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ABSTRACT. Let f.(z) = 2% + ¢ for ¢ € C. We show there exists a uniform bound
on the number of points in P!(C) that can be preperiodic for both f,, and f., with
c1 # cg in C. The proof combines arithmetic ingredients with complex-analytic;
we estimate an adelic energy pairing when the parameters lie in Q, building on the
quantitative arithmetic equidistribution theorem in [FRL], and we use distortion
theorems in complex analysis to control the size of the intersection of distinct Julia
sets. The proof is effective, and we provide explicit constants for each of the results.

1. INTRODUCTION

Consider the family of quadratic polynomials
fo(z)=2"4c

for ¢ in C, viewed as dynamical systems f. : C — C on the Riemann sphere. Recall
that a point z € C is said to be preperiodic if its forward orbit under f. is finite. It is
well known that the set of all preperiodic points for f. will determine c¢. Indeed, we
have

Preper(fcl) = Preper(fc2) — J(fcl) = J(fc2) = (1 =C2 (11)

in this family, where J(f.) is the Julia set and Preper(f.) the set of preperiodic points;
a sketch of the argument is given in §2.3.

For any ¢; # ¢y in C, the intersection of Preper(f.,) and Preper(f.,) is finite [BD,
Corollary 1.3] [YZ, Theorem 1.3], even though their Julia sets can have complicated,
infinite intersection. We investigate the question of how many preperiodic points
are required to uniquely determine the polynomial, forgetting the information of the
period or length of an orbit. We prove:

Theorem 1.1. There exists a constant B so that
|Preper(f.,) N Preper(f.,)| < B
for any ¢y # ¢y in C.

Remark 1.2. Our proof leads to an explicit value for B. Without making an effort to
optimize our constants, we show that we can take B = 10%2. This bound is probably
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far from optimal. The largest intersection we know was found by Trevor Hyde: the
set Preper(f_gl/lﬁ) N Preper(f_zg/lﬁ) consists of at least 27 points in C. These two
polynomials also appear in [Po].

Remark 1.3. There is no uniform bound on the periods or orbit lengths of the
elements of Preper(f.,) N Preper(f.,) as ¢; and ¢y vary. For example, taking ¢; and
¢ to be distinct centers of hyperbolic components within the Mandelbrot set, we will
have 0 € Preper(f,,) N Preper(f.,) with periods as large as desired.

1.1. Motivation and background. For any pair of rational functions f, g : C—C
of degree at least 2, it is known that a dichotomy holds: either the intersection
Preper(f) N Preper(g) is finite or Preper(f) = Preper(g) [BD, YZ]. Moreover, except
for maps conjugate to 2, the equality Preper(f) = Preper(g) is equivalent to the
statement that the measures of maximal entropy for f and g coincide; one implication
is proved in [LP] and the other in [YZ, Theorem 1.5].

We suspect a much stronger result may hold, and we propose the following conjec-
ture:

Conjecture 1.4. For each degree d > 2, there exists a constant B = B(d) so that
either

|Preper(f) N Preper(g)| < B
or
Preper(f) = Preper(g)
for any pair of rational functions f and g in C(z) of degree d.

Conjecture 1.4 would imply that a configuration of B 4+ 1 points on the Riemann
sphere, if preperiodic for some map of degree d > 2, will almost uniquely determine
the map among all maps of the same degree. A complete classification of all rational
maps having the same measure of maximal entropy is still open, however, unless the
maps are polynomial [BE, Bea|; see also [LP, Ye, Pa] for results about rational maps
with the same maximal measure.

As discussed in [DKY], Conjecture 1.4 is analogous to a question posed by Mazur
[Ma], proposing the existence of uniform bound — depending only on the genus g —
on the number of torsion points on a compact Riemann surface of genus g > 1 inside
its Jacobian. In fact, the special case of Conjecture 1.4 for the 1-parameter family of
Lattes maps
B (22 —1)?
Cdz(z—1)(z 1)

in degree 4, for t € C\ {0, 1}, was proved in [DKY]; it implies a positive answer to

fi(2)

(1.2)

Mazur’s question for a certain 2-parameter family of genus 2 Riemann surfaces.
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Remark 1.5. The bound B in Conjecture 1.4, if it exists, must depend on the degree
d. Tt is easy to find examples with growing degrees with growing numbers of common
preperiodic points. For example, the sequences of polynomials

fuz)=2%(z—1)---(2—n) and g,(2)=2(z—1)---(z—n)(z — (n+1))

have degree n + 2 with at least n + 1 common preperiodic points, for all n > 1. Their
sets of preperiodic points cannot be equal because their Julia sets are not the same:
we have 0 € J(g,) but 0 ¢ J(f,) for all n.

