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Abstract. Let fc(z) = z2 + c for c ∈ C. We show there exists a uniform bound

on the number of points in P1(C) that can be preperiodic for both fc1 and fc2 with

c1 6= c2 in C. The proof combines arithmetic ingredients with complex-analytic;

we estimate an adelic energy pairing when the parameters lie in Q, building on the

quantitative arithmetic equidistribution theorem in [FRL], and we use distortion

theorems in complex analysis to control the size of the intersection of distinct Julia

sets. The proof is effective, and we provide explicit constants for each of the results.

1. Introduction

Consider the family of quadratic polynomials

fc(z) = z2 + c

for c in C, viewed as dynamical systems fc : Ĉ → Ĉ on the Riemann sphere. Recall

that a point z ∈ Ĉ is said to be preperiodic if its forward orbit under fc is finite. It is

well known that the set of all preperiodic points for fc will determine c. Indeed, we

have

Preper(fc1) = Preper(fc2) ⇐⇒ J(fc1) = J(fc2) ⇐⇒ c1 = c2 (1.1)

in this family, where J(fc) is the Julia set and Preper(fc) the set of preperiodic points;

a sketch of the argument is given in §2.3.

For any c1 6= c2 in C, the intersection of Preper(fc1) and Preper(fc2) is finite [BD,

Corollary 1.3] [YZ, Theorem 1.3], even though their Julia sets can have complicated,

infinite intersection. We investigate the question of how many preperiodic points

are required to uniquely determine the polynomial, forgetting the information of the

period or length of an orbit. We prove:

Theorem 1.1. There exists a constant B so that

|Preper(fc1) ∩ Preper(fc2)| ≤ B

for any c1 6= c2 in C.

Remark 1.2. Our proof leads to an explicit value for B. Without making an effort to

optimize our constants, we show that we can take B = 1082. This bound is probably
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far from optimal. The largest intersection we know was found by Trevor Hyde: the

set Preper(f−21/16) ∩ Preper(f−29/16) consists of at least 27 points in Ĉ. These two

polynomials also appear in [Po].

Remark 1.3. There is no uniform bound on the periods or orbit lengths of the

elements of Preper(fc1) ∩ Preper(fc2) as c1 and c2 vary. For example, taking c1 and

c2 to be distinct centers of hyperbolic components within the Mandelbrot set, we will

have 0 ∈ Preper(fc1) ∩ Preper(fc2) with periods as large as desired.

1.1. Motivation and background. For any pair of rational functions f, g : Ĉ→ Ĉ
of degree at least 2, it is known that a dichotomy holds: either the intersection

Preper(f)∩Preper(g) is finite or Preper(f) = Preper(g) [BD, YZ]. Moreover, except

for maps conjugate to z±d, the equality Preper(f) = Preper(g) is equivalent to the

statement that the measures of maximal entropy for f and g coincide; one implication

is proved in [LP] and the other in [YZ, Theorem 1.5].

We suspect a much stronger result may hold, and we propose the following conjec-

ture:

Conjecture 1.4. For each degree d ≥ 2, there exists a constant B = B(d) so that

either

|Preper(f) ∩ Preper(g)| ≤ B

or

Preper(f) = Preper(g)

for any pair of rational functions f and g in C(z) of degree d.

Conjecture 1.4 would imply that a configuration of B + 1 points on the Riemann

sphere, if preperiodic for some map of degree d ≥ 2, will almost uniquely determine

the map among all maps of the same degree. A complete classification of all rational

maps having the same measure of maximal entropy is still open, however, unless the

maps are polynomial [BE, Bea]; see also [LP, Ye, Pa] for results about rational maps

with the same maximal measure.

As discussed in [DKY], Conjecture 1.4 is analogous to a question posed by Mazur

[Ma], proposing the existence of uniform bound – depending only on the genus g –

on the number of torsion points on a compact Riemann surface of genus g > 1 inside

its Jacobian. In fact, the special case of Conjecture 1.4 for the 1-parameter family of

Lattès maps

ft(z) =
(z2 − t)2

4z(z − 1)(z − t) (1.2)

in degree 4, for t ∈ C \ {0, 1}, was proved in [DKY]; it implies a positive answer to

Mazur’s question for a certain 2-parameter family of genus 2 Riemann surfaces.
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Remark 1.5. The bound B in Conjecture 1.4, if it exists, must depend on the degree

d. It is easy to find examples with growing degrees with growing numbers of common

preperiodic points. For example, the sequences of polynomials

fn(z) = z2(z − 1) · · · (z − n) and gn(z) = z(z − 1) · · · (z − n)(z − (n+ 1))

have degree n+ 2 with at least n+ 1 common preperiodic points, for all n ≥ 1. Their

sets of preperiodic points cannot be equal because their Julia sets are not the same:

we have 0 ∈ J(gn) but 0 6∈ J(fn) for all n.

1.2. Further results and proof strategy. The proof of Theorem 1.1 uses arith-

metic techniques, and we first prove a version of Theorem 1.1 when the parameters

c1 and c2 are algebraic numbers. The basic observation is that the set of preperiodic

points of fc is invariant under the action of the Galois group Gal(K/K), for any

number field K containing c. Finiteness of the intersection Preper(fc1)∩Preper(fc2),

when c1 and c2 are algebraic, is an immediate consequence of arithmetic equidistribu-

tion: large Galois orbits in the set Preper(fc) are uniformly distributed with respect

to the measure of maximal entropy µc [BR1, FRL, CL1], while µc1 = µc2 if and only

if c1 = c2. We provide a few simple examples in Section 2 to illustrate these ideas.

The uniform bound in Theorem 1.1 comes from controlling the rate of equidistri-

bution, not just over C but at all places of the number field K simultaneously. To

do so, we make use of an adelic energy pairing between the polynomials fc1 and fc2 .

This is a sum of integrals, one for each of the primes associated to a number field K

containing both c1 and c2, which we describe now. For any c in K and any place v of

K, we let

λc,v(z) = lim
n→∞

1

2n
log max{|fnc (z)|v, 1}

denote the v-adic escape-rate function of f , with z in the field of v-adic numbers Cv.

This is the usual escape-rate function on C, for v|∞, coinciding with the Green’s

function for the complement of the filled Julia set, with logarithmic pole at ∞. At

every place v, the function λc,v extends continuously and subharmonically to the

Berkovich affine line A1,an
v , and its Laplacian is the canonical v-adic measure µc,v for

fc [BR2, FRL]. For archimedean places v, we recover the Brolin-Lyubich measure

[Br, Ly]. The energy pairing is defined to be

〈fc1 , fc2〉 :=
∑
v∈MK

[Kv : Qv]

[K : Q]

∫
A1,an
v

λc1,v dµc2,v. (1.3)

The pairing is symmetric, and each term in the sum is non-negative, vanishing if and

only if µc1,v = µc2,v [PST]. The integral thus provides a notion of distance between

the two measures. In particular, we have

〈fc1 , fc2〉 ≥ 0 with equality if and only if c1 = c2.

We prove:
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Theorem 1.6. There is a constant δ > 0, such that

〈fc1 , fc2〉 ≥ δ

for all c1 6= c2 ∈ Q.

In other words, two Julia sets cannot be too similar at all places of a given number

field.

Theorem 1.7. There are constants α1, α2, C1, C2 > 0 so that

α1 h(c1, c2)− C1 ≤ 〈fc1 , fc2〉 ≤ α2 h(c1, c2) + C2,

for all c1 6= c2 in Q, where h is the logarithmic Weil height on A2(Q).

Remark 1.8. The upper bound in Theorem 1.7 is straightforward to prove, and it is

also fairly easy to obtain a weaker lower bound in terms of h(c1− c2), the Weil height

of the difference, in place of the height h(c1, c2); see Theorem 7.1. The lower bound

of Theorem 1.7 is more delicate: see Section 8.

Finally, we relate the energy pairing to the number of common preperiodic points

via a quantified version of the arithmetic equistribution theorems, building upon ideas

of Favre, Rivera-Letelier, and Fili [FRL] [Fi]:

Theorem 1.9. For all 0 < ε < 1, there exists a constant C(ε) > 0 so that

〈fc1 , fc2〉 ≤
(
ε+

C(ε)

N(c1, c2)− 1

)
(h(c1, c2) + 1)

for all c1 6= c2 in Q with

N(c1, c2) := |Preper(fc1) ∩ Preper(fc2)| > 1.

Remark 1.10. Note that N(c1, c2) ≥ 1 for every c1 and c2, because ∞ is a fixed

point for every fc. Using standard distortion estimates in complex analysis to control

the archimedean contributions to the pairing, our proof shows that we can take

C(ε) � log(1/ε)

in Theorem 1.9.

Theorems 1.6, 1.7, and 1.9 combine to give a uniform upper bound on the number

N(c1, c2) for all c1 6= c2 in Q, thus proving Theorem 1.1 for c1 and c2 and Q. Once

a uniform bound is obtained over Q, it is straightforward to show the same bound

holds over C, as we explain in §10.2, which completes the proof of Theorem 1.1.

This general strategy of proof was introduced in our earlier work [DKY], and the

reader will recognize the similarities between Theorems 1.6, 1.7, and 1.9 here and

Theorems 1.4, 1.5, and 1.6 of [DKY]. However, there are significant technical dif-

ferences between these proofs. Most notably, in the setting of [DKY], the energy
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integrals at non-archimedean places could be computed explicitly; here, we can only

obtain estimates. For the computations at the archimedean places, the local heights

(escape rates) are not smooth, and the shrinking Hölder exponents (as c→∞) leads

to the loss of uniformity in rates of convergence in the equidistribution theorems. We

make use of classical complex dynamical methods in this article, such as the Koebe

1/4 theorem and similar distortion statements; by contrast, in [DKY], we obtained

the archimedean estimates through the use of degeneration theory and comparison

to a limiting non-archimedean dynamical system associated to a function field, as

carried out in [Fa] and [DF1, DF2]. The degeneration theory could be used here as

well, at the expense of the effective bounds.

As in the setting of [DKY], our proofs are more about the associated canonical

height functions ĥc on P1(Q), for fc with c ∈ Q, than about preperiodic points; the

bound of Theorem 1.1 comes from the fact that ĥc(x) = 0 if and only if x is preperiodic

for fc [CS, Corollary 1.1.1]. Though we do not provide all the details, it is possible

to prove a stronger statement about points of small height: there exist constants B

and b > 0 so that
∣∣∣{x ∈ P1(Q) : ĥc1(x) + ĥc2(x) ≤ b}

∣∣∣ ≤ B for all c1 6= c2 in Q. A

version of this statement is proved for the Lattès family (1.2) in [DKY, Theorems 1.8

and 8.1].

1.3. Effectiveness. We illustrate the effectiveness of our method by providing ex-

plicit constants for each of the theorems stated above. The proof of Theorem 1.7

shows that we can take α1 = 1/192, C1 = 3/17, α2 = 1/2 and C2 = 5/2. The proof

of Theorem 1.9 provides C(ε) = 40 log(25/ε). The first proof of Theorem 1.6 that we

present in §7.1 is not sufficient to provide an explicit value of δ, but further control

on the archimedean energy pairing leads to δ = 10−75 in §11.1. This exceptionally

small δ gives rise to the bound B = 1082 in Theorem 1.1 that was stated in Remark

1.2.

1.4. Height pairings. The energy pairing 〈fc1 , fc2〉 that we work with is a special

case of a more general construction, the Arakelov-Zhang pairing, an arithmetic inter-

section number between adelically metrized line bundles; see [Zh], [PST], and [CL2].

In this case, each fc with c in a number field K gives rise to a family of metrics on

OP1(1), one for each place v of K, with non-negative curvature distribution equal to

the canonical measure µc,v on the Berkovich projective line P1,an
v . Each such metric

then gives rise to a height function ĥc on P1(Q), recovering the dynamical canonical

height for fc of Call and Silverman [CS].

There are other natural height pairings that one could consider for c1, c2 ∈ Q. For

example, Kawaguchi and Silverman study

[f, g]KS := sup
x∈P1(Q)

∣∣∣ĥf (x)− ĥg(x)
∣∣∣
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for any pair of maps f, g : P1 → P1 defined over Q [KS]. As a consequence of

arithmetic equidistribution, we see that

〈f, g〉 ≤ [f, g]KS. (1.4)

Indeed, along any infinite (non-repeating) sequence xn ∈ P1(Q) for which ĥf (xn)→ 0,

we have by equidistribution that ĥg(xn)→ 〈f, g〉 [PST, Theorem 1]. Such sequences

always exist (the preperiodic points of f will have height 0), so we obtain (1.4). We do

not know if a similar inequality holds in the reverse direction. However, as a corollary

of Theorem 1.7, we have

Theorem 1.11. There exist constants α,C > 0 so that

α[fc1 , fc2 ]KS − C ≤ 〈fc1 , fc2〉 ≤ [fc1 , fc2 ]KS

for all c1, c2 ∈ Q.

Proof. From [KS, Theorem 1], we have [fc1 , fc2 ]KS ≤ κ1(h(c1) + h(c2)) + κ2 for con-

stants κ1, κ2 depending only on the degrees of the maps, and the definition of the

Weil height shows that h(c1) + h(c2) ≤ 2h(c1, c2). The lower bound of the theorem

then follows immediately from the lower bound in Theorem 1.7. �

A version of Theorem 1.11 also holds for the Lattès family ft(z) = (z2−t)2/(4z(z−
1)(z − t)), with t1, t2 ∈ Q \ {0, 1}, as a consequence of [DKY, Theorem 1.5].

Question 1.12. Do we have

〈f, g〉 � [f, g]KS

for all maps f, g : P1 → P1, defined over Q, with constants depending only on the

degrees of f and g?

1.5. Outline. Section 2 illustrates some basic examples towards understanding the

content of Theorem 1.1. Local estimates on the pairing are carried out in Sections

3 – 6. In Section 7, we prove Theorem 1.6, and in Section 8 we prove Theorem

1.7. Theorem 1.9 is proved via quantitative equidistribution theory in Section 9, and

Section 10 establishes our main result, Theorem 1.1. Finally, in Section 11 we make

all bounds effective.
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2. Basic examples

Let fc(z) = z2 + c, for c ∈ C. Note that

|Preper(fc1) ∩ Preper(fc2)| ≥ 1

for every pair, because the sets always contain the point at∞. Here we provide a few

simple examples, illustrating some of the ideas that appear in our proof of Theorem

1.1. We also explain the known result (1.1).

2.1. Disjoint filled Julia sets. When two quadratic polynomials fc1 and fc2 have

disjoint filled Julia sets, they have no common preperiodic points other than ∞.

