings, summation

$$Z_{\theta} = \sum_{\mathbf{x} \in \mathcal{X}} \exp\{\theta^{\mathsf{T}} S(\mathbf{x})\}$$

involves too many terms to be manageable and numerical approximations cannot always be trusted [Cucala, Marin, CPR & Titterington, 2009] Approximative Bayesian Computation (ABC) Methods ABC for model choice in GRFs

Model choice via ABC

Bayesian Model Choice

Comparing a model with potential S_0 taking values in \mathbb{R}^{p_0} versus a model with potential S_1 taking values in \mathbb{R}^{p_1} can be done through the Bayes factor corresponding to the priors π_0 and π_1 on each parameter space

$$\mathfrak{B}_{m_0/m_1}(\mathbf{x}) = \frac{\int \exp\{\theta_0^\mathsf{T} S_0(\mathbf{x})\}/Z_{\theta_0,0}\pi_0(\mathsf{d}\theta_0)}{\int \exp\{\theta_1^\mathsf{T} S_1(\mathbf{x})\}/Z_{\theta_1,1}\pi_1(\mathsf{d}\theta_1)}$$

Approximative Bayesian Computation (ABC) Methods ABC for model choice in GRFs

└─Model choice via ABC

Bayesian Model Choice

Comparing a model with potential S_0 taking values in \mathbb{R}^{p_0} versus a model with potential S_1 taking values in \mathbb{R}^{p_1} can be done through the Bayes factor corresponding to the priors π_0 and π_1 on each parameter space

$$\mathfrak{B}_{m_0/m_1}(\mathbf{x}) = \frac{\int \exp\{\theta_0^\mathsf{T} S_0(\mathbf{x})\}/Z_{\theta_0,0}\pi_0(\mathsf{d}\theta_0)}{\int \exp\{\theta_1^\mathsf{T} S_1(\mathbf{x})\}/Z_{\theta_1,1}\pi_1(\mathsf{d}\theta_1)}$$

Use of Jeffreys' scale to select most appropriate model

Approximative Bayesian Computation (ABC) Methods ABC for model choice in GRFs

Model choice via ABC

Neighbourhood relations

Choice to be made between M neighbourhood relations

$$i \stackrel{m}{\sim} i' \qquad (0 \le m \le M - 1)$$

with

$$S_m(\mathbf{x}) = \sum_{\substack{i \sim i'}} \mathbb{I}_{\{x_i = x_{i'}\}}$$

イロト 不得 トイヨト イヨト ヨー うらぐ

driven by the posterior probabilities of the models.

Approximative Bayesian Computation (ABC) Methods ABC for model choice in GRFs Model choice via ABC

Model index

Formalisation via a model index \mathcal{M} that appears as a new parameter with prior distribution $\pi(\mathcal{M}=m)$ and $\pi(\theta|\mathcal{M}=m) = \pi_m(\theta_m)$

Approximative Bayesian Computation (ABC) Methods ABC for model choice in GRFs Model choice via ABC

Model index

Formalisation via a model index \mathcal{M} that appears as a new parameter with prior distribution $\pi(\mathcal{M} = m)$ and $\pi(\theta|\mathcal{M} = m) = \pi_m(\theta_m)$ Computational target:

$$\mathbb{P}(\mathcal{M}=m|\mathbf{x}) \propto \int_{\Theta_m} f_m(\mathbf{x}|\theta_m) \pi_m(\theta_m) \, \mathrm{d}\theta_m \, \pi(\mathcal{M}=m) \, ,$$

◆□▶ ◆帰▶ ◆□▶ ◆□▶ □ ○ ○○○

ABC for model choice in GRFs

└─ Model choice via ABC

Sufficient statistics

By definition, if $S(\mathbf{x})$ sufficient statistic for the joint parameters $(\mathcal{M}, \theta_0, \dots, \theta_{M-1})$,

$$\mathbb{P}(\mathcal{M} = m | \mathbf{x}) = \mathbb{P}(\mathcal{M} = m | S(\mathbf{x})).$$