1.2. Further results and proof strategy. The proof of Theorem 1.1 uses arith-
metic techniques, and we first prove a version of Theorem 1.1 when the parameters
c1 and ¢y are algebraic numbers. The basic observation is that the set of preperiodic
points of f. is invariant under the action of the Galois group Gal(K/K), for any
number field K containing c. Finiteness of the intersection Preper(f,, ) N Preper(f.,),
when ¢; and ¢, are algebraic, is an immediate consequence of arithmetic equidistribu-
tion: large Galois orbits in the set Preper(f.) are uniformly distributed with respect
to the measure of maximal entropy p. [BR1, FRL, CL1], while u., = p., if and only
if ¢; = c5. We provide a few simple examples in Section 2 to illustrate these ideas.

The uniform bound in Theorem 1.1 comes from controlling the rate of equidistri-
bution, not just over C but at all places of the number field K simultaneously. To
do so, we make use of an adelic energy pairing between the polynomials f., and f.,.
This is a sum of integrals, one for each of the primes associated to a number field K
containing both ¢; and ¢y, which we describe now. For any ¢ in K and any place v of
K, we let

Aew(2) = Tim L logmax(|f7(2)]., 1}

denote the v-adic escape-rate function of f, with z in the field of v-adic numbers C,.
This is the usual escape-rate function on C, for v|oco, coinciding with the Green’s
function for the complement of the filled Julia set, with logarithmic pole at co. At
every place v, the function M., extends continuously and subharmonically to the
Berkovich affine line A" and its Laplacian is the canonical v-adic measure .., for

fe [BR2, FRL]. For archimedean places v, we recover the Brolin-Lyubich measure
[Br, Ly|]. The energy pairing is defined to be

_ (Ko 0 Q]
<fc17 f02> T UE%K W /All)v‘”" )\01,1) d,ucz,v- (13>

The pairing is symmetric, and each term in the sum is non-negative, vanishing if and
only if pie; v = ey [PST]. The integral thus provides a notion of distance between
the two measures. In particular, we have

(fers fey) = 0 with equality if and only if ¢; = cs.
We prove:
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Theorem 1.6. There is a constant 6 > 0, such that

(fer, fer) =6
for all c; # ¢, € Q.

In other words, two Julia sets cannot be too similar at all places of a given number
field.

Theorem 1.7. There are constants oy, aq, C1,Cy > 0 so that
aq h(ch cQ) - Cl S <fc1a fc2> S Q2 h(clv 02) + 027
for all ¢; # cy in Q, where h is the logarithmic Weil height on A%(Q).

Remark 1.8. The upper bound in Theorem 1.7 is straightforward to prove, and it is
also fairly easy to obtain a weaker lower bound in terms of h(c; — ¢z), the Weil height
of the difference, in place of the height h(cy, ¢2); see Theorem 7.1. The lower bound
of Theorem 1.7 is more delicate: see Section 8.

Finally, we relate the energy pairing to the number of common preperiodic points
via a quantified version of the arithmetic equistribution theorems, building upon ideas
of Favre, Rivera-Letelier, and Fili [FRL] [Fi]:

Theorem 1.9. For all 0 < e < 1, there exists a constant C(¢) > 0 so that

(o fod < (24 o= ) (lenen) +1

C1, 02) — 1
for all ¢ # ¢y in Q with
N(eq,c3) := |Preper(f.,) N Preper(f.,)| > 1.

Remark 1.10. Note that N(cy,cy) > 1 for every ¢; and ¢y, because oo is a fixed
point for every f.. Using standard distortion estimates in complex analysis to control
the archimedean contributions to the pairing, our proof shows that we can take

C(e) < log(1/e)
in Theorem 1.9.