Sometimes the filled Julia sets have nontrivial intersection in C, but – when the

parameters are algebraic – the v-adic filled Julia sets are disjoint at some place v.

Then, again, there can be no common preperiodic points other than ∞. Examples

are shown in Figures 2.1 and 2.2. As we shall explain below, the filled Julia set of

fc at any non-archimedean place v (defined as the set of points with bounded orbit)

with |c|v > 1 is a subset of {z : |z| = |c|1/2v }, while it is the closed unit disk whenever

|c|v ≤ 1.

Figure 2.1. The filled Julia sets of f(z) = z2− 1 (left) and g(z) = z2 + 2

(right) are disjoint; they have no common preperiodic points except for ∞.

2.2. Galois orbits. Let f(z) = z2 and g(z) = z2 − 1. Here we show that

Preper(f) ∩ Preper(g) = {0, 1,−1,∞}.
We know that the preperiodic points of f are the roots of unity, together with 0 and

∞. The preperiodic points of any fc are roots of the polynomial equations given by

fnc (z) = fmc (z) for any n > m ≥ 0; so the set of preperiodic points is invariant under

the action of Gal(K/K), whenever c lies in K. In this case, we can take K = Q. So

we need to show that for all n ≥ 3, at least one of the primitive n-th roots of unity

will have infinite forward orbit under the action of g.

The proof is elementary and has two steps:
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Figure 2.2. The filled Julia sets of f(z) = z2−2 (left) and g(z) = z2−2.1

(right) have significant overlap in C, but there are no common preperiodic

points except for ∞, because the filled Julia sets are disjoint at the primes

2 and 5.

Figure 2.3. Filled Julia sets of f(z) = z2 and g(z) = z2 − 1, superim-

posed. At right, a zoom of the intersection of their boundaries, suggesting a

possibly infinite overlap of Julia sets.

(1) Show that the subset of unit circle

S = {e2πit : t ∈ [0, 1/30] ∪ [1/12, 5/12]}

lies in the Fatou set for g; and

(2) for every n ≥ 3, the set S contains at least one primitive n-th root of unity.

Step (2) can be checked by hand by observing that for each 12 < n < 30, there is

some k with (k, n) = 1 and k/n ∈ [1/12, 5/12]. Step (1) follows from a series of simple

estimates, examining how g acts on arcs of the unit circle.
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2.3. The Julia sets are distinct. It is well known that, for any polynomial, all but

finitely many of the periodic points of f will be contained in its Julia set, their closure

gives all of J(f), and all the preperiodic points form a subset of the filled Julia set.

Therefore

Preper(fc1) = Preper(fc2) =⇒ J(fc1) = J(fc2)

for any c1, c2 ∈ C. But it is also known that the Julia set determines c in this family

fc(z) = z2 +c [BE, Supplement to Theorem 1]; see also [Bea, Theorem 1]. This shows

that (1.1) holds.

3. archimedean estimates

In this section, we will carry out some archimedean estimates needed for the proofs

of our main theorems. We work with c ∈ C and the Euclidean norm | · |. We

let λc(z) denote the escape-rate function of fc(z) = z2 + c and let µc denote the

corresponding equilibrium measure supported on the Julia set Jc. Where possible,

we provide explicit constants in our estimates, even if they are not optimal.

3.1. Distortion. We first recall some basic distortion statements for conformal maps.

Theorem 3.1 (Koebe 1/4 Theorem). Suppose f : D→ C is univalent with f(0) = 0

and f ′(0) = 1. Then f(D) ⊃ D(0, 1/4).

Theorem 3.2. [BH, Corollary 3.3] Suppose f : UR → Ĉ is univalent and satisfies

f(z) = z +
∑
n≥1

an
zn

near ∞. Then

f(UR) ⊃ U2R,

for UR = Ĉ \D(0, R).

Applying these theorems to the Böttcher coordinate φc near ∞ for fc(z) = z2 + c

(see [Mi] for the definition of φc) and to the uniformizing map Φ for the complement

of the Mandelbrot set M, we get some simple inequalities.

Proposition 3.3. For all c with |c| > 2 we have

log |c| − log 2 ≤ λc(c) ≤ log |c|+ log 2.

Proof. Let Φ(c) = φc(c) be the uniformizing map from Ĉ \ M to Ĉ \ D so that

λc(c) = log |Φ(c)|. For the lower bound on λc(c), applying Theorem 3.2 to Φ−1 gives

|c| ≤ 2 eλc(c),

so that

λc(c) ≥ log |c| − log 2.
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For the upper bound on λc(c), apply Theorem 3.2 to Φ and sets U2s, s ≥ 1, where

2s = |c|. �

We can do similar things in the dynamical plane.

Proposition 3.4. For each c with |c| > 2 and every z with |z| > 2eλc(0) (so in

particular for all |z| > 23/2|c|1/2), we have

log |z| − log 2 ≤ λc(z) ≤ log |z|+ log 2.

Proof. Let R = eλc(0). Then apply Theorem 3.2 to φ−1
c and sets UsR for all s ≥ 1.

Then for sR = eλc(z) so that s−1 = eλc(0)−λc(z), we find that

|z| ≤ 2 eλc(z).

This gives the lower bound of the proposition.

For the upper bound, set R′ = 2eλc(0) and apply Theorem 3.2 to sets UsR′ for all

s ≥ 1. Then for |z| = sR′ so that s−1 = 2|z|−1eλc(0), we have

λc(z) ≤ log |z|+ log 2.

�

3.2. Controlling escape rates from below. We will need both upper and lower

bounds on the escape rate λc near the Julia set Jc of fc(z) = z2 + c. We begin with

an elementary observation.

Lemma 3.5. Fix any c with |c| ≥ 25. Let ±b be the two zeroes of fc. Then

µc(D(b, 1)) = µc(D(−b, 1)) = 1/2

and

λc(z) ≥ 1

4
log |c|

for all z 6∈ D(b, 1) ∪D(−b, 1).

Proof. First observe that b = i
√
c, so that |b| = |c|1/2. Suppose b + t lies on the

boundary of D(b, 1), so that |t| = 1. Then

fc(b+ t) = 2bt+ t2 = t(2b+ t)

has absolute value ≥ 2|c|1/2−1 > |c|1/2 +1 for |c| ≥ 25. In particular, fc sends D(b, 1)

with degree 1 over the union D(b, 1) ∪D(−b, 1). Similarly for D(−b, 1), proving the

first claim about the measure of each disk. As the Julia set of fc is contained in these

two disks, we know that λc is harmonic on the complement of their union. Under one

further iterate, we have

|f 2
c (b+ t)| ≥ 4|c| − 4|c|1/2 + 1− |c| = 3|c| − 4|c|1/2 + 1 ≥ 3|c|
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because |c| ≥ 25. From Proposition 3.4, we conclude that

λc(b+ t) =
λc(f

2
c (b+ t))

4
≥ 1

4
(log(3|c|)− log 2) ≥ 1

4
log |c|

and similarly for λc(−b+t) with |t| = 1. As λc is harmonic on C\(D(b, 1)∪D(−b, 1)),

this proves the lemma. �

We now extend the statement of Lemma 3.5 to two further preimages of 0 under

fc.

Lemma 3.6. For n = 1, 2, 3, and for each c ∈ C, we let Dn(c) be the union of the

2n disks of radius εn = |2c|−(n−1)/2 centered at the solutions z to fnc (z) = 0. For each

|c| ≥ 25, the 2n disks are disjoint, each has µc-measure 1/2n, and

λc(z) ≥ 1

2n+1
log |c|

for all z 6∈ Dn(c) and n = 1, 2, 3.

Proof. Lemma 3.5 provides the result for n = 1 and for any |c| ≥ 25. Note that the

two disks of radius 2ε1 = 2 around the solutions to f(z) = 0 are disjoint.

For n = 2, 3, suppose that z is a solution to fnc (z) = 0. Note that

λc(z) =
1

2n+1
λc(c) ≤

1

8
λc(c) ≤

1

8
(log |c|+ log 2) <

1

4
log |c|

by Proposition 3.3. Since |c| ≥ 25, the point z must lie in the disks of radius 1 about

±i√c by Lemma 3.5. In particular, we know that |z| > |c|1/2 − 1, so that

|fc(z + t)− fc(z)| ≥ 1

|2c|(n−1)/2

(
2|c|1/2 − 2− |2c|−(n−1)/2

)
=

1

|2c|(n−2)/2

(√
2

(
1− 1

|c|1/2
)
− 1

|2c|−n/2
)
.

As |c| > 25 and n is 2 or 3, we have

√
2

(
1− 1

|c|1/2
)
− 1

|2c|−n/2 ≥
4
√

2

5
− 1

50
> 1,

and we conclude that

|fc(z + t)− fc(z)| > 1

|2c|(n−1)/2
= εn.

By a similar argument, we also have

|fc(z + t)− fc(z)| ≤ 2εn−1.

As the disks at level n = 1 and radius 2 are disjoint, this proves the lemma for n = 2.

It only remains to show that the disks at level n = 2 of radius 2ε2 =
√

2/|c|1/2
are disjoint, and the proof will be complete also for n = 3. But this is clear for |c|
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sufficiently large. Indeed, the points z satisfying f 2
c (z) = 0 have expansions in c1/2 of

the form ±β(c) and ±β′(c) where∣∣∣∣β(c)−
(
i
√
c+

1

2
+

i

8
√
c

)∣∣∣∣ =

∣∣∣∣∣
∞∑
j=3

Cj
1
2

· 1

(i
√
c)j−1

∣∣∣∣∣ ≤ 5

4|c| , (3.1)

with binomial coefficients

Cj
1/2 =

(
1/2

j

)
,

and similarly ∣∣∣∣β′(c)− (i√c− 1

2
+

i

8
√
c

)∣∣∣∣ ≤ 5

4|c| .

In particular, the distance between the two closest such roots satisfies

|β(c)− β′(c)| ≥ 1− 5

2|c| ≥
3

4
≥
√

2/|c|1/2

for |c| ≥ 25. �

3.3. Controlling escape rates from above. We now provide an upper bound,

applying the Distortion Theorems stated above.

Lemma 3.7. Fix any c with |c| ≥ 25. For each n ≥ 1 and for all z ∈ C with

dist(z, Jc) <
1

5 · 3n|c|(n−2)/2

we have

λc(z) ≤ 1

2n
(log |c|+ log 2) <

1

2n−1
log |c|.

Proof. The two inverse branches of fc are univalent on D(0, |c|). Fix any point z0 in Jc.

From Lemma 3.5, we know that |z0| ≤ |c|1/2 +1, so that fc has two univalent branches

of the inverse defined on the disk D(z0, |c|−|c|1/2−1) and |(fnc )′(z0)| ≤ 2n(|c|1/2 +1)n.

Applying Theorem 3.1 to the inverse branches of each iterate on these disks about

points z0 ∈ Jc, we find

f−nc D(z0, |c| − |c|1/2 − 1) ⊃ D

(
f−nc (z0),

|c| − |c|1/2 − 1

4 · 2n(|c|1/2 + 1)n

)
.

From Proposition 3.4 (and the maximum principle for λc), we know that λc(z) ≤
log |c|+ log 2 on D(0, c), and therefore

λc(z) ≤ 1

2n
(log |c|+ log 2)

on each of these disks of radius (|c| − |c|1/2 − 1)/(4 · 2n(|c|1/2 + 1)n) about points in

the Julia set. Finally, we observe that

|c| − |c|1/2 − 1

4 2n(|c|1/2 + 1)n
≥ |c|(1− |c|

−1/2 − |c|−1)

4 2n|c|n/2(1 + |c|−1/2)n
≥ |c|(19/25)

4 2n|c|n/2(6/5)n
≥ 1

5 3n |c|(n−2)/2
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for all |c| ≥ 25. �

Proposition 3.8. Fix L ≥ 27. For all 0 < r < 1/4 and for all c ∈ C, we have

λc(z) ≤ r log max{|c|, L}
for every z in a neighborhood of radius

1

(max{|c|, L})3 log(1/r)

around the filled Julia set Kc.

Proof. First assume that |c| > L. Note that Jc = Kc in this case. Lemma 3.7 states

that

λc(z) ≤ 1

2n−1
log |c|

whenever dist(z, Jc) < (5·3n|c|(n−2)/2)−1. For L ≥ 27 = 33, we have 5·3n = 15·3n−1 <

L1+(n−1)/3 = L(n+2)/3. Therefore,

5 · 3n|c|(n−2)/2 ≤ L(n+2)/3|c|(n−2)/2 < |c|5n/6.
Taking r = 1/2n−1, so that n = log(1/r)/(log 2) + 1, we can take any

κ(r) > 5n/6 =
5

6

1

log 2
log(1/r) +

5

6
≈ 1.2 log(1/r) + 5/6,

and then any z satisfying dist(z, Jc) ≤ |c|−κ(r) will also satisfy λc(z) ≤ r log |c|. In

particular, for any r < 1/4, we can take κ(r) = 3 log(1/r). This proves the proposition

for |c| > L.

Now assume |c| ≤ L. For |c| > 2, Proposition 3.4 implies that if |z| > 23/2|c|1/2,

then

λc(z) ≤ log |z|+ log 2.

Consider the circle of radius L. For all |c| ≤ L, we have 23/2|c|3/2 ≤ 23/2L1/2 < L, so

that

λc(z) ≤ logL+ log 2, (3.2)

for all 2 < |c| ≤ L and for all |z| = L. But then, fixing z, and using the fact that λc(z)

is subharmonic in c, we obtain the inequality (3.2) for all |c| ≤ L and all |z| = L.

Furthermore, for all |c| > 2 and |z| ≥ 23/2|c|1/2, we have the lower bound that

λc(z) ≥ log |z| − log 2 ≥ 1

2
log(2|c|) > 0

so that the Julia set is contained in a disk of radius 23/2|c|1/2 ≤ 23/2L1/2. On the

other hand, for |c| ≤ 2, it is easy to compute that the filled Julia set lies in a closed

disk of radius 2, so we have

Kc ⊂ D(0, 23/2L1/2)

for all |c| ≤ L.
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We now fix any z 6∈ Kc with |z| < L, and let z0 ∈ Kc be a closest point to z. Let

n = n(z) be the smallest n ≥ 0 for which |fn(z)| ≥ L. Then

λc(z) =
1

2n−1
λc(f

n−1
c (z)) ≤ 1

2n−1
(logL+ log 2).