Approximative Bayesian Computation (ABC) Methods LABC for model choice in GRFs

└─ Model choice via ABC

Sufficient statistics

By definition, if $S(\mathbf{x})$ sufficient statistic for the joint parameters $(\mathcal{M}, \theta_0, \dots, \theta_{M-1})$,

$$\mathbb{P}(\mathcal{M} = m | \mathbf{x}) = \mathbb{P}(\mathcal{M} = m | S(\mathbf{x})).$$

イロト 不得 トイヨト イヨト ヨー ろくぐ

For each model m, own sufficient statistic $S_m(\cdot)$ and $S(\cdot) = (S_0(\cdot), \ldots, S_{M-1}(\cdot))$ also sufficient.

└─ Model choice via ABC

Sufficient statistics

By definition, if $S(\mathbf{x})$ sufficient statistic for the joint parameters $(\mathcal{M}, \theta_0, \dots, \theta_{M-1})$,

$$\mathbb{P}(\mathcal{M} = m | \mathbf{x}) = \mathbb{P}(\mathcal{M} = m | S(\mathbf{x})).$$

For each model m, own sufficient statistic $S_m(\cdot)$ and $S(\cdot) = (S_0(\cdot), \ldots, S_{M-1}(\cdot))$ also sufficient. For Gibbs random fields,

$$\begin{aligned} x|\mathcal{M} &= m \sim f_m(\mathbf{x}|\theta_m) &= f_m^1(\mathbf{x}|S(\mathbf{x}))f_m^2(S(\mathbf{x})|\theta_m) \\ &= \frac{1}{n(S(\mathbf{x}))}f_m^2(S(\mathbf{x})|\theta_m) \end{aligned}$$

where

$$n(S(\mathbf{x})) = \sharp \left\{ \tilde{\mathbf{x}} \in \mathcal{X} : S(\tilde{\mathbf{x}}) = S(\mathbf{x}) \right\}$$

 \bigcirc $S(\mathbf{x})$ is therefore also sufficient for the joint parameters [Specific to Gibbs random fields!]

ABC for model choice in GRFs

└─ Model choice via ABC

ABC model choice Algorithm

ABC-MC

- Generate m^* from the prior $\pi(\mathcal{M} = m)$.
- Generate $\theta_{m^*}^*$ from the prior $\pi_{m^*}(\cdot)$.
- Generate x^* from the model $f_{m^*}(\cdot | \theta_{m^*}^*)$.
- Compute the distance $\rho(S(\mathbf{x}^0), S(\mathbf{x}^*))$.
- Accept $(\theta_{m^*}^*, m^*)$ if $\rho(S(\mathbf{x}^0), S(\mathbf{x}^*)) < \epsilon$.

イロト 不得 トイヨト イヨト ヨー ろくで

Note When $\epsilon = 0$ the algorithm is exact

Model choice via ABC

ABC approximation to the Bayes factor

Frequency ratio:

$$\overline{BF}_{m_0/m_1}(\mathbf{x}^0) = \frac{\widehat{\mathbb{P}}(\mathcal{M} = m_0 | \mathbf{x}^0)}{\widehat{\mathbb{P}}(\mathcal{M} = m_1 | \mathbf{x}^0)} \times \frac{\pi(\mathcal{M} = m_1)}{\pi(\mathcal{M} = m_0)}$$
$$= \frac{\sharp\{m^{i*} = m_0\}}{\sharp\{m^{i*} = m_1\}} \times \frac{\pi(\mathcal{M} = m_1)}{\pi(\mathcal{M} = m_0)},$$