Theorems 1.6, 1.7, and 1.9 combine to give a uniform upper bound on the number
N(cy, o) for all ¢; # ¢y in Q, thus proving Theorem 1.1 for ¢; and ¢ and Q. Once
a uniform bound is obtained over Q, it is straightforward to show the same bound
holds over C, as we explain in §10.2, which completes the proof of Theorem 1.1.

This general strategy of proof was introduced in our earlier work [DKY], and the
reader will recognize the similarities between Theorems 1.6, 1.7, and 1.9 here and
Theorems 1.4, 1.5, and 1.6 of [DKY]. However, there are significant technical dif-
ferences between these proofs. Most notably, in the setting of [DKY], the energy
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integrals at non-archimedean places could be computed explicitly; here, we can only
obtain estimates. For the computations at the archimedean places, the local heights
(escape rates) are not smooth, and the shrinking Holder exponents (as ¢ — oo) leads
to the loss of uniformity in rates of convergence in the equidistribution theorems. We
make use of classical complex dynamical methods in this article, such as the Koebe
1/4 theorem and similar distortion statements; by contrast, in [DKY], we obtained
the archimedean estimates through the use of degeneration theory and comparison
to a limiting non-archimedean dynamical system associated to a function field, as
carried out in [Fa] and [DF1, DF2]. The degeneration theory could be used here as
well, at the expense of the effective bounds.

As in the setting of [DKY], our proofs are more about the associated canonical
height functions h. on P! (Q), for f. with ¢ € Q, than about preperiodic points; the
bound of Theorem 1.1 comes from the fact that izc(a:) = 0 if and only if = is preperiodic
for f. [CS, Corollary 1.1.1]. Though we do not provide all the details, it is possible
to prove a stronger statement about points of small height: there exist constants B

and b > 0 so that |{z € PY(Q) : hq, (2) + he,(2) < b}‘ < Bforallc #cin Q. A
version of this statement is proved for the Lattes family (1.2) in [DKY, Theorems 1.8
and 8.1].

1.3. Effectiveness. We illustrate the effectiveness of our method by providing ex-
plicit constants for each of the theorems stated above. The proof of Theorem 1.7
shows that we can take ay = 1/192, C} = 3/17, ay = 1/2 and Cy = 5/2. The proof
of Theorem 1.9 provides C'(g) = 401log(25/¢). The first proof of Theorem 1.6 that we
present in §7.1 is not sufficient to provide an explicit value of d, but further control
on the archimedean energy pairing leads to § = 10" in §11.1. This exceptionally
small § gives rise to the bound B = 10%? in Theorem 1.1 that was stated in Remark
1.2.

1.4. Height pairings. The energy pairing (f,,, f.,) that we work with is a special
case of a more general construction, the Arakelov-Zhang pairing, an arithmetic inter-
section number between adelically metrized line bundles; see [Zh], [PST], and [CL2].
In this case, each f. with ¢ in a number field K gives rise to a family of metrics on
Op1 (1), one for each place v of K, with non-negative curvature distribution equal to
the canonical measure p., on the Berkovich projective line Pl Each such metric
then gives rise to a height function h, on P! (Q), recovering the dynamical canonical
height for f. of Call and Silverman [CS].

There are other natural height pairings that one could consider for ¢, ¢, € Q. For
example, Kawaguchi and Silverman study

~

[f,9lks = sup |hs(z) — hy(z)

z€P1(Q)
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for any pair of maps f,g : P! — P! defined over Q [KS]. As a consequence of
arithmetic equidistribution, we see that

(f,9) < |f - 9ls. (1.4)

Indeed, along any infinite (non-repeating) sequence x,, € P'(Q) for which h(z,) — 0,
we have by equidistribution that h,(z,) — (f, g) [PST, Theorem 1]. Such sequences
always exist (the preperiodic points of f will have height 0), so we obtain (1.4). We do
not know if a similar inequality holds in the reverse direction. However, as a corollary
of Theorem 1.7, we have

Theorem 1.11. There exist constants o, C' > 0 so that

a[f01vfcz]K5_C < <fC17fC2> < [fCUsz]KS
for all ¢y, ¢y € Q.