On the other hand, as |f ′c(z)| = |2z| ≤ 2L for all |z| ≤ L, we have

12 < L− 23/2L1/2 ≤ |fnc (z)− fnc (z0)| ≤ (2L)n|z − z0|,
so that

|z − z0| ≥
12

(2L)n
.

In other words, for all z within distance 12/(2L)n of Kc, we have

λc(z) ≤ 1

2n−1
(logL+ log 2) ≤ 1

2n−2
logL.

Note that 28/12 < 27 ≤ L and 24 < L, and so

12/(2L)n ≥ 1/(2n−8Ln+1) ≥ 1/L(n−8)/4+n+1 = 1/L
5
4
n−1

Writing r = 1/2n−2, we have n = log(1/r)/ log 2 + 2, so that

5

4
n− 1 =

5

4 log 2
log(1/r) +

3

2
≈ 1.8 log(1/r) +

3

2
≤ 3 log(1/r)

for all r < 1/4. Consequently, for all r < 1/4, for all |c| ≤ L, and for all z within

distance 1/L3 log(1/r) of the filled Julia set Kc, we have that

λc(z) ≤ r logL.

�

4. Bounds on the archimedean pairing

In this section, we provide estimates on the archimedean contributions to the pair-

ing 〈fc1 , fc2〉, to obtain a local version of Theorem 1.7. As in the previous section, we

work with c ∈ C and Euclidean absolute value |·|. We let λc(z) denote the escape-rate

function of fc(z) = z2 + c, defined by

λc(z) = lim
n→∞

1

2n
log+ |fnc (z)|,

where log+ = max{log, 0}. We let µc = 1
2π

∆λc denote the equilibrium measure

supported on the Julia set Jc. Where possible, we provide explicit constants, even if

they are not optimal, for our estimates of the Euclidean energy

E∞(c1, c2) :=

∫
λc1 dµc2 =

∫
λc2 dµc1 .
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Theorem 4.1. There exist constants C,C ′ > 0 so that

1

16
log+ |c1 − c2| − C ≤ E∞(c1, c2) ≤ 1

2
log+ max{|c1|, |c2|}+ C ′

for all c1, c2 ∈ C. Furthermore, there exists L > 0 so that if r := max{|c1|, |c2|} ≥ L

and
3

r1/2
≤ |c1 − c2|,

then
1

64
log max{|c1|, |c2|} ≤ E∞(c1, c2).

Remark 4.2. The proof shows that we can take L = 1000, C = 1
16

log 2L < 1/2, and

C ′ = log 8 < 5/2 in Theorem 4.1.

4.1. Proof of Theorem 4.1. Throughout this proof, we will assume for notational

convenience that

r = |c1| ≥ |c2|.
We proceed by cases, determined by just how close the two parameters are. We then

apply Proposition 3.6 to obtain the needed lower bounds on the escape rate of λc1 on

the Julia set Jc2 .

Case 0. Suppose |c2| ≤ 25. For |c2| ≤ 2, it is straightforward to compute that the

filled Julia set satisfies Kc2 ⊂ D(0, 2). For 2 < |c2| ≤ 25, Proposition 3.4 provides a

lower bound of

λc2(z) ≥ log |z| − log 2 ≥ 1

2
log(2|c2|) > 0

for |z| ≥ 23/2|c2|1/2. Therefore, the Julia set of fc2 is contained in a disk of radius

23/2|c2|1/2 ≤ 23/25. Thus, for all |c2| ≤ 25 and |c1| > (23/2 · 5 + 1)2 ≈ 229.3, Lemma

3.5 implies that λc1(z) ≥ 1
4

log |c1| for all z ∈ Jc2 . This gives∫
λc1 dµc2 ≥

1

4
log |c1|

for |c2| ≤ 25 and |c1| ≥ 230.

In Cases 1-3, we may assume that r = |c1| ≥ |c2| ≥ 25.

Case 1. Suppose that for any choice of square roots, we have |√c1−
√
c2| ≥ 2. By

Lemma 3.5 we have λc1(z) ≥ 1
4

log |c1| for all z ∈ Jc2 , so∫
λc1(z) dµc2 ≥

1

4
log |c1|

for |c1| ≥ |c2| ≥ 25.
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Case 2. Suppose that there is a choice of square roots for which 2
r1/2
≤ |√c1 −√

c2| < 2. With these choices of square roots, the solutions of f 2
c (z) = 0 are

β(c) = i
√
c+

1

2
+

i

8
√
c

+O

(
1

|c|

)
and

β′(c) = i
√
c− 1

2
+

i

8
√
c

+O

(
1

|c|

)
,

along with −β(c) and −β′(c). By Proposition 3.6, if the disk D(β(c2), 1/|2c2|1/2) does

not intersect any disk of radius 1/|2c1|1/2 about a solution of f 2
1 (z) = 0, then for all

z ∈ D(β(c2), 1/|2c2|1/2) we have

λc1(z) ≥ 1

8
log |c1|,

and since the same is true for the disk centered at −β(c2) by ± invariance, the

inequality is satisfied for a set of µc2-measure 1/2. Therefore,∫
λc1 dµc2 ≥

1

16
log |c1|.

On the other hand, as |√c1 −
√
c2| < 2, if D(β(c2), 1/|2c2|1/2) intersects any disk of

radius 1/|2c1|1/2 about a solution of f 2
c1

(z) = 0, that disk must be centered at either

β(c1) or β′(c1), since |β(c2) +β(c1)| ≥ |c1|1/2 and similarly for β(c2) +β′(c1). We have

β(c1)− β(c2) = i(
√
c1 −

√
c2) +

i

8

(
1√
c1

− 1√
c2

)
+O

(
1

|c2|

)
,

so that using the assumed bounds, we have

|β(c1)− β(c2)| ≥ 2

|c1|1/2
− 1

8

(
4

|c1c2|1/2
)

+O

(
1

|c2|

)
=

2

|c1|1/2
+O

(
1

|c2|

)
,

using for the middle term the crude bound |c1−c2| ≤ 4|c1|1/2 implied by |√c1−
√
c2| <

2. Then, exactly as in (3.1) in the proof of Lemma 3.6, we can take

|β(c1)− β(c2)| ≥ 2

|c1|1/2
− 5

2

1

|c2|
because |c1| ≥ |c2| ≥ 25. Since |c2|1/2 > |c1|1/2−2, taking |c1| ≥ 230 is enough to guar-

antee this distance will be larger than 2(1/|2c2|1/2), and the disks D(β(c1), 1/|2c1|1/2)

andD(β(c2), 1/|2c2|1/2) will be disjoint. Similarly we deduce that the disksD(β′(c1), 1/|2c1|1/2)

and D(β′(c2), 1/|2c2|1/2) are disjoint.

But observe also that if

|β(c2)− β′(c1)| < 2

|2c2|1/2
=

√
2

|c2|1/2
,
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then β′(c2) must be far from both β′(c1) and β(c1), because

|β′(c2)− β(c1)| = |β′(c2)− β(c2) + β(c2)− β′(c1) + β′(c1)− β(c1)|

≥ |β′(c2)− β(c2) + β′(c1)− β(c1)| −
√

2

|c2|1/2

= 2−
√

2

|c2|1/2
− 4 · 5

4

1

|c2|
We therefore have, for r = |c1| ≥ 230 and square roots satisfying 2

r1/2
≤ |√c1−

√
c2| <

2, at least one of the four disks of radius 1/|2c2|1/2 around a solution to f 2
c2

(0) is disjoint

from the four disks of radius 1/|2c1|1/2 about the four solutions of f 2
c1

(z) = 0. By the

± symmetry, two of these disks must be disjoint. As these two disks carry 1/2 of the

measure µc2 , we have by Proposition 3.6 that∫
λc1 dµc2 ≥

1

16
log |c1|.

Case 3. Suppose there is a choice of square roots for which

3

2r
≤ |√c1 −

√
c2| <

2

r1/2
.

We will argue precisely as in Case 2, but with the third preimages of 0 rather than

second. Two solutions of f 3
c (z) = 0 have the form

s(c) := i
√
c+

1

2
− i

8
√
c

+
1

8c
+O

(
1

|c|3/2
)

and

s′(c) := i
√
c+

1

2
+

3i

8
√
c
− 1

8c
+O

(
1

|c|3/2
)
.

From the Taylor expansion, and the fact that |c| > 100, the above big-O’s have the

following estimate, to be proved below:∣∣∣∣s(c)− (i√c+
1

2
− i

8
√
c

+
1

8c

)∣∣∣∣ ≤ 5
1

|c| 32
(4.1)

and similarly for s′(c). Notice that under the action of fc, we have s(c) 7→ β(c) and

s′(c) 7→ β′(c), and that both s(c) and s′(c) are distance at least 1/2 from all other

solutions of f 3
c (z) (except each other).

If the disk of radius 1/|2c2| about s(c2) intersects any disk of radius 1/|2c1| about a

solution of f 3
c1

(z) = 0, then that disk must be centered at either s(c1) or s′(c1), because

of the form of the power series expansions of the various third preimages of 0. If this

disk D(s(c2), 1/|2c2|) is disjoint from both D(s(c1), 1/|2c1|) and D(s′(c1), 1/|2c1|),
then from the ± symmetry and Proposition 3.6, we have∫

λc1 dµc2 ≥
1

4 · 16
log |c1| =

1

64
log |c1|.
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Now, we have by our assumed bounds that |√c1 −
√
c2| < 2|c1|−1/2, so that

|c1 − c2| = |(
√
c1 −

√
c2)(
√
c1 +

√
c2)| < 4|c1|1/2

|c1|1/2
= 4,

and therefore,

|s(c1)− s(c2)| ≥ 3

2|c1|
− 2

8|c2|3/2
− 10

|c2|
3
2

>
1

|c2|
for |c1| ≥ 1000. So the disks D(s(c1), 1/|2c1|) and D(s(c2), 1/|2c2|) are disjoint. But

if

|s′(c1)− s(c2)| < 1

|c2|
,

then

|s(c1)− s′(c2)| = |s(c1)− s′(c1) + s′(c1)− s(c2) + s(c2)− s′(c2)|

≥ |s(c1)− s′(c1) + s(c2)− s′(c2)| − 1

|c2|

≥
∣∣∣∣−i2

(
1√
c1

+
1√
c2

)
+ 2O

(
1

|c2|3/2
)∣∣∣∣− 1

|c2|

=

∣∣∣∣−i2
(√

c1 +
√
c2√

c1c2

)
+ 2O

(
1

|c2|3/2
)∣∣∣∣− 1

|c2|

≥
∣∣∣∣−i2

(√
c1 +

√
c2√

c1c2

)∣∣∣∣− 10

|c2|
3
2

− 1

|c2|

≥ 1

2|c1|1/2
>

1

|c2|
for |c1| ≥ 1000. We conclude in this case that the disk D(s′(c2), 1/|2c2|) is disjoint

from the eight disks of radius 1/|2c1| about solutions of f 3
c1

(z) = 0, and hence (again

using symmetry and Proposition 3.6) we have∫
λc1 dµc2 ≥

1

64
log |c1|.

Finally, since

|√c1 −
√
c2| <

3

2|c1|
=⇒ |c1 − c2| <

3

2|c1|
(2|c1|1/2) ≤ 3

|c1|1/2
,

these three cases cover all possiblities for the stronger lower bound in Theorem 4.1.

Proof of estimate (4.1). From the estimate (3.1), we have

β = i
√
c− 1

2
+

i

8
√
c

+ a
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with |a| ≤ 5/4|c| whenever |c| ≥ 25. Furthermore, let us assume that

s =
√
−c+ β = i

√
c

(
1 +

1

i
√
c

+
1

2c
+

1

8i
√
c

3 −
a

c

)1/2

.

For convenience, we set

b =

(
1 +

1

i
√
c

+
1

2c
+

1

8i
√
c

3 −
a

c

)1/2

and e =
1

i
√
c

+
1

2c
+

1

8i
√
c

3 −
a

c

and then one has

b = (1 + e)1/2 = 1 +
1

2
e− 1

8
e2 +

1

16
e3 +

∑
n≥4

Cn
1/2e

n (4.2)

where Cn
1/2 are the binomial coefficients. In the following, we assume that |c| ≥ 100,

so that e can be estimated as |e| ≤ 11
10

1√
|c|

. Consequently as |Cn
1/2| < 1, we have∣∣∣∣∣∑

n≥4

Cn
1/2e

n

∣∣∣∣∣ ≤ 1.7
1

|c|2 and
1

2

∣∣∣∣∣e− (
1

i
√
c

+
1

2c
+

1

8i
√
c

3 )

∣∣∣∣∣ =
∣∣∣ a
2c

∣∣∣ ≤ 5

8|c|2 ,

and moreover

1

8

∣∣∣∣∣e2 − (−1

c
+

1

i
√
c

3 )

∣∣∣∣∣ ≤ 1

4
|c|2 and

1

16

∣∣∣∣∣e3 − (− 1

i
√
c

3 )

∣∣∣∣∣ ≤ 1

4|c|2 .

Finally, we get an estimate of b using the expansion (4.2) and therefore the estimate

(4.1) of s since s = i
√
c · b.

�

We are now ready to complete the proof of the theorem. Choose any L ≥ 1000. If

max{|c1|, |c2|} ≤ L or |c1 − c2| ≤ 2, then |c1 − c2| ≤ 2L and the lower bound holds

trivially with the constant 1
16

log 2L.

Otherwise, if |c1 − c2| ≥ max{|c1|, |c2|}, the hypotheses of either Case 0 or 1 hold,

and we have
1

8
log+ |c1 − c2| ≤

1

4
log |c1| ≤

∫
λc1(z) dµc2 ,

as needed. On the other hand, if max{|c1|, |c2|} > L and 2 < |c1−c2| < max{|c1|, |c2|},
then the hypotheses of either Case 0, 1, or 2 hold, and we have

1

16
log+ |c1 − c2| ≤

1

16
log+ max{|c1|, |c2|} ≤

∫
λc1 dµc2 .

Thus in every case we have the first lower bound

1

16
log+ |c1 − c2| − C ≤

∫
λc1 dµc2

for C ≥ 1
16

log 2L.



20 LAURA DE MARCO, HOLLY KRIEGER, AND HEXI YE

To prove the upper bounds, suppose first that |c1| = max{|c1|, |c2|} > 2. If |c2| ≥ 2,

then by Proposition 3.4, the Julia set of fc2 is contained in the disk D(0, 23/2|c2|1/2);

this also holds for |c2| ≤ 2 as in that case, Jc2 ⊂ D(0, 2). Also by Proposition 3.4, we

have for all z ∈ D(0, 23/2|c1|1/2) (which contains D(0, 23/2|c2|1/2)) that

λc1(z) ≤ 3

2
log 2 +

1

2
log |c1|+ log 2. (4.3)

On the other hand, for |c1| = max{|c1|, |c2|} ≤ 2, we use the fact that λc1(z) is

subharmonic in both z and c1, so that the inequality (4.3) holds on the circle {|z| = 4},
replacing |c1| with 2, for all |c1| ≤ 2.