Model choice via ABC

ABC approximation to the Bayes factor

Frequency ratio:

$$\overline{BF}_{m_0/m_1}(\mathbf{x}^0) = \frac{\widehat{\mathbb{P}}(\mathcal{M} = m_0 | \mathbf{x}^0)}{\widehat{\mathbb{P}}(\mathcal{M} = m_1 | \mathbf{x}^0)} \times \frac{\pi(\mathcal{M} = m_1)}{\pi(\mathcal{M} = m_0)}$$
$$= \frac{\sharp\{m^{i*} = m_0\}}{\sharp\{m^{i*} = m_1\}} \times \frac{\pi(\mathcal{M} = m_1)}{\pi(\mathcal{M} = m_0)},$$

replaced with

$$\widehat{BF}_{m_0/m_1}(\mathbf{x}^0) = \frac{1 + \sharp\{m^{i*} = m_0\}}{1 + \sharp\{m^{i*} = m_1\}} \times \frac{\pi(\mathcal{M} = m_1)}{\pi(\mathcal{M} = m_0)}$$

イロト 不得 トイヨト イヨト ヨー うらぐ

to avoid indeterminacy (also Bayes estimate).

Toy example

iid Bernoulli model versus two-state first-order Markov chain, i.e.

$$f_0(\mathbf{x}|\theta_0) = \exp\left(\theta_0 \sum_{i=1}^n \mathbb{I}_{\{x_i=1\}}\right) / \{1 + \exp(\theta_0)\}^n,$$

versus

$$f_1(\mathbf{x}|\theta_1) = \frac{1}{2} \exp\left(\theta_1 \sum_{i=2}^n \mathbb{I}_{\{x_i=x_{i-1}\}}\right) / \{1 + \exp(\theta_1)\}^{n-1},$$

with priors $\theta_0 \sim \mathcal{U}(-5,5)$ and $\theta_1 \sim \mathcal{U}(0,6)$ (inspired by "phase transition" boundaries).

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

ABC for model choice in GRFs

- Illustrations

Toy example (2)

(*left*) Comparison of the true $BF_{m_0/m_1}(\mathbf{x}^0)$ with $\widehat{BF}_{m_0/m_1}(\mathbf{x}^0)$ (in logs) over 2,000 simulations and 4.10⁶ proposals from the prior. (*right*) Same when using tolerance ϵ corresponding to the 1% quantile on the distances. Approximative Bayesian Computation (ABC) Methods $\hfill ABC$ for model choice in GRFs

Illustrations

Protein folding

Superposition of the native structure (grey) with the **ST1** structure (red.), the **ST2** structure (orange), the **ST3** structure (green), and the **DT** structure (blue).

ABC for model choice in GRFs

- Illustrations

Protein folding (2)

	% seq . Id.	TM-score	FROST score
1i5nA (ST1)	32	0.86	75.3
1ls1A1 (ST2)	5	0.42	8.9
1jr8A (ST3)	4	0.24	8.9
1s7oA (DT)	10	0.08	7.8

Characteristics of dataset. % seq. Id.: percentage of identity with the query sequence. TM-score.: similarity between predicted and native structure (uncertainty between 0.17 and 0.4) FROST score: quality of alignment of the query onto the candidate structure (uncertainty between 7 and 9).

イロト 不得 トイヨト イヨト ヨー ろくぐ

ABC for model choice in GRFs

- Illustrations

Protein folding (3)

	NS/ST1	NS/ST2	NS/ST3	NS/DT
\widehat{BF}	1.34	1.22	2.42	2.76
$\widehat{\mathbb{P}}(\mathcal{M} = NS \mathbf{x}^0)$	0.573	0.551	0.708	0.734

Estimates of the Bayes factors between model **NS** and models **ST1**, **ST2**, **ST3**, and **DT**, and corresponding posterior probabilities of model **NS** based on an ABC-MC algorithm using $1.2 \, 10^6$ simulations and a tolerance ϵ equal to the 1% quantile of the distances.

イロト 不得 トイヨト イヨト ヨー ろくぐ