Proof. From [KS, Theorem 1], we have [f.,, fe,]xks < k1(h(c1) 4+ h(c2)) + ko for con-
stants k1, ko depending only on the degrees of the maps, and the definition of the
Weil height shows that h(ci) + h(ce) < 2h(cy,c2). The lower bound of the theorem
then follows immediately from the lower bound in Theorem 1.7. 0

A version of Theorem 1.11 also holds for the Lattes family fi(z) = (22 —#)%/(42(z —
1)(z —t)), with t;,t, € Q\ {0,1}, as a consequence of [DKY, Theorem 1.5].

Question 1.12. Do we have
<f7 g) = [fa g]KS

for all maps f,q : P! — P, defined over Q, with constants depending only on the
degrees of f and g?

1.5. Outline. Section 2 illustrates some basic examples towards understanding the
content of Theorem 1.1. Local estimates on the pairing are carried out in Sections
3 — 6. In Section 7, we prove Theorem 1.6, and in Section 8 we prove Theorem
1.7. Theorem 1.9 is proved via quantitative equidistribution theory in Section 9, and
Section 10 establishes our main result, Theorem 1.1. Finally, in Section 11 we make
all bounds effective.

1.6. Acknowledgements. We thank the American Institute of Mathematics, where
the initial work for this paper took place as part of an AIM SQuaRE. The authors
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per, L. DeMarco was supported by the National Science Foundation (DMS-1600718),
H. Krieger was supported by Isaac Newton Trust (RG74916), and H. Ye was partially
supported by ZJNSF (LR18A010001) and NSFC (11701508).
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2. BASIC EXAMPLES
Let f.(z) = 2% + ¢, for ¢ € C. Note that
[Preper(f.,) N Preper(f.,)| > 1

for every pair, because the sets always contain the point at co. Here we provide a few
simple examples, illustrating some of the ideas that appear in our proof of Theorem
1.1. We also explain the known result (1.1).

2.1. Disjoint filled Julia sets. When two quadratic polynomials f., and f., have
disjoint filled Julia sets, they have no common preperiodic points other than oo.
Sometimes the filled Julia sets have nontrivial intersection in C, but — when the
parameters are algebraic — the v-adic filled Julia sets are disjoint at some place v.
Then, again, there can be no common preperiodic points other than oco. Examples
are shown in Figures 2.1 and 2.2. As we shall explain below, the filled Julia set of
fe at any non-archimedean place v (defined as the set of points with bounded orbit)
with |¢|, > 1 is a subset of {z : |z| = \cﬁ/ *1, while it is the closed unit disk whenever
|, < 1.

& %

| B 4

FIGURE 2.1. The filled Julia sets of f(z) = 2% — 1 (left) and g(z) = 2% +2
(right) are disjoint; they have no common preperiodic points except for oo.

2.2. Galois orbits. Let f(z) = 2% and g(z) = 2*> — 1. Here we show that
Preper(f) N Preper(g) = {0,1,—1,00}.

We know that the preperiodic points of f are the roots of unity, together with 0 and
o0o. The preperiodic points of any f. are roots of the polynomial equations given by
f*(z) = f*(z) for any n > m > 0; so the set of preperiodic points is invariant under
the action of Gal(K/K), whenever c lies in K. In this case, we can take K = Q. So
we need to show that for all n > 3, at least one of the primitive n-th roots of unity
will have infinite forward orbit under the action of g.

The proof is elementary and has two steps:
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FIGURE 2.2. The filled Julia sets of f(z) = 222 (left) and g(z) = 22—2.1
(right) have significant overlap in C, but there are no common preperiodic
points except for oo, because the filled Julia sets are disjoint at the primes
2 and 5.

FIGURE 2.3. Filled Julia sets of f(2) = 22 and g(z) = 2z? — 1, superim-
posed. At right, a zoom of the intersection of their boundaries, suggesting a
possibly infinite overlap of Julia sets.

(1) Show that the subset of unit circle
S ={e¥ .t €[0,1/30]U[1/12,5/12]}
lies in the Fatou set for g; and

(2) for every n > 3, the set S contains at least one primitive n-th root of unity.