Applying this inequality to z ∈ Jc2 we see that∫
λc1 dµc2 ≤

1

2
log+ max{|c1|, |c2|}+ log 8

for all c1, c2 ∈ C. This completes the proof of Theorem 4.1.

5. Nonarchimedean bounds for prime p 6= 2

Let c1 6= c2 be two elements of Q. Fix a number field containing c1 and c2, and fix

a non-archimedean place v which does not divide p = 2. In this section, we provide

estimates on the local energy

Ev :=

∫
λc1,v dµ2,v =

∫
λc2,v dµ1,v.

Because the place v is fixed throughout this section, we will drop the dependence on

v in the absolute value | · |v, denote the local Julia set of fc by Jc, its escape rate by

λc, and the equilibrium measure by µc.

Theorem 5.1. Fix a number field K and place v of K that does not divide p = 2.

For all c1, c2 ∈ K, we have

1

4
log+ |c1 − c2| ≤ Ev ≤

1

2
log+ max{|c1|, |c2|}.

Furthermore, if r := |c1| = |c2| > 1 and

|c1 − c2| >
1

r1/2
,

then

Ev ≥
1

16
log r.

We also prove an estimate on λc from above, at points near the v-adic Julia set of

fc, that will be needed for the proof of Theorem 1.9.
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5.1. Structure of the Julia set. We work with the dynamics of fc on the Berkovich

affine line A1,an
v , associated to the complete and algebraically closed field Cv, and we

denote by ζx,r the Type II point corresponding to the disk of radius r ∈ Q>0 about

x.

For |c| ≤ 1, the map fc has good reduction, and Jc = ζ0,1 is the Gauss point. For

|c| > 1, the Julia set of fc is a Cantor set of Type I points, lying in the union of

the two open disks D(±b, |c|1/2) with fc(±b) = 0. In particular, all points z ∈ Jc,v
will satisfy |z| = |c|1/2. For any point z with absolute value |z| > |c|1/2, we have

|fn(z)| = |z|2n for all n ≥ 1, so that

λc(z) = log |z|. (5.1)

It is also the case that

λc(z) ≤ 1

2
log |c| (5.2)

for all |z| ≤ |c|1/2.

Taking one further preimage of 0, we may choose β and β′ so that

fc(β) = b, fc(β
′) = −b, |β − b| = |β′ − b| = |β − β′| = 1, (5.3)

and the Julia set will lie in the union of the four disks D(±β, 1) and D(±β′, 1). See

Figure 6.1.

0
b

<latexit sha1_base64="xeCBaIPiSfuz3+mS/IjgUhjg5JA=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8UgWIXdWGgjBm0sEzAXSJYwOzmbjJmdXWZmhbDkCWwsFLHVh7G3Ed/GyaXQ6A8DH/9/DnPOCRLOlHbdLyu3tLyyupZftzc2t7Z3Crt7DRWnkmKdxjyWrYAo5ExgXTPNsZVIJFHAsRkMryZ58w6lYrG40aME/Yj0BQsZJdpYtaBbKLoldyrnL3hzKF682+fJ26dd7RY+Or2YphEKTTlRqu25ifYzIjWjHMd2J1WYEDokfWwbFCRC5WfTQcfOkXF6ThhL84R2pu7PjoxESo2iwFRGRA/UYjYx/8vaqQ7P/IyJJNUo6OyjMOWOjp3J1k6PSaSajwwQKpmZ1aEDIgnV5ja2OYK3uPJfaJRL3kmpXHOLlUuYKQ8HcAjH4MEpVOAaqlAHCgj38AhP1q31YD1bL7PSnDXv2Ydfsl6/ASXFkCc=</latexit>
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��
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�
<latexit sha1_base64="L9/8b0J1YSWfo4HNPkfiO7NBOq8=">AAAB7HicbVC7SgNBFL3rM8ZHohYWNotBsAq7sdBCJGBjGcFNAskSZiezyZDZ2WXmrhCWfIONhSK2/oB/YucH2OYbnDwKTTxw4XDOvdx7T5AIrtFxvqyV1bX1jc3cVn57Z3evUNw/qOs4VZR5NBaxagZEM8El85CjYM1EMRIFgjWCwc3EbzwwpXks73GYMD8iPclDTgkayWsHDEmnWHLKzhT2MnHnpFQ9Go8LVx/ftU7xs92NaRoxiVQQrVuuk6CfEYWcCjbKt1PNEkIHpMdahkoSMe1n02NH9qlRunYYK1MS7an6eyIjkdbDKDCdEcG+XvQm4n9eK8Xw0s+4TFJkks4WhamwMbYnn9tdrhhFMTSEUMXNrTbtE0UomnzyJgR38eVlUq+U3fNy5c6kcQ0z5OAYTuAMXLiAKtxCDTygwOERnuHFktaT9Wq9zVpXrPnMIfyB9f4DQFiStg==</latexit>

�0
<latexit sha1_base64="bjuiCgLS8n4hcI6tnR00BMAtxbs=">AAAB7XicbVC7SgNBFJ2NrxgfiVpY2AwG0SrsxkILkYCNZQTzgGQJs5PZZMzszDJzVwhL/sHGQhFbP8A/sfMDbPMNThILTTxw4XDOvdx7TxALbsB1P53M0vLK6lp2PbexubWdL+zs1o1KNGU1qoTSzYAYJrhkNeAgWDPWjESBYI1gcDXxG/dMG67kLQxj5kekJ3nIKQEr1dsBA3LcKRTdkjsFXiTeDylW9sfj/MX7V7VT+Gh3FU0iJoEKYkzLc2PwU6KBU8FGuXZiWEzogPRYy1JJImb8dHrtCB9ZpYtDpW1JwFP190RKImOGUWA7IwJ9M+9NxP+8VgLhuZ9yGSfAJJ0tChOBQeHJ67jLNaMghpYQqrm9FdM+0YSCDShnQ/DmX14k9XLJOy2Vb2wal2iGLDpAh+gEeegMVdA1qqIaougOPaAn9Owo59F5cV5nrRnnZ2YP/YHz9g2iWJLn</latexit>

��0
<latexit sha1_base64="8a0ycCq14z+Mhs2wiZ0NL34P/Mo=">AAAB7nicbVC7SgNBFJ2NrxgfiVpY2CwG0cawGwstRAI2lhHMA5IlzE7uJkNmZ5eZu0JY8hE2ForY2vsndn6Abb7ByaPQ6IELh3Pu5d57/FhwjY7zaWWWlldW17LruY3Nre18YWe3rqNEMaixSESq6VMNgkuoIUcBzVgBDX0BDX9wPfEb96A0j+QdDmPwQtqTPOCMopEap20fkB53CkWn5Exh/yXunBQr++Nx/vL9q9opfLS7EUtCkMgE1brlOjF6KVXImYBRrp1oiCkb0B60DJU0BO2l03NH9pFRunYQKVMS7an6cyKlodbD0DedIcW+XvQm4n9eK8Hgwku5jBMEyWaLgkTYGNmT3+0uV8BQDA2hTHFzq836VFGGJqGcCcFdfPkvqZdL7lmpfGvSuCIzZMkBOSQnxCXnpEJuSJXUCCMD8kCeyLMVW4/Wi/U6a81Y85k98gvW2zcMl5Me</latexit>

|c|
<latexit sha1_base64="jPRQPRO/7VXf1ECIi4OLjfespyU=">AAAB6nicbVBNSwMxEJ2tX7V+VT0KEiyCp7JbD3qSghePFe0HtEvJptk2NMkuSVYo2/4ELx6U6tVf5M1/Y7btQVsfDDzem2FmXhBzpo3rfju5tfWNza38dmFnd2//oHh41NBRogitk4hHqhVgTTmTtG6Y4bQVK4pFwGkzGN5mfvOJKs0i+WhGMfUF7ksWMoKNlR7GZNwtltyyOwNaJd6ClKqn0wzvtW7xq9OLSCKoNIRjrdueGxs/xcowwumk0Ek0jTEZ4j5tWyqxoNpPZ6dO0LlVeiiMlC1p0Ez9PZFiofVIBLZTYDPQy14m/ue1ExNe+ymTcWKoJPNFYcKRiVD2N+oxRYnhI0swUczeisgAK0yMTadgQ/CWX14ljUrZuyxX7m0aNzBHHk7gDC7Agyuowh3UoA4E+vAMr/DmcOfFmTof89acs5g5hj9wPn8A2XGR5A==</latexit>

|c|1/2
<latexit sha1_base64="ysi/Cl4biWCq6f9bbl9nP0IySLE=">AAAB8HicbVDLSgNBEOyNrxhfUY+CDAbBU9yNBz1JwIvHCOYhyRpmJ7PJkJnZZWZWCJt8hRcVRbz6Od78GyePgyYWNBRV3XR3BTFn2rjut5NZWl5ZXcuu5zY2t7Z38rt7NR0litAqiXikGgHWlDNJq4YZThuxolgEnNaD/tXYrz9QpVkkb80gpr7AXclCRrCx0t2QDO9T77Q0aucLbtGdAC0Sb0YK5cPnMV4q7fxXqxORRFBpCMdaNz03Nn6KlWGE01GulWgaY9LHXdq0VGJBtZ9ODh6hY6t0UBgpW9Kgifp7IsVC64EIbKfApqfnvbH4n9dMTHjhp0zGiaGSTBeFCUcmQuPvUYcpSgwfWIKJYvZWRHpYYWJsRjkbgjf/8iKplYreWbF0Y9O4hCmycABHcAIenEMZrqECVSAg4BFe4c1RzpPz7nxMWzPObGYf/sD5/AGn4pQI</latexit>

|c|�1/2
<latexit sha1_base64="WWNnWNL2FCnGWTsQ6NAkp8Qbok8=">AAAB8XicbVBNS8NAEJ3Ur1o/WvUoyGIRvFiTetCTFLx4rGA/sI1ls920SzebsLsRStp/4aWCIl79N978N27aHrT1wcDjvRlm5nkRZ0rb9reVWVldW9/Ibua2tnd284W9/boKY0lojYQ8lE0PK8qZoDXNNKfNSFIceJw2vMFN6jeeqFQsFPd6GFE3wD3BfEawNtLDiIwekzPnvDzuFIp2yZ4CLRNnToqVo0mKl2qn8NXuhiQOqNCEY6Vajh1pN8FSM8LpONeOFY0wGeAebRkqcECVm0wvHqMTo3SRH0pTQqOp+nsiwYFSw8AznQHWfbXopeJ/XivW/pWbMBHFmgoyW+THHOkQpe+jLpOUaD40BBPJzK2I9LHERJuQciYEZ/HlZVIvl5yLUvnOpHENM2ThEI7hFBy4hArcQhVqQEDAM7zCm6WsifVufcxaM9Z85gD+wPr8ARQBlD8=</latexit>

1
<latexit sha1_base64="Aulpfhy149ryRHZUNrxGT/XeNZE=">AAAB6HicbZC7SgNBFIbPeo3xFrW0GQyCVdhNCq00YGOZgLlAsoTZydlkzOzsMjMrhJAnsLFQxNZX8Q3sfBsnmxSa+MPAx/+fw5xzgkRwbVz321lb39jc2s7t5Hf39g8OC0fHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbmd56xGV5rG8N+ME/YgOJA85o8Zada9XKLolNxNZBW8BxZvPSqZar/DV7ccsjVAaJqjWHc9NjD+hynAmcJrvphoTykZ0gB2Lkkao/Uk26JScW6dPwljZJw3J3N8dExppPY4CWxlRM9TL2cz8L+ukJrzyJ1wmqUHJ5h+FqSAmJrOtSZ8rZEaMLVCmuJ2VsCFVlBl7m7w9gre88io0yyWvUirX3WL1GubKwSmcwQV4cAlVuIMaNIABwhO8wKvz4Dw7b877vHTNWfScwB85Hz9yMI7l</latexit>

|c|�1
<latexit sha1_base64="AJ9vmXqIyFOQkpms06YF0Orn/cA=">AAAB73icbVBNS8NAEJ3Ur1q/qh4FWSyCF0tSD3qSghePFUxbaGPZbDft0s0m7m6EkvZPeBE/EK/+HW/+GzdtD9r6YODx3gwz8/yYM6Vt+9vKLS2vrK7l1wsbm1vbO8XdvbqKEkmoSyIeyaaPFeVMUFczzWkzlhSHPqcNf3CV+Y0HKhWLxK0extQLcU+wgBGsjdQckdFdeuqMO8WSXbYnQIvEmZFS9fA5w0utU/xqdyOShFRowrFSLceOtZdiqRnhdFxoJ4rGmAxwj7YMFTikyksn947RsVG6KIikKaHRRP09keJQqWHom84Q676a9zLxP6+V6ODCS5mIE00FmS4KEo50hLLnUZdJSjQfGoKJZOZWRPpYYqJNRAUTgjP/8iKpV8rOWblyY9K4hCnycABHcAIOnEMVrqEGLhDg8Aiv8GbdW0/Wu/Uxbc1Zs5l9+APr8wcxVJPK</latexit>

Figure 5.1. The tree structure of the non-archimedean Julia set, with

|c|v > 1 and v 6 | 2.

Note: identifying the branches from the Type II point ζb,1 with the elements of

P1(Fp), and denoting the class of z ∈ Cv by z̃, we have

β̃ = b̃+ α and β̃′ = b̃− α
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for some α ∈ Fp. In other words, the disks containing the Julia set are centered

around the preimages of 0. This is because the transformation from ζb,1 to its image

fc(ζb,1) = ζ0,|c|1/2 , acting on these branches, is linear in local coordinates. Similarly at

the Type II points ζβ,|c|−1/2 and ζβ′,|c|−1/2 , the branches containing the Julia set will

be symmetric about β and β′. We will exploit this symmetry in our proof.

5.2. Proof of Theorem 5.1. If |c1| or |c2| is ≤ 1, then because of good reduction,

we have

Ev =
1

2
max{log+ |c1|, log+ |c2|} =

1

2
log+ |c1 − c2|.