Step (2) can be checked by hand by observing that for each 12 < n < 30, there is
some k with (k,n) = 1and k/n € [1/12,5/12]. Step (1) follows from a series of simple
estimates, examining how ¢ acts on arcs of the unit circle.
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2.3. The Julia sets are distinct. It is well known that, for any polynomial, all but
finitely many of the periodic points of f will be contained in its Julia set, their closure
gives all of J(f), and all the preperiodic points form a subset of the filled Julia set.
Therefore

Preper(f.,) = Preper(f.,) = J(fe,) = J(fe,)

for any ¢, co € C. But it is also known that the Julia set determines ¢ in this family
fo(2) = 22+ ¢ [BE, Supplement to Theorem 1]; see also [Bea, Theorem 1]. This shows
that (1.1) holds.

3. ARCHIMEDEAN ESTIMATES

In this section, we will carry out some archimedean estimates needed for the proofs
of our main theorems. We work with ¢ € C and the Euclidean norm | -|. We
let \.(z) denote the escape-rate function of f.(z2) = z? + ¢ and let p. denote the
corresponding equilibrium measure supported on the Julia set J.. Where possible,
we provide explicit constants in our estimates, even if they are not optimal.

3.1. Distortion. We first recall some basic distortion statements for conformal maps.

Theorem 3.1 (Koebe 1/4 Theorem). Suppose f: D — C is univalent with f(0) =0
and f'(0) = 1. Then f(D) D D(0,1/4).

Theorem 3.2. [BH, Corollary 3.3] Suppose f : Up — C is univalent and satisfies

fR=z+> 2

on
n>1

near oo. Then

f(Ugr) D Usp,
for Up = C\ D(0, R).

Applying these theorems to the Bottcher coordinate ¢, near oo for f.(z) = 2% + ¢
(see [Mi] for the definition of ¢.) and to the uniformizing map ® for the complement
of the Mandelbrot set M, we get some simple inequalities.

Proposition 3.3. For all ¢ with |c| > 2 we have
log |c| —log2 < A.(c) < log|c| + log 2.

Proof. Let ®(¢) = ¢¢(c) be the uniformizing map from C\ M to C\ D so that
Ae(c) = log |®(c)|. For the lower bound on A.(c), applying Theorem 3.2 to ®~! gives
of < 26,

so that
Ae(c) > log|c| — log 2.
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For the upper bound on A.(c), apply Theorem 3.2 to ® and sets Uss, s > 1, where
2s = |c|. O

We can do similar things in the dynamical plane.

Proposition 3.4. For each c¢ with |c| > 2 and every z with |z| > 2e*© (s0 in
particular for all |z| > 2%/2|¢|'/?), we have

log |z| —log2 < A.(2) <log|z| + log2.

Proof. Let R = ¢*(. Then apply Theorem 3.2 to ¢! and sets U,z for all s > 1.
Then for sR = e*(®) so that s~ = e*(0=2(2) we find that

2] < 260,

This gives the lower bound of the proposition.
For the upper bound, set R = 2e*(*) and apply Theorem 3.2 to sets U,x for all
s > 1. Then for |z| = sR’ so that s7! = 2|z|71e*(®) we have

Ae(2) <log|z| + log2.
O
3.2. Controlling escape rates from below. We will need both upper and lower

bounds on the escape rate A, near the Julia set J. of f.(z) = 2% + ¢. We begin with
an elementary observation.

Lemma 3.5. Fix any c with |c| > 25. Let +b be the two zeroes of f.. Then
and
1
A(2) = Slogo
for all z ¢ D(b,1) U D(—0b,1).

Proof. First observe that b = iy/c, so that |b| = |c['/2. Suppose b + t lies on the
boundary of D(b, 1), so that |t| = 1. Then

fo(b+1t) =2bt +1* =t(20 + 1)

has absolute value > 2|¢c|'/2 —1 > |c['/24-1 for |c¢| > 25. In particular, f.sends D(b,1)
with degree 1 over the union D(b, 1) U D(—b,1). Similarly for D(—b, 1), proving the
first claim about the measure of each disk. As the Julia set of f. is contained in these
two disks, we know that \. is harmonic on the complement of their union. Under one
further iterate, we have

1F2(b+ 1) > 4le| — 4le|Y? +1 = |c| = 3|c| — 4]¢|V? +1 > 3|¢|
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because |c¢| > 25. From Proposition 3.4, we conclude that

A(f2(b+1t 1 1
Ao-+1) = 2LED) 5 Log i) ~10g2) > L 1oge
and similarly for A.(—b+t) with || = 1. As A is harmonic on C\ (D(b,1)UD(-b,1)),
this proves the lemma. O

We now extend the statement of Lemma 3.5 to two further preimages of 0 under

Je-

Lemma 3.6. Forn = 1,23, and for each ¢ € C, we let D,(c) be the union of the
2" disks of radius &, = |2¢|™""V/2 centered at the solutions z to f*(z) = 0. For each
lc| > 25, the 2" disks are disjoint, each has p.-measure 1/2", and

)\C(Z) = on+1

log|c]
for all z ¢ D, (c) and n =1,2,3.

Proof. Lemma 3.5 provides the result for n = 1 and for any |c¢| > 25. Note that the
two disks of radius 2¢; = 2 around the solutions to f(z) = 0 are disjoint.
For n = 2,3, suppose that z is a solution to fI'(z) = 0. Note that

Ae(2)
by Proposition 3.3. Since |c| > 25, the point z must lie in the disks of radius 1 about
+i./c by Lemma 3.5. In particular, we know that |z| > |c|'/? — 1, so that

1 —(n—
|fe(z+1) — fo(2)] > |20|(n—_1)/2 (2|c|1/2 —2— 2] ( 1)/2)

1 1 1
— 211 — — .
PRIC=IE (*f( |c|1/2) |2c|-n/2>

As |c| > 25 and n is 2 or 3, we have

1 1 4132 1
2(1—- ——) - > ——>1
f( |crl/2) R 2= 5 50

1 1 1
= 2n+1)\c(c) < g)\c(c) < §(10g|c| +log2) < Zlog|c|

and we conclude that

1

By a similar argument, we also have

[fe(z+ 1) — fo(2)] < 2e,1.

As the disks at level n = 1 and radius 2 are disjoint, this proves the lemma for n = 2.
It only remains to show that the disks at level n = 2 of radius 25 = v/2/c|'/?
are disjoint, and the proof will be complete also for n = 3. But this is clear for |¢|
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sufficiently large. Indeed, the points z satisfying f2(z) = 0 have expansions in ¢'/? of
the form +4(c) and £/'(¢) where

5
‘()—(N’+ +3 )‘ m (3.1)
with binomial coefficients )
1/2
C{/2 = ( ] ) ’
and similarly
' 5
#a-(ve- 3+ 5z) | <
In particular, the distance between the two Closest such roots satisfies
5
8(c) = B'(c)] =1 - 521 > V2/|e|'?
for |¢| > 25. O

3.3. Controlling escape rates from above. We now provide an upper bound,
applying the Distortion Theorems stated above.

Lemma 3.7. Fiz any ¢ with |c| > 25. For each n > 1 and for all z € C with
. 1
dist(z, J.) < ERETIRIC=y LI
we have

1
Ae(2) < Q—n(log c| +log2) < cl.

Proof. The two inverse branches of f, are univalent on D(0, |c|). Fix any point z in J..
From Lemma 3.5, we know that |zo| < |c['/?2+1, so that f, has two univalent branches
of the inverse defined on the disk D(zg, |c| — |c[*/2—1) and |(f7)(20)| < 27(|c|*/?+1)".
Applying Theorem 3.1 to the inverse branches of each iterate on these disks about
points zy € J., we find

—|e|¥2 — 1
—np . 1/2 O D -n |C| |C| )
e (20, lc] — |c] ) f"(=0), 4-27(|c] /2 + 1)
From Proposition 3.4 (and the maximum principle for A.), we know that A.(z) <
log |¢| + log2 on D(0, ¢), and therefore

1
Ac(2) < 5, (loge] +log2)

on each of these disks of radius (|c| — [¢|'/? — 1)/(4 - 2"(|¢|"/? + 1)") about points in
the Julia set. Finally, we observe that
A=l =1 _ = el =) | ldagyes) 1
42n(’cll/2_|_ 1>n - 42n|c|n/2(1 + |C|—1/2)n — 42n|c‘n/2<6/5)n — 53n |C’(n—2)/2
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for all |c| > 25. O
Proposition 3.8. Fiz L > 27. For all 0 <r < 1/4 and for all ¢ € C, we have
Ae(2) < rlogmax{|c|, L}

for every z in a neighborhood of radius
1
(max{]c], L})31oal1/)

around the filled Julia set K..