If |c1| and |c2| are both > 1, then we can split into further cases. For |c1| > |c2|,
we have

λc2(z1) =
1

2
log |c1|

from 6.1 for all points z1 in Julia set Jc1 . Similarly for |c1| < |c2|, and therefore,

Ev =
1

2
max{log+ |c1|, log+ |c2|} =

1

2
log+ |c1 − c1|.

For the remainder of the proof we assume that

r := |c1| = |c2| > 1.

From (6.2), we will have

λc2(z1) ≤ 1

2
log |c2|

at all points z1 of the Julia set Jc1,v. Therefore,

Ev ≤
1

2
log |c2| =

1

2
log r,

proving the upper bound in the theorem.

For the lower bound on Ev, we now break the proof into cases, depending on how

close the two parameters are to one another.

Case 1. Assume that

1 < r1/2 < s := |c1 − c2| ≤ r = |c1| = |c2|.
Let z1 be any point in the Julia set Jc1 . Then its image z2

1 + c1 must lie in the disks

D(±b1, r
1/2) and have absolute value r1/2, so that fc2(z1) = z2

1+c2 = (z2
1+c1)+(c2−c1)

satisfies

|fc2(z1)| = s > r1/2.

It follows that |fnc2(z1)| = s2n−1
for all n. This gives

λc2(z1) =
1

2
log s =

1

2
log |c1 − c2|
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for all z1 in the Julia set of fc1 . Therefore,

Ev =
1

2
log |c1 − c2| >

1

4
log r.

Case 2. Now suppose |c1 − c2| = r1/2, and recall that b2
i = −ci. Note that

(b1 + b2)(b1 − b2) = b2
1 − b2

2 = c2 − c1 (5.4)

and at least one of the factors on the left hand side has norm r1/2 so the other must

have norm 1. Let’s assume the second has norm 1, so that

|b1 − b2| = 1.

If the two branches from ζb1,1 = ζb2,1 containing Jc1 are disjoint from those contain-

ing Jc2 , then for any element z2 ∈ Jc2 we have

|fc1(z2)| = r1/2 and |fnc1(z2)| = (r1/2)2n−1

for all n ≥ 2

so that

λc1(z2) =
1

4
log r =

1

2
log |c1 − c2|

for all z2 ∈ Jc2 , and

Ev =
1

4
log r =

1

2
log |c1 − c2|.

Note that from (6.3), we have

(β1 − β2)(β1 + β2) = β2
1 − β2

2 = b1 − c1 − (b2 − c2) = (b1 − b2) + (c2 − c1), (5.5)

and the right-hand-side has absolute value |c1 − c2| = r1/2, so that

|β1 − β2| = 1.

However, it can happen that one of the branches from ζb1,1 containing Jc1 does coincide

with a branch containing Jc2 , so that, for example, D(β1, 1) = D(β′2, 1). Indeed,

(β1 − β′2)(β1 + β′2) = (b1 + b2) + (c2 − c1)

and the terms on the right-hand-side might cancel to give absolute value smaller than

r1/2. But by the symmetry of the disks around the points bi, if D(β1, 1) = D(β′2, 1),

then the other disks D(β′1, 1) and D(β2, 1) must be disjoint. Indeed, if b̃1 +α1 = β̃1 =

β̃2
′
= b̃2 − α2 and b̃1 − α1 = β̃1

′
= β̃2 = b̃2 + α2 in Fp, then

2α1 = −2α2 =⇒ α1 = −α2 because p 6= 2,

so we must have b̃1 = b̃2, which contradicts the fact that |b1 − b2| = 1.

It follows that for all z2 ∈ D(β′2, 1), we can compute

λc1(z2) =
1

4
log r.
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By the symmetry of the Julia sets, this will also hold for points in the disk D(−β′2, 1),

and together they make up half (w.r.t. the measure µc2) of Jc2 . Therefore,

Ev ≥
1

8
log r =

1

4
log |c1 − c2|.

Case 3. Assume that

1 < s := |c1 − c2| < r1/2.

Then from (5.4), we have

1

r1/2
< |b1 − b2| =

s

r1/2
< 1.

Also, from (5.5), we see that

1

r1/2
< |β1 − β2| =

s

r1/2
< 1

and similarly for β′1 and β′2. Consequently, the four disksD(±β1, s/r
1/2) andD(±β′1, s/r1/2)

are disjoint from the corresponding disks around ±β2 and ±β′2. Furthermore, for any

z2 ∈ Jc2 , we have

|fc1(z2)| = s, |f 2
c1

(z2)| = sr1/2, and |fnc1(z2)| = (sr1/2)2n−2

for all n > 2,

so that

λc1(z2) =
1

4
log(sr1/2)

for all z2 ∈ Jc2 . Therefore,

Ev =
1

4
log(sr1/2) =

1

8
log r +

1

4
log |c1 − c2|.

Case 4. Now suppose |c1 − c2| = 1. The proof here is similar to Case 2, but we

work with the disks around β and β′. From (5.4) and (5.5) we have

|b1 − b2| = |β1 − β2| = |β′1 − β′2| =
1

r1/2
.

Because of the symmetry of the Julia set around β and β′, if for example the disks

D(β1, 1/r
1/2) andD(β′2, 1/r

1/2) coincide, then the disksD(β′1, 1/r
1/2) andD(β2, 1/r

1/2)

must be disjoint, so that

|fc1(z)| = 1, |f 2
c1

(z)| = r1/2, and |fnc1(z)| = (r1/2)2n−2

for all n > 2,

for all z ∈ D(β′2, 1/r
1/2). Therefore,

λc1(z) =
1

8
log r

for half of Jc2 , and consequently,

Ev ≥
1

16
log r

in all cases with |c1 − c2| = 1.
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Case 5. The final case to treat is with

1/r1/2 < s := |c1 − c2| < 1.

We have
1

r
< |b1 − b2| = |β1 − β2| = |β′1 − β′2| =

s

r1/2
<

1

r1/2

from (5.4) and (5.5). All points z2 ∈ Jc2 will satisfy

|f 3
c1

(z2)| = r3/2 s

r1/2
= rs and |fnc1(z2)| = (rs)2n−3

for all n > 3,

so that

λc1(z2) =
1

8
log(rs)

and

Ev =
1

8
log(rs) >

1

16
log r.

This completes the proof of the theorem.

5.3. An upper bound on the local height near the Julia set. We will use the

following proposition in the proof of Theorem 1.9. This is a non-archimedean analog

to the distortion estimate provided in Proposition 3.8.

Proposition 5.2. Suppose v is a non-archimedean place of K, not dividing 2. For

each c with |c|v > 1 and all 0 < r < 1, we have

λc,v(z) ≤ r log |c|v
for all z within distance

1

|c|log(1/r)
v

of the Julia set Jc in P1
v. For |c|v ≤ 1, we have λc,v(z) = 0 for all |z|v ≤ 1.

Proof. Recall that all points x of the Julia set Jc satisfy |x| = |c|1/2v . For all x ∈ Jc
and all z = x+ y with |y| < |c|1/2, we have

|fc(z)− fc(x)|v = |2xy + y2|v = |y||c|1/2.
Recall that λc(z) = log |z| for all |z| ≥ |c|1/2.

In particular, for any n ≥ 1 and any point z within distance |c|/|c|n/2 of the Julia

set will have λc(z) = 2−nλc(f
n(z)) ≤ 2−n log |c|. In other words, setting r = 1/2n,

then

log(1/r) = n log 2 >
n

2
− 1

so that any point z within distance |c|− log(1/r) of the Julia set will satisfy

λc(z) ≤ r log |c|.
The proof of the last statement of the proposition is immediate, because fc has

good reduction with Jc = ζ0,1 and λc,v(z) = log+ |z|v. �
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6. Nonarchimedean bounds for prime p = 2

Let c1 6= c2 be two elements of Q. Fix a number field containing c1 and c2, and fix

a non-archimedean place v which divides the prime p = 2. In this section, we provide

estimates on the local energy

Ev :=

∫
λc1,v dµc2,v =

∫
λc2,v dµc1,v.

Because the place v is fixed throughout this section, we will drop the dependence on

v in the absolute value | · |v, denote the local Julia set of fc by Jc, its escape rate by

λc, and the equilibrium measure by µc.

Theorem 6.1. Suppose c1 and c2 lie in a number field K, and v is a non-archimedean

place of K with v | 2. For all c1, c2 ∈ K, we have

1

16
log+ |c1 − c2| ≤ Ev ≤

1

2
log+ max{|c1|, |c2|}.

Furthermore, if r := |c1| = |c2| > 16 and

|c1 − c2| >
2

r1/2
,

then

Ev ≥
1

16
log r − 3

16
log 2.

We also prove an estimate on λc from above, at points near the v-adic Julia set of

fc, that will be needed for the proof of Theorem 1.9.

6.1. Structure of the Julia set. As in the previous section, we work with the

dynamics of fc on the Berkovich affine line A1,an
v , associated to the complete and

algebraically closed field Cv, and we denote by ζx,r the Type II point corresponding

to the disk of radius r ∈ Q>0 about x.

And as before, for |c| ≤ 1, the map fc has good reduction, and Jc = ζ0,1 is the

Gauss point. For |c| > 1 and for any point z with absolute value |z| > |c|1/2, we have

|fn(z)| = |z|2n for all n ≥ 1, so that

λc(z) = log |z|. (6.1)

It is also the case that

λc(z) ≤ 1

2
log |c| (6.2)

for all |z| ≤ |c|1/2.

But unlike the setting of the previous section, the geometry of the Julia set and the

dynamics on the associated tree is not constant for all |c| > 1. First, for 1 < |c| ≤ 4,

the map fc has potential good reduction, so its Julia set is a single Type II point. For

all |c| > 4, the Julia set will be a Cantor set of Type I points. As in the previous

section, the Julia set is contained in {z ∈ Cv : |z| = |c|1/2} for all |c| > 4.
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We let ±b satisfy fc(±b) = 0. Note that

|b− (−b)| = |2b| = |b|/2 = |c|1/2/2.
We let β and β′ be further preimages of 0, so that

fc(β) = b, fc(β
′) = −b, |β − b| = |β′ − b| = |β − β′| = 1, (6.3)

and the Julia set will lie in the union of the four disks D(±β, 1) and D(±β′, 1).

Distances between points scale as follows:

Lemma 6.2. Suppose |c| > 4 and z is in the Julia set of fc. For any |y| > |c|1/2/2,

we have

|fc(z + y)− fc(z)| = |y|2.
For |y| < |c|1/2/2, we have

|fc(z + y)− fc(z)| = |y||c|1/2/2.

Proof. Computing the image of z + y, we have

fc(z + y) = (z + y)2 + c = (z2 + c) + (y2 + 2yz).

Because z lies in the Julia set, we know that |z| = |c|1/2, and the result follows. �

0
b
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Figure 6.1. The tree structure of the non-archimedean Julia set, with

|c|v > 4 and v | 2, vertically ordered by | · |v as noted on the right.

Note that for |c| > 16, the Type II point

ζ0,|c|/4 = fc(ζb,|c|1/2/2)

will lie above ζ0,|c|1/2 . This simplifies computations and is the reason for taking r > 16

in the statement of Theorem 6.1.
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6.2. Proof of Theorem 6.1. Suppose first that |c1| 6= |c2|. If |ci| ≤ 1 for at least

one i, then

Ev =
1

2
max{log+ |c1|, log+ |c2|} =

1

2
log+ |c1 − c2|.

If 1 < |c1| < |c2| (or vice versa), then all points z ∈ Jc2 satisfy |z| = |c2|1/2 > |c1|1/2,

so that λc1(z) = log |z| = 1
2

log |c2|, giving

Ev =
1

2
max{log+ |c1|, log+ |c2|} =

1

2
log+ |c2 − c1|.

Note that whenever 1 < |c2| ≤ |c1|, we have λ1(z) ≤ log |c1| for all z ∈ Jc2 . It

follows that

Ev ≤
1

2
max{log+ |c1|, log+ |c2|}

in every case, proving the upper bound of the theorem.

If 1 < |c1| = |c2| ≤ 16, then |c1 − c2| ≤ 16, so that 1
4

log |c1 − c2| ≤ log 2.

For the remainder of the proof, we assume that

r := |c1| = |c2| > 16.

Exactly as in the proofs of Theorems 4.1 and 5.1, we break the proof into cases,

according to how close the two parameters are. Recall that ±bi denotes the preimages

of 0 by fci .

Case 1. Assume that the preimages b1 and b2 are chosen so that

s := |b1 − b2| ≤ |b1 + b2|
and

r1/2/2 < s ≤ r1/2.

Since |bi + bi| = |bi|/2 = r1/2/2, and because

(b1 − b2)(b1 + b2) = b2
1 − b2

2 = c2 − c1 (6.4)

it follows that

|c1 − c2| = s2.

For all z ∈ Jc2 , we have

|fnc1(z)| = s2n

so that

λ1(z) = log s

and

Ev = log s =
1

2
log |c1 − c2| >

1

2
log r − log 2 ≥ 1

4
log 4

for all r > 16.

Case 2. Assume that the preimages b1 and b2 are chosen so that

s := |b1 − b2| ≤ |b1 + b2|
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and

1 < s ≤ r1/2/2.

Then |b1 + b2| = r1/2/2, so that

|c1 − c2| = sr1/2/2

from (6.4). For all z ∈ Jc2 , we have

|fc1(z)| = sr1/2/2 and |fnc1(z)| = (sr1/2/2)2n−1

for all n ≥ 2

so that

λ1(z) =
1

2
log(sr1/2/2)

and

Ev =
1

2
log(sr1/2/2) =

1

2
log |c1 − c2| >

1

2
log r − log 2 ≥ 1

4
log r

for all r > 16.

Case 3. Assume that the preimages b1 and b2 are chosen so that

1 = |b1 − b2| < |b1 + b2| = r1/2/2.

Then

|c1 − c2| = r1/2/2

from (6.4).

Recall that ±βi and ±β′i are further preimages of 0, and

(β1 − β2)(β1 + β2) = β2
1 − β2

2 = b1 − c1 − (b2 − c2) = (b1 − b2) + (c2 − c1). (6.5)

Similarly for β′i. It follows that

|β1 − β2| = |β′1 − β′2| = 1.