Proof. First assume that |c¢| > L. Note that J. = K, in this case. Lemma 3.7 states

that
1

gn—1
whenever dist(z, J,) < (5-3"|c|®2/2)71. For L > 27 = 3%, we have 5-3" = 15-3""! <
LA (=173 — [ (n4+2)/3 - Therefore,

5. 3n|c|(n—2)/2 < L(n+2)/3|c|(n—2)/2 < |C|5n/6.

Ae(2) < 5= log ¢

Taking r = 1/2"71, so that n = log(1/r)/(log2) + 1, we can take any

5

> om/6 = =

w(r) n/ 6 log 2

and then any z satisfying dist(z, J.) < |e|™) will also satisfy \.(z) < rlog|c|. In

particular, for any r < 1/4, we can take x(r) = 3log(1/r). This proves the proposition
for |¢| > L.

Now assume |c¢| < L. For |c| > 2, Proposition 3.4 implies that if |z| > 23/2|c['/2,

then

log(1/r) + % ~ 1.2log(1/r) +5/6,

Ae(z) < log |z| + log 2.
Consider the circle of radius L. For all |c| < L, we have 23/2|c[3/2 < 23/2[Y/2 < L so
that

Ae(2) <log L +log2, (3.2)
for all 2 < |¢| < L and for all |z| = L. But then, fixing z, and using the fact that A.(z)
is subharmonic in ¢, we obtain the inequality (3.2) for all |¢] < L and all |z| = L.
Furthermore, for all |¢| > 2 and |z| > 2%/2|c|'/2, we have the lower bound that

1
Ae(z) > log|z| — log2 > 3 log(2|c|) > 0

so that the Julia set is contained in a disk of radius 2%2|¢|'/? < 23/2LY/2. On the
other hand, for |¢| < 2, it is easy to compute that the filled Julia set lies in a closed
disk of radius 2, so we have

K. C D(0,2%%L'/?)
for all |¢| < L.
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We now fix any z ¢ K, with |z| < L, and let zg € K, be a closest point to z. Let
n = n(z) be the smallest n > 0 for which |f"(z)| > L. Then

1 -
Ae(z) = ﬁ)\c(ff (z)) <
On the other hand, as |f.(z)| = |2z] < 2L for all |z| < L, we have
12 < L—2%2LY2 < |f2(2) = f2(20)] < (2L)"]2 = ),

(log L + log 2).

27171

so that
12
|z — 20| > oL
In other words, for all z within distance 12/(2L)" of K., we have
Ae(2) < T (log L +1og2) < T log L.

Note that 28/12 < 27 < L and 2* < L, and so
12/(2L)" > 1/(27SL™+Y) > 1/ L0840+t — /1301

Writing r = 1/2"72, we have n = log(1/r)/log2 + 2, so that
5

4" T 4log2

for all r < 1/4. Consequently, for all » < 1/4, for all |¢|] < L, and for all z within
distance 1/L31981/7) of the filled Julia set K., we have that

Ae(2) < rlog L.

log(1/r) + g ~ 1.81og(1/r) + g < 3log(1/r)

4. BOUNDS ON THE ARCHIMEDEAN PAIRING

In this section, we provide estimates on the archimedean contributions to the pair-
ing (fe,, fe,), to obtain a local version of Theorem 1.7. As in the previous section, we
work with ¢ € C and Euclidean absolute value |-|. We let A.(z) denote the escape-rate
function of f.(z) = 2% + ¢, defined by

o .
Ac(z) = 7}1_)110102_”10g+ |fc (’Z>’7

where log"™ = max{log,0}. We let p. = %A/\c denote the equilibrium measure
supported on the Julia set .J.. Where possible, we provide explicit constants, even if
they are not optimal, for our estimates of the Euclidean energy

E(c1,c9) = /)\cl dpte, = /)\62 dite, -
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Theorem 4.1. There exist constants C,C" > 0 so that
1 1
0 log" |c; — o] — C < Ey(er, ) < §logJr max{|ci|, |e2|} + C'

for all ¢y, co € C. Furthermore, there exists L > 0 so that if r := max{|c1|, |c2|} > L

and
3

m < |Cl - C2’7

then
1
64
Remark 4.2. The proof shows that we can take L = 1000, C' = 1—16 log2L < 1/2, and
¢’ =log8 < 5/2 in Theorem 4.1.

logmax{|cl|, |02|} < Eoo<01762)‘

4.1. Proof of Theorem 4.1. Throughout this proof, we will assume for notational
convenience that

r=|c| > el
We proceed by cases, determined by just how close the two parameters are. We then

apply Proposition 3.6 to obtain the needed lower bounds on the escape rate of A\, on
the Julia set J,.