We also have

(β1 − β′2)(β1 + β′2) = β2
1 − (β′2)2 = b1 − c1 − (−b2 − c2) = (b1 + b2) + (c2 − c1). (6.6)

The right-hand-side is the sum of two terms with the same absolute value and may

lead to cancellation, so it could happen that D(β1, 1) = D(β′2, 1). On the other hand,

we also have

(β′1− β2)(β′1 + β2) = (β′1)2− β2
2 = −b1− c1− (b2− c2) = −(b1 + b2) + (c2− c1), (6.7)

and |(b1 + b2)− (−(b1 + b2))| = |2||b1 + b2| = r1/2/4. In other words, the cancellation

on the right-hand-sides of (6.6) and (6.7) cannot bring us smaller than r1/2/4 in both

equations. Consequently, we have

|β1 − β′2| or |β′1 − β2| ≥ (r1/2/4)/(r1/2/2) =
1

2
.
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Consequently, at least half of the Julia set Jc2 by symmetry must be at distance at

least 1/2 from the Julia set Jc1 . Note that r > 16 implies that 1/2 > 2/r1/2. So, for

half of the points z ∈ Jc2 , we have

|f 2
c1

(z)| = 1

2

(
r1/2

2

)2

=
r

8
,

and thus

λ1(z) =
1

4
log(r/8) =

1

4
(log r − log 8)

for these z values. We conclude that

Ev ≥
1

8
log(r/8) =

1

4
log |c1 − c2| −

1

8
log 2 >

1

16
log |c1 − c2|

and

Ev ≥
1

16
log r − 1

8
log 2

for all r > 16.

Case 4. Assume that the preimages b1 and b2 are chosen so that

s := |b1 − b2| < |b1 + b2| = r1/2/2

and

2/r1/2 < s < 1.

Then (6.4) implies that

1 < |c1 − c2| = sr1/2/2 < r1/2/2.

It follows that all points z ∈ Jc2 are distance s from Jc1 , so that

|f 2
c1

(z)| = (r1/2/2)2s = rs/4 and |fc1(z)n| = (rs/4)2n−2

for all n ≥ 3

and

λc1(z) =
1

4
log(rs/4).

Therefore,

Ev =
1

4
log(rs/4) =

1

4
log |c1 − c2|+

1

4
log(r1/2/2) >

1

8
log r − 1

4
log 2 ≥ 1

16
log r

for all r > 16.

Case 5. Assume that the preimages b1 and b2 are chosen so that

2/r1/2 = |b1 − b2| < |b1 + b2| = r1/2/2.

Then

|c1 − c2| = 1

from (6.4). Equation (6.5) implies that

|β1 − β2| = |β′1 − β′2| = 2/r1/2,
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and (6.6) and (6.7) imply that

|β1 − β′2| = |β′1 − β2| = 1.

To determine how the Julia sets might overlap, we take pass to third preimages of 0,

defining γi and γ′i so that

fci(γi) = βi, fci(γ
′
i) = β′i, and |γi − γ′i| = |γi − βi| = |γ′i − βi| = 2/r1/2.

But here, as in Case 3 above, we may have overlap. We compute that

(γ1 − γ2)(γ1 + γ2) = γ2
1 − γ2

2 = (β1 − β2) + (c2 − c1) (6.8)

so that

|γ1 − γ2| = 2/r1/2.

But

(γ1 − γ′2)(γ1 + γ′2) = γ2
1 − (γ′2)2 = (β1 − β′2) + (c2 − c1)

and both terms on the right-hand-size have absolute value 1. So it can happen that

D(γ1, 2/r
1/2) = D(γ′2, 2/r

1/2). Similarly for γ′1 with γ2. But both pairs cannot be too

close, because

(β1 − β′2)− (β′1 − β2) = (β1 − β′1) + (β2 − β′2) = (β1 − β′1) + (β1 − β′2) + ε

for some |ε| ≤ 2/r1/2. It follows that

|(β1 − β′2)− (β′1 − β2)| = |(β1 − β′1) + (β1 − β′2)| = |2(β1 − β′1)| = 1

2

so that

|γ1 − γ′2| or |γ′1 − γ2| ≥ (1/2)/(r1/2/2) =
1

r1/2
.

The same estimates will hold for the third preimages of 0 near β′i, as well as those

near −βi and −β′. Consequently, at least half of the Julia set Jc2 must be at distance

at least 1/r1/2 from the Julia set Jc1 . Note that r > 16 implies that 1/r1/2 > 4/r. So,

for half of the points z ∈ Jc2 , we have

|f 3
c1

(z)| =
(
r1/2

2

)3
1

r1/2
=
r

8
,

and thus

λc1(z) =
1

8
log(r/8) =

1

8
log r − 1

8
log 8

for these z values. We conclude that

Ev ≥
1

16
log(r/8) =

1

16
log r − 1

16
log 8.

Case 6. Assume that the preimages b1 and b2 are chosen so that

s := |b1 − b2| ≤ |b1 + b2|
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and

4/r < s < 2/r1/2 < s.

Then

2/r1/2 < |c1 − c2| = sr1/2/2 < 1.

We also compute

|γ1 − γ2| = |β1 − β2| = s

from (6.5) and (6.8), and

|fc1(z)3| = s(r1/2/2)3 for all z ∈ Jc2
so that

λc1(z) =
1

8
log(sr3/2/8)

and

Ev =
1

8
log(sr3/2/8) ≥ 1

8
log(r1/2/2) =

1

16
log r − 1

8
log 2.

Finally, note that if |b1 − b2| ≤ 4/r, then |c1 − c2| ≤ 2/r1/2, so Case 6 completes

the proof of the theorem. The first statement of the theorem is covered by Cases 1

through 4.

6.3. An upper bound on the local height near the Julia set. We will use the

following proposition in the proof of Theorem 1.9. This is a non-archimedean analog

to the distortion estimate provided in Proposition 3.8.

Proposition 6.3. Suppose v is a non-archimedean place of K dividing 2. For any

0 < r < 1/4, we have

λc,v(z) ≤ r log max{|c|v, 16}
for all z within distance

1

max{|c|v, 16}log(1/r)

of the filled Julia set within Cv.

Proof. First assume that |c|v > 4. Recall that all points x of the Julia set Jc (which

agrees with the filled Julia set in this setting) satisfy |x| = |c|1/2v . From Lemma 6.2,

we know that for all x ∈ Jc and all z = x+ y with |y| < |c|1/2/2, we have

|fc(z)− fc(x)|v = |2xy + y2|v = |y||c|1/2/2.
Recall also that λc(z) = log |z| for all |z| > |c|1/2.

In particular, for any n ≥ 2, any point z within distance

|c|
4

(
2

|c|1/2
)n
≥ 1

|c|n/2−1
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of the Julia set will have λc(z) = 2−nλc(f
n(z)) ≤ 2−n log |c|. In other words, setting

r = 1/2n, then

log(1/r) = n log 2 >
n

2
− 1

so that any point z within distance |c|− log(1/r) of the Julia set will satisfy

λc(z) ≤ r log |c| ≤ r log max{|c|v, 16}.
Now assume |c|v ≤ 4. Then fc has potential good reduction with Jc = ζb,1, where

b is any element of the filled Julia set. Consequently, all points z within distance 1

of the filled Julia set are in the filled Julia set and thus satisfy λc(z) = 0. �

7. Bounds on the energy pairing

In this section, we use the estimates of the previous sections to prove a weak

version of Theorem 1.7, and we use it to deduce Theorem 1.6. We let h(x) denote

the logarithmic Weil height of x ∈ Q and h(x1, x2) the Weil height on A2(Q).

Theorem 7.1. We have

1

16
h(c1 − c2)− log 2000

16
≤ 〈fc1 , fc2〉 ≤

1

2
h(c1, c2) +

5

2

for all c1 6= c2 in Q.

7.1. Proof of Theorem 7.1. Fix c1 6= c2 in Q, and let K be any number field

containing them. Summing over all places of K, we have by Theorem 4.1, Theorem

5.1, and Theorem 6.1 that

1

16

∑
v∈MK

[Kv : Qv]

[K : Q]
log+ |c1 − c2| −

1

16
log 2000 ≤ 〈fc1 , fc2〉

≤ 1

2

∑
v∈MK

[Kv : Qv]

[K : Q]
log+ max{|c1|v, |c2|v}+

5

2
,

where the added constants come from the archimedean places (Remark 4.2). This

completes the proof of the theorem.

7.2. Proof of Theorem 1.6. We will assume towards contradiction that there is a

sequence of triples c1,n 6= c2,n ∈ Q and εn > 0 such that

〈fc1,n , fc2,n〉 < εn,

where εn → 0 as n tends to infinity. Let Kn be a number field containing c1,n and

c2,n. We will show that this forces the pairing at a (proportionally) large number of

archimedean places of Kn to be close to 0; as a consequence we will deduce that the

height h(c1,n − c2,n) must get large. This in turn would contradict Theorem 7.1.
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Let M∞
n denote the set of all archimedean places of Kn. For each v ∈M∞

n , we let

Ev(c1,n, c2,n) =

∫
λc1,v dµc2,v

denote the local contribution to the energy pairing. We let Sn ⊂ M∞
n be the set of

archimedean places with

Ev(c1,n, c2,n) < 2εn.

Since
∑

v∈M∞n
[Kn,v : Qv] = [Kn : Q] and 〈fc1,n , fc2,n〉 < εn, we see that

∑
v∈M∞n \Sn

[Kn,v :

Qv] ≤ [Kn : Q]/2. Therefore,∑
v∈Sn

[Kn,v : Qv] ≥
[Kn : Q]

2
.

Take L = 1000 as in Remark 4.2, and choose any M > L. From the continuity and

positivity of Ev, there is a sequence δn → 0+ as n→∞ such that

Ev(c1, c2) ≥ 2εn

whenever |c1 − c2|v ≥ δn and |c1|v, |c2|v ≤M for c1, c2 ∈ Cv = C.

If one of the ci, say c1, has absolute value bigger than M and if |c1−c2|v > 3/|c1|1/2v ,

then

Ev(c1, c2) ≥ 1

64
log |c1|v ≥

1

64
logM

from Theorem 4.1. When n is big, we have 2εn <
1
64

logM , and so for any v ∈ Sn as

Ev(c1,n, c2,n) < 2εn, we must have

|c1,n − c2,n|v ≤ max{δn,
3

M1/2
}.

Hence for any n with 2εn <
1
64

logM and δn < 3/M1/2, we conclude that

|c1,n − c2,n|v ≤ 3/M1/2 < 1

for all v ∈ Sn. Consequently,

h(c1,n − c2,n) ≥
∑

v∈MKn\Sn

[Kn,v : Qv]

[Kn : Q]
log |c1,n − c2,n|v

=
∑
v∈Mn

[Kn,v : Qv]

[Kn : Q]
log

1

|c1,n − c2,n|v

≥
(∑
v∈Mn

[Kn,v : Qv]

[Kn : Q]

)
log

M1/2

3
≥ 1

2
log

M1/2

3
.

We thus have by Theorem 7.1 that

1

32
log

M1/2

3
− log 2000

16
≤ 〈fc1,n , fc2,n〉 < εn,

a contradiction for M sufficiently large. �
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8. Strong lower bound on the energy pairing

Throughout this section, we assume that c1 and c2 are distinct elements of Q. We

prove Theorem 1.7, which gives bounds on the energy pairing 〈fc1 , fc2〉 in terms of

the heights of the parameters.

The upper bound in Theorem 1.7 is easy and was stated as part of Theorem 7.1.

The lower bound is a balancing act between “helpful” primes and the other primes of

a given number field K containing the pair c1 and c2. A place v of K will be helpful

if at least one absolute value |ci|v is large and the two parameters are not too close in

the v-adic distance. In this good setting, we can apply the stronger lower bounds on

the local energy pairing, as in the second statement of Theorem 4.1. By showing that

a significant proportion of primes are helpful, we obtain the lower bound of Theorem

1.7.

8.1. An auxiliary height. Fix some constant L > 1 and consider the following

function hL on A2(Q). For c1, c2 in a number field K, we put

rv = [Kv : Qv]/[K : Q],

and set

`v =


log max{|c1|v, |c2|v, L} for v archimedean

log max{|c1|v, |c2|v, 16} for v|2
log max{|c1|v, |c2|v, 1} otherwise

and define

hL(c1, c2) :=
∑
v∈MK

rv`v.

Note that

h(c1, c2) ≤ hL(c1, c2) ≤ h(c1, c2) + logL+ log 16,

where h(c1, c2) is the usual logarithmic Weil height on A2(Q).

8.2. Helpful places. With L > 1 fixed, and elements c1 and c2 in the number field

K, we say that the quantity `v is large if

`v >


logL for v archimedean

log 16 for v | 2
0 otherwise

We define Mhelp to be the subset of MK for which `v is large and

|c1 − c2|v > κve
−`v/2,

where

κv =


3 for v archimedean

2 for v | 2
1 otherwise
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and we call these places “helpful”. We define Mclose to be the subset of MK for which

`v is large and

|c1 − c2| ≤ κve
−`v/2

and call these places “close”. We will say that a place v is in Mbounded if `v fails to

be large.

The helpful places constitute a significant portion of the contribution to the height:

Lemma 8.1. For any c1, c2 ∈ Q and any L ≥ 1, we have∑
v∈MK\Mclose

rv`v ≥
1

3
hL(c1, c2)− 2

3
log 6.

Or, we can rearrange the terms to obtain∑
v∈Mhelp

rv`v ≥
1

3
hL(c1, c2)− log(16 · 62/3 · L).

for any c1, c2 ∈ Q and any L ≥ 1.

Proof. We use the product formula on c1 − c2, so that

1 =
∏
v

|c1 − c2|rvv .

At the close places, we know that |c1− c2| is bounded from above by κve
−`v/2. At all

other places, we have |c1−c2|v ≤ e`v if non-archimedean, and |c1−c2|v ≤ 2e`v ≤ κve
`v

if archimedean. Therefore, we have

1 ≤
∏

v∈Mclose

(κve
−`v/2)rv

∏
v∈M∞\Mclose

(κve
`v)rv

∏
v∈MK\(M∞∪Mclose)

(e`v)rv

≤ 6
∏

v∈Mclose

(e−`v/2)rv
∏

v∈MK\Mclose

(e`v)rv .

Taking logarithms gives

1

2

∑
v∈Mclose

rv`v ≤
∑

v∈MK\Mclose

rv`v + log 6. (8.1)

Adding 1
2

∑
v∈MK\Mclose

rv`v to both sides yields

1

2
hL(c1, c2) ≤ 3

2

∑
v∈MK\Mclose

rv`v + log 6,

proving the first statement of the lemma.

Expanding the right-hand-side of (8.1), we see that

1

2

∑
v∈Mclose

rv`v ≤
∑

v∈Mhelp

rv`v +
∑

v∈Mbounded

rv`v + log 6
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so that ∑
v∈Mhelp

rv`v ≥
1

2

∑
v∈Mclose

rv`v −
∑

v∈Mbounded

rv`v − log 6.

Adding 1
2

∑
v∈Mhelp

rv`v to both sides, we obtain

3

2

∑
v∈Mhelp

rv`v ≥
1

2
hL(c1, c2)− 3

2

∑
v∈Mbounded

rv`v − log 6

≥ 1

2
hL(c1, c2)− 3

2
(logL+ log 16)− log 6

=
1

2
hL(c1, c2)− 3

2
log(16 · 62/3 · L),

which proves the lemma. �

8.3. Proof of Theorem 1.7. Fix c1, c2 and choose any number field K containing

both. Fix any L ≥ 1000 so that Theorem 4.1 is satisfied. Decompose MK into

Mhelp ∪Mclose ∪Mbounded as in §8.2. Note that 1
16

log r − 3
16

log 2 ≥ 1
64

log r for any

r ≥ 16. Then Theorems 5.1, 6.1, and 4.1 applied in the helpful places combine to say

〈fc1 , fc2〉 =
∑
v∈MK

rvEv ≥
∑

v∈Mhelp

rvEv

≥ 1

64

∑
v∈Mhelp

rv log max{|c1|v, |c2|v}

=
1

64

∑
v∈Mhelp

rv`v. (8.2)

Combined with Lemma 8.1, this proves that for all c1 and c2 in Q, we have

〈fc1 , fc2〉 ≥
1

3 · 64
hL(c1, c2)− 1

64
log(16 · 62/3 · L)

≥ 1

192
h(c1, c2)− 1

64
log(16 · 62/3 · L)

This proves the lower bound of the theorem with α1 = 1/192 and C1 = 1
64

log(16 ·
62/3 · L) < 0.17 < 3

17
for L = 1000. The upper bound of the theorem was proved

already as Theorem 7.1 with α2 = 1/2 and C2 = 5/2.

9. Quantitative equidistribution

Our goal in this section is to prove Theorem 1.9, providing an upper bound on the

energy pairing 〈fc1 , fc2〉, in terms of the number of common preperiodic points, for

c1 6= c2 in Q, assuming fc1 and fc2 share at least one preperiodic point other than

∞. We build upon the ideas developed in the proof of [FRL, Theorem 3] and [Fi,

Theorem 4].
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9.1. Adelic measures and heights on P1(Q). Following Favre and Rivera-Letelier

[FRL], we define the mutual energy of measures ρ and ρ′ on P1(C) by

(ρ, ρ′) := −
∫∫

C×C\Diag

log |z − w| dρ(z) dρ′(w),

where Diag is the diagonal, assuming log |z−w| is in L1(ρ⊗ρ′). If the measures have

total mass 0 with continuous potentials on P1, we have (ρ, ρ) ≥ 0 with equality if and

only if ρ = 0. Similarly, one defines

(ρ, ρ′)v := −
∫∫

A1
v×A1

v\Diag

δv(z, w) dρ(z) dρ′(w) (9.1)

on the Berkovich line over Cv, with respect to a non-archimedean valuation, with the

appropriate kernel δv(z, w) in place of log |z−w|v. More information can be found in

[BR2].

Now let K be a number field. An adelic measure is a collection µ = {µv}v∈MK
of

probability measures on the Berkovich P1,an
v , with continuous potentials at all places

v and for which all but finitely many are trivial (meaning that they are supported at

the Gauss point). For any adelic measure µ, a height function is defined on P1(Q) by

hµ(F ) :=
1

2

∑
v∈MK

[Kv : Qv]

[K : Q]
([F ]− µv, [F ]− µv)v,

where F is any finite, Gal(K/K)-invariant subset of K, and [F ] is the probability

measure supported equally on the elements of F . We put

hµ(∞) :=
1

2

∑
v

[Kv : Qv]

[K : Q]
(µv, µv)v.

The equidistribution theorem of [FRL, BR1, CL1] states that if Fn is a seqence

of Gal(K/K)-invariant finite sets with hµ(Fn) → 0 and |Fn| → ∞ as n → ∞, the

discrete probability measures

µn :=
1

|Fn|
∑
x∈Fn

δx

converge weakly to the measure µv on P1,an
v at each place v of K.

There is a pairing between any two such heights, hµ and hν , associated to adelic

measures µ and ν, as

〈hµ, hν〉 =
1

2

∑
v∈MK

[Kv : Qv]

[K : Q]
(µv − νv, µv − νv)v. (9.2)

It satisfies 〈hµ, hν〉 = 0 ⇐⇒ hµ = hν ⇐⇒ µ = ν. The energy pairing (1.3) between

two quadratic polynomials is a special case, taking the dynamical canonical heights

ĥc1 and ĥc2 associated to their adelic equilibrium measures.
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Remark 9.1. The height hµ can be defined for arbitrary adelic measures, but small

sequences (meaning the sequences {Fn} of Galois-invariant sets with hµ(Fn)→ 0 and

|Fn| → ∞) do not always exist.

9.2. Height pairing as a distance. Following [Fi], we consider a distance between

two adelic measures µ = {µv} and ν = {νv} on P1 over a number field K, defined by

d(µ, ν) := 〈hµ, hν〉1/2,

where 〈hµ, hν〉 was defined in (9.2); see [Fi, Theorem 1].

Suppose that c1 and c2 are elements of a number field K. Let µ1 := {µc1,v}
and µ2 := {µc2,v} be the equilibrium measures of fc1 and fc2 , respectively. Let F

be any finite, nonempty, Gal(K/K)-invariant subset of P1(Q). Let [F ] denote the

probability measure supported equally on the elements of F . For each place v of

K, choose a positive real εv > 0, with εv = 1 for all but finitely many v. The

collection ε := {εv}v∈MK
will be called an adelic radius. As in [FRL], we consider the

adelic measure [F ]ε, defined as a regularization of the probability measure [F ]: it is

supported on the circles of radius εv about each point of F . At a non-archimedean

place, this means the Type II or III point associated to the disk of radius εv. The

triangle inequality implies that

〈fc1 , fc2〉1/2 = d(µ1, µ2) ≤ d(µ1, [F ]ε) + d(µ2, [F ]ε) (9.3)

for any choices of F and ε.

It is worth noting that, if the radius εv → 0 at some place, then the right-hand-side

of (9.3) will tend to ∞. This is because the potential of the measure [F ]ε at v will

blow up near the points of F . On the other hand, for εv too large, the measure [F ]ε is

not a good approximation of [F ]. Thus, for (9.3) to be useful in our proof of Theorem

1.1, we will need to choose ε well. This general strategy also appears in the proofs of

[FRL, Theorem 3] and in [Fi, Proposition 13]. In our case, the choice of ε = {εv}v∈MK

will be governed by Proposition 3.8 and its non-archimedean counterparts, and this

leads to Theorem 1.9.

Lemma 9.2. Let K be a number field and fix c1 6= c2 in K. We have

〈fc1 , fc2〉1/2 ≤
2∑
i=1

(∑
v∈MK

[Kv : Qv]

[K : Q]

(
−(µi, [F ]ε)v +

log(1/εv)

2|F |

))1/2

for any choice of finite, non-empty, Gal(K/K)-invariant subset F of Q and any adelic

radius ε = {εv}v∈MK
.
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Proof. We first observe that

d(µi, [F ]ε)
2 =

1

2

∑
v

[Kv : Qv]

[K : Q]
(µi − [F ]ε, µi − [F ]ε)v

=
∑
v

[Kv : Qv]

[K : Q]

(
−(µi, [F ]ε)v +

1

2
([F ]ε, [F ]ε)v

)
because (µi, µi)v = 0 at every place. The self-pairing of [F ]ε can be estimated in

terms of the self-pairing of [F ] ([Fi, Lemma 12] and [FRL, Lemma 4.11]), as

([F ]ε, [F ]ε)v ≤ ([F ], [F ])v +
log(1/εv)

|F | .

But observe that ∑
v

[Kv : Qv]

[K : Q]
([F ], [F ])v = 0

by the product formula on K. So the triangle inequality (9.3) completes the proof of

the proposition. �

9.3. Proof of Theorem 1.9. Fix any L ≥ 27, and recall the definition of the auxil-

iary height hL on A2(Q) from §8.1. An appropriate choice of ε = {εv} in Lemma 9.2

gives:

Proposition 9.3. Fix any L ≥ 27. Fix c1 and c2 in Q, and assume fc1 and fc2 have

N > 1 preperiodic points in common in P1(Q). Then for all 0 < δ < 1/4, we have

〈fc1 , fc2〉 ≤ 4

(
δ +

3 log(1/δ)

2(N − 1)

)
hL(c1, c2)

Proof. Fix a number field K containing c1 and c2. Let F be the Gal(K/K)-invariant

set of common preperiodic points for fc1 and fc2 in Q, so that |F | = N − 1. For each

place v ∈MK , recall the definition of `v from §8.1. Fix 0 < δ < 1/4 and set

εv = δ3 `v .

Note that εv = 1 for all but finitely many places v ∈MK .

For each archimedean place v, note that

εv = e−3 `v log(1/δ) = max{|c1|v, |c2|v, L}−3 log(1/δ),

so Proposition 3.8 implies that

λci,v(z) ≤ δ `v

for any point z within a neighborhood of radius εv of the filled Julia set Kci . As all

points of F lie in Kci , this implies that

−(µi, [F ]ε)v ≤ δ `v

for this choice of εv and each i.



COMMON PREPERIODIC POINTS FOR QUADRATIC POLYNOMIALS 41

Similarly for each non-archimedean place v - 2, we apply Proposition 5.2, and for

each non-archimedean v | 2, we apply Proposition 6.3.

Summing over all places, we find that∑
v∈MK

[Kv : Qv]

[K : Q]

(
−(µi, [F ]ε)v +

log(1/εv)

2|F |

)
≤

∑
v

[Kv : Qv]

[K : Q]

(
δ `v +

3 log(1/δ)

2|F | `v

)
=

(
δ +

3 log(1/δ)

2|F |

)
hL(c1, c2).

Lemma 9.2 then implies

〈fc1 , fc2〉1/2 ≤
2∑
i=1

(∑
v∈MK

[Kv : Qv]

[K : Q]

(
−(µi, [F ]ε)v +

log(1/εv)

2|F |

))1/2

≤ 2

((
δ +

3 log(1/δ)

2|F |

)
hL(c1, c2)

)1/2

Squaring both sides yields the proposition. �

Now fix any ε between 0 and 1, and let δ = ε/25. Applying Proposition 9.3 with

L = 27, we have

〈fc1 , fc2〉 ≤ 4

(
δ +

3 log(1/δ)

2(N − 1)

)
hL(c1, c2)

≤ 4

(
δ +

3 log(1/δ)

2(N − 1)

)
(h(c1, c2) + log 16 + log 27)

≤
(
ε+

C(ε)

N − 1

)
(h(c1, c2) + 1)

with C(ε) = 40 log(25/ε). This completes the proof of Theorem 1.9.

10. Proof of Theorem 1.1

In this section, we prove Theorem 1.1, providing a uniform bound on the number

of common preperiodic points for any pair fc1 and fc2 with c1 6= c2 in C.

10.1. Proof over Q. Assume that c1 and c2 are in Q.

We first use Theorem 1.7 and 1.9 to provide a bound on

N := N(c1, c2) = |Preper(fc1) ∩ Preper(fc2)|
when the height h(c1, c2) is large. The two theorems combined show that, if N > 1,

then it must satisfy

α1 h(c1, c2)− C1 ≤
(
ε+

C(ε)

N − 1

)
(h(c1, c2) + 1)
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for every choice of 0 < ε < 1, and thus,(
α1 − ε−

C(ε)

N − 1

)
(h(c1, c2) + 1) ≤ C1 + α1.

Taking ε = α1/2, we have

α1

2
− C(ε)

N − 1
≤ C1 + α1

h(c1, c2) + 1
.

If we assume that

h(c1, c2) + 1 >
4(C1 + α1)

α1

,

then the inequality becomes

N − 1 <
4C(α1/2)

α1

, (10.1)

providing a uniform bound on N for all pairs (c1, c2) of sufficiently large height.

Now suppose that h(c1, c2) + 1 ≤ 4(C1 + α1)/α1. We combine the uniform lower

bound of Theorem 1.6 with the upper bound of Theorem 1.9 to obtain

δ ≤
(
ε+

C(ε)

N − 1

)
(h(c1, c2) + 1) ≤

(
ε+

C(ε)

N − 1

)
4(C1 + α1)

α1

for any choice of 0 < ε < 1. This unwinds to give

N − 1 ≤ C(ε)
αδ

4(C1+α1)
− ε. (10.2)

Choosing any ε < α1δ/4(C1 + α1) gives a uniform bound on N .

10.2. Proof over C. Let B denote a uniform bound on the number of common

preperiodic points over all c1 6= c2 in Q. Now fix c1 in C \ Q. For any c2 ∈ C, if fc1
and fc2 have at least one preperiodic point in common, then the field Q(c1, c2) must

have transcendence degree 1 over Q. Moreover, if x1, x2, . . . , xB+1 denote distinct

common preperiodic points for fc1 and fc2 , then k = Q(c1, c2, x1, . . . , xB+1) will also

be of transcendence degree 1, as each xi satisfies relations of the form

fni
c1

(xi) = fmi
c1

(xi) for ni > mi ≥ 0 and fkic2 (xi) = f lic2(xi) for ki > li ≥ 0. (10.3)

We may view k as the function field K(T ) of an algebraic curve T defined over a

number field K. In this way, the maps fc1 and fc2 are viewed as families of maps,

parameterized by t ∈ T (C), and the relations (10.3) hold persistently in t.

Now assume c2 6= c1, so that the specializations fc1(t) and fc2(t) are distinct for

all but finitely many t ∈ T (C). As the elements {x1, . . . , xB+1} are distinct in k,

their specializations {x1(t), . . . , xB+1(t)} are also distinct for all but finitely many t

in T (C). In particular, this implies that we can find t ∈ T (Q) so that c1(t) 6= c2(t) in

Q and fc1(t) and fc2(t) share at least B + 1 preperiodic points; this is a contradiction.
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Thus, the theorem is proved for all pairs c1 6= c2 in C, with the same bound as for

pairs c1 6= c2 in Q.

11. Effective bounds on common preperiodic points

In this section, we make effective Theorems 1.6, 1.7, and 1.9, to produce an explicit

value for the bound B of Theorem 1.1:

Theorem 11.1. For all c1 6= c2 ∈ C, we have

|Preper(fc1) ∩ Preper(fc2)| ≤ 1082.