Case 0. Suppose |ca| < 25. For |co| < 2, it is straightforward to compute that the
filled Julia set satisfies K., C D(0,2). For 2 < |e] < 25, Proposition 3.4 provides a
lower bound of

1
Aca(2) = log |2] —log 2 > S log(2[ea]) > 0

for |z| > 2%/2|cy|'/2. Therefore, the Julia set of f., is contained in a disk of radius
23/2|¢y |12 < 23/25. Thus, for all |cp| < 25 and |¢;| > (23/2 -5+ 1)? &~ 229.3, Lemma
3.5 implies that A, (z) > 1log|ci| for all z € J,,. This gives

1
/>‘C1 d:“Cz > Z log |Cl|
for |cy] < 25 and |¢p| > 230.
In Cases 1-3, we may assume that r = |c1| > |ca| > 25.

Case 1. Suppose that for any choice of square roots, we have |,/c; — /c2| > 2. By
Lemma 3.5 we have A, (z) > {log|ei| for all z € J,,, so

1
/ Acr (2) dptey 2 7 log e

for |eq| > |eo| > 25.
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Case 2. Suppose that there is a choice of square roots for which 7‘1% < |Va —
V/C2| < 2. With these choices of square roots, the solutions of f?(z) =0 are

Ao =ivets +8\f+0(|1|)

' 1
#le) =i +o(n).
8\/_ ]
along with —3(c) and —f'(c). By Proposition 3.6, if the disk D(8(c3), 1/|2¢2|'/?) does

not intersect any disk of radius 1/|2¢;|'/? about a solution of f2(z) = 0, then for all
z € D(B(cy),1/|2¢2|"/?) we have

and

1
Ao (2) 2 g logle,

and since the same is true for the disk centered at —f(cy) by + invariance, the
inequality is satisfied for a set of j.,-measure 1/2. Therefore,

1
/)\Cl dpie, > Elog|c1\.

On the other hand, as |\/c1 — /G| < 2, if D(B(c2),1/]2¢a|'/?) intersects any disk of
radius 1/]2¢;|"/? about a solution of f2(z) = 0, that disk must be centered at either
B(ey) or B'(c1), since |B(ca) + B(e1)| > |e1|Y/? and similarly for B(cy) + '(c1). We have

1 1 1
Ber) = plea) = it - va + § (o= - o= ) +0 (7).
so that using the assumed bounds, we have

NCERNC
9 1 4 1 2 1
1B(c1) — Blea)| > alZ "8 (W) +0 (@) EIRE o (E) ’

using for the middle term the crude bound |e; —cs| < 4|c; |2 implied by |,/c1 —+/c3| <
2. Then, exactly as in (3.1) in the proof of Lemma 3.6, we can take

2 5 1
|B<Cl) ( >|—W_2|02|
because |c;| > |ea| > 25. Since |cp|'/? > |12 —2, taking |c;| > 230 is enough to guar-
antee this distance will be larger than 2(1/|2c,|'/?), and the disks D(8(c1), 1/|2¢1|"/?)
and D(B(cy), 1/]2¢,]*/?) will be disjoint. Similarly we deduce that the disks D(3'(c1), 1/|2¢1|*/?)
and D(f'(c2),1/|2¢|'/?) are disjoint.
But observe also that if

: 2 V2
8(c2) = B'(e1)] < 1265|172 - |co| 172
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then '(c) must be far from both 8(c;) and B(c;), because
8'(c2) = Bler)] = |B'(c2) = Blea) + Blea) — B'(er) + B'c1) — Ble)]
> [B'(c2) = Blea) + B'(c1) — Blen)| — v2

PEE
2 o5 1
- 9