11.1. An explicit lower bound in Theorem 1.6. In order to provide an effective

lower bound δ for Theorem 1.6, we need to improve our estimates on the energy pairing

Ev(c1, c2) when |c1 − c2|v is small at an archimedean place v. Here we compute that

we can take δ = 10−75.

Let H = 2001100/99. Suppose that c1 and c2 lie in a number field K, and suppose

that for at least 99/100 of the archimedean places of K, we have

|c1 − c2|v ≤ 1/H.

Then h(c1 − c2) ≥ 99
100

logH, and the proof of Theorem 7.1 implies that

〈fc1 , fc2〉 ≥
1

16
h(c1 − c2)− 1

16
log(2000) ≥ log(2001/2000)

16
> 3.12 · 10−5 > 10−75.

Now suppose that we have |c1 − c2|v > 1/H for at least 1/100 of the archimedean

places of K. Let M = 9H2 so that

|c1 − c2|v >
1

H
=

3

M1/2

at all of these places. If max{|c1|v, |c2|v} > M , then Theorem 4.1 implies that

Ev(c1, c2) ≥ 1

64
logM > 0.14

at this place v. On the other hand, if max{|c1|v, |c2|v} ≤ M , we have the following

bound:

Proposition 11.2. Fix any M ≥ 1000. Then for all s ≥M2, we have

E∞(c1, c2) ≥ |c1 − c2|2
32s4

− 117

100

M3

s6
,

provided max{|c1|, |c2|} ≤M .

Assuming Proposition 11.2, we complete our computations. With M = 9H2, we have

Ev(c1, c2) ≥ |c1 − c2|2v
32s4

− 117 · 93H6

100s6
≥ 1

32s4H2

(
1− 117 · 2593H8

100s2

)
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for all archimedean places v with |c1 − c2|v > 1/H, max{|c1|v, |c2|v} ≤ 9H2, and

s > 92H4. Choosing s satisfying s2 = 117 · 2693H8/100, we conclude that

Ev(c1, c2) ≥ 1002

218961172H18

for all such places v. This shows that, summing only over the archimedean places,

we have

〈fc1 , fc2〉 ≥
∑
v∈M∞K

[Kv : Qv]

[K : Q]
Ev(c1, c2)

≥ 1

100
max

{
0.14,

1002

218961172H18

}
> 10−75

whenever |c1 − c2|v > 1/H for at least 1/100 of the archimedean places of K. This

completes the computation of δ, and it remains only to prove Proposition 11.2.

Proof of Proposition 11.2. The result will follow from a series of elementary estimates

on the values of the escape-rate functions outside the filled Julia set. Let ϕc be the

Böttcher function for fc(z) = z2 + c, so that ϕc(fc(z)) = ϕ2
c(z) for all z large enough,

and therefore ϕc has expansion

ϕc(z) = z +
c

2z
+ · · · (11.1)

for z near ∞. We set

λ(z) := λc1(z)− λc2(z),

the difference of two escape-rate functions. The energy pairing satisfies

2E∞(c1, c2) = 2

∫
C
λc1dd

cλc2 = −
∫
C
λddcλ =

∫
C
dλ ∧ dcλ.

Now fix any large s > 0, and define Dc
s := {z ∈ C : |z| > s}. By Green’s formula,

2E∞(c1, c2) ≥
∫
Dc

s

dλ ∧ dcλ = −
∫
∂Dc

s

λdcλ = − 1

2πi

∫
∂Dc

s

λ

(
∂λ

∂z
dz − ∂λ

∂z̄
dz̄

)
We will estimate the latter integral.

Note that λ satisfies

λ(z) = log |ϕc1| − log |ϕc2|
near ∞. For simplicity, write ε := c1 − c2. By the expansion (11.1) of ϕc

2λ(z) =
ε

2z2
+

ε̄

2z̄2
+O

(
1

|z|3
)
.

Similarly, by using the Taylor expansion and letting z = seiθ on the boundary ∂Dc
s,

2

(
∂λ

∂z
dz − ∂λ

∂z̄
dz̄

)
=

[
−
( ε

4s3e2iθ
+

ε̄

4s3e−2iθ

)
+O

(
1

s4

)]
isdθ.
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Consequently

−4
1

2πi

∫
∂Dc

s

λ

(
∂λ

∂z
dz − ∂λ

∂z̄
dz̄

)
=

εε̄

4s4
+O

(
1

s5

)
This gives

2E∞(c1, c2) ≥ − 1

2πi

∫
∂Dc

s

λ

(
∂λ

∂z
dz − ∂λ

∂z̄
dz̄

)
=

εε̄

16s4
+O

(
1

s5

)
(11.2)

where ε = c1 − c2. To prove the proposition, we need control on the big-O term.

In the rest of this section, we fix an M ≥ 1000.

Lemma 11.3. Let z, ci ∈ C with |z| ≥ M2, |ci| ≤ M for i = 1, 2 and ε = c1 − c2.

Then ∣∣∣4λ(z)−
( ε
z2

+
ε̄

z̄2

)∣∣∣ ≤∑
i=1,2

(
202

100

|ci|
|z|4 +

101

100
· |ci|

2

|z|4
)

Proof. First note that

| log(1 + x)− x| =
∣∣∣∣−x2

2
+
x3

3
+ · · ·

∣∣∣∣ ≤ |x|2
2(1− |x|) . (11.3)

For any |z| ≥ |c| and |z| > 4, inductively it is easy to check that for each n ≥ 1

(|z| − |c/z|)2n ≤ |fnc (z)| ≤ (|z|+ |c/z|)2n , (11.4)

hence

log(|z| − |c/z|) ≤ λc(z) ≤ log(|z|+ |c/z|)
and

log(|z2 + c| − |c|/|z2 + c|) ≤ λc(z
2 + c) = 2λc(z) ≤ log(|z2 + c|+ |c|/|z2 + c|).

Consequently for any |z| ≥M2 and |c| ≤M , by (11.3) one has∣∣2λc(z)− log |z2 + c|
∣∣ ≤ ∣∣∣∣log

(
1± |c|
|z2 + c|2

)∣∣∣∣ ≤ |c|
|z2 + c|2 +

|c|2
|z2 + c|4

1

2(1− |c|
|z2+c|2 )

≤ 101

100

|c|
|z|4 .

Now, by the triangle inequality and (11.3) we have∣∣∣4λ(z)−
( ε
z2

+
ε̄

z̄2

)∣∣∣ ≤∑
i=1,2

(∣∣4λci(z)− 2 log |z2 + ci|
∣∣+
∣∣∣log(z2 + ci)− log z2 − ci

z2

∣∣∣)
+
∑
i=1,2

∣∣∣log(z̄2 + c̄i)− log z̄2 − c̄i
z̄2

∣∣∣
≤
∑
i=1,2

(
202

100

|ci|
|z|4 +

|ci|2/|z|4
1−

∣∣ ci
z2

∣∣
)
≤
∑
i=1,2

(
202

100

|ci|
|z|4 +

101

100
· |ci|

2

|z|4
)
.
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�

Lemma 11.4. For any z, c ∈ C with |z| ≥M2 and |c| ≤M , we have∣∣∣∣∣
n∏
i=1

(f i−1
c (z))2

f ic(z)
− 1 +

c

z2

∣∣∣∣∣ ≤ 102

100
· |c|

2

|z|4 +
104

100
· |c||z|4 .

Proof. For α ∈ C with |α| < 1,

|eα − 1| =
∣∣∣∣α +

α2

2!
+ · · ·

∣∣∣∣ ≤ |α|+ |α|22!
+ · · · ≤ |α|

1− |α| .

From (11.3) and (11.4), for each i ≥ 2, it has∣∣∣∣log
(f i−1
c (z))2

f ic(z)

∣∣∣∣ =

∣∣∣∣log
1

1− c/(f i−1
c (z))2

∣∣∣∣ =

∣∣∣∣log

(
1− c

(f i−1
c (z))2

)∣∣∣∣
≤
∣∣∣∣ c

(f i−1
c (z))2

∣∣∣∣
1 +

∣∣∣ c

(f i−1
c (z))2

∣∣∣
2
(

1−
∣∣∣ c

(f i−1
c (z))2

∣∣∣)


≤ 101

100

|c|
(|z| − |c/z|)2i

,

here for the last inequality we use the fact that |c|/|f i−1
c (z)|2 ≤ |c|/(|z| − |c/z|)2i ≤

1/1000. Therefore, since (|z| − |c/z|)2 ≥M2/2, we conclude∣∣∣∣∣log
n∏
i=2

(f i−1
c (z))2

f ic(z)

∣∣∣∣∣ ≤
n∑
i=2

101

100
· |c|

(|z| − |c/z|)2i
≤ 102

100
· |c|

(|z| − |c/z|)4
≤ 103

100
· |c||z|4 .

For i = 1,∣∣∣∣(f i−1
c (z))2

f ic(z)
− 1 +

c

z2

∣∣∣∣ =

∣∣∣∣ 1

1 + c
z2

− 1 +
c

z2

∣∣∣∣ ≤ |c|2|z|4 · 1

1− |c/z2| ≤
101

100
· |c|

2

|z|4 .

Finally, let

α = log
n∏
i=2

(f i−1
c (z))2

f ic(z)
and β =

z2

z2 + c
− 1 +

c

z2

and then∣∣∣∣∣
n∏
i=1

(f i−1
c (z))2

f ic(z)
− 1 +

c

z2

∣∣∣∣∣ =
∣∣∣eα (β + 1− c

z2

)
−
(

1− c

z2

)∣∣∣
≤ |eαβ|+

∣∣∣(eα − 1)
(

1− c

z2

)∣∣∣
≤
(

1 +
|α|

1− |α|

)
|β|+ |α|

1− |α|

(
1 +

|c|
|z|2
)
.
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The inequalities of α and β give∣∣∣∣∣
n∏
i=1

(f i−1
c (z))2

f ic(z)
− 1 +

c

z2

∣∣∣∣∣ ≤
(

1 +

103
100
· |c||z|4

1− 103
100
· |c||z|4

)
· 101

100
· |c|

2

|z|4 +

103
100
· |c||z|4

1− 103
100
· |c||z|4

(
1 +

|c|
|z|2
)

≤ 102

100
· |c|

2

|z|4 +
104

100
· |c||z|4 .

�

Lemma 11.5. With the same hypotheses as Lemma 11.4, we have that∣∣∣∣2∂λc(z)

∂z
− 1

z
+

c

z3

∣∣∣∣ ≤ 102

100
· |c|

2

|z|5 +
104

100
· |c||z|5

Proof. Consider

2λc(z) = lim
n→∞

2 log+ |fnc (z)|
2n

= lim
n→∞

(
log fnc (z)

2n
+

log fnc̄ (z̄)

2n

)
.

Taking partial derivatives of both sides and by Lemma 11.4, we have∣∣∣∣2∂λc(z)

∂z
− 1

z
+

c

z3

∣∣∣∣ =

∣∣∣∣ lim
n→∞

1

2n

∏n
i=1 f

′
c(f

i−1
c (z))

fn(z)
− 1

z
+

c

z3

∣∣∣∣
=

∣∣∣∣∣1z lim
n→∞

(
n∏
i=1

(f i−1
c (z))2

f ic(z)
− 1 +

c

z2

)∣∣∣∣∣
≤ 102

100
· |c|

2

|z|5 +
104

100
· |c||z|5 .

�
Similarly ∣∣∣∣2∂λc(z)

∂z̄
− 1

z̄
+

c̄

z̄3

∣∣∣∣ ≤ 102

100
· |c|

2

|z|5 +
104

100
· |c||z|5 . (11.5)

Now we are ready to control the big-O term in (11.2). Write

λ =
( ε

4z2
+

ε̄

4z̄2

)
+
[
λ−

( ε

4z2
+

ε̄

4z̄2

)]
,

∂λ

∂z
dz =

[(
∂λ

∂z
+

ε

2z3

)
− ε

2z3

]
dz and

∂λ

∂z̄
dz̄ =

[(
∂λ

∂z̄
+

ε̄

2z̄3

)
− ε̄

2z̄3

]
dz̄.

We set

I1 =
|ε|
2s

max
i=1,2

[
102

100
· |ci|

2

|s|5 +
104

100
· |ci||s|5

]
,

I2 =
1

4

∑
i=1,2

(
202

100

|ci|
|s|4 +

101

100
· |ci|

2

|s|4
)

max
i=1,2

(
102

100
· |ci|

2

|s|5 +
104

100
· |ci||s|5

)
· s,

I3 =
1

4

∑
i=1,2

(
202

100

|ci|
|s|4 +

101

100
· |ci|

2

|s|4
) |ε|

2s2
.
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Lemmas 11.3 and 11.5 along with inequalities (11.5) and (11.2) give

2E∞(c1, c2) ≥ εε̄

16s4
− 2(I1 + I2 + I3).

Now since the fixed M ≥ 1000, assume that |ci| ≤M for i = 1, 2, and suppose that

s ≥M2. Then |ε| ≤ 2M , so that

I1 ≤
103

100
· M

3

s6
, I2 ≤

1

1000
· M

3

s6
, and I3 ≤

102

800
· M

3

s6
.

Therefore,

2(I1 + I2 + I3) ≤ 234

100

M3

s6
.

This completes the proof of the proposition. �

11.2. Explicit bound. As shown in §8.3, we have α1 = 1/192 and C1 = 3/17 in

Theorem 1.7, and we may take and C(ε) = 40 log(25/ε) in Theorem 1.9 as shown in

§9.3. Therefore, C(α1/2) = 40 log(50/α1) < 367, and whenever c1 6= c2 ∈ Q so that

fc1 and fc2 have N(c1, c2) > 1 common preperiodic points and h(c1, c2) > 139, we

have

N(c1, c2) < 281857 < 106

from (10.1). For the set of parameters with h(c1, c2) ≤ 139, the bound we obtain is

much larger, as it depends on the small δ from Theorem 1.6. We can take δ = 10−75,

as explained in §11.1. Taking ε = α1δ/(8(C1 + α1)) in (10.2), we find that

N(c1, c2)− 1 ≤ 8(C1 + α1) · 40 log(25/ε)

α1δ

=
320(C1 + α1)

α1δ
log

200(C1 + α)

α1δ

≤ 320 · 35

δ
log

200 · 35

δ
≤ 75 · 320 · 35 · 1075 log(200 · 35 · 10),

so that

N(c1, c2) = |Preper(fc1) ∩ Preper(fc2)| < 1082.

The same bound holds for all c1 6= c2 in C, as explained in §10.2.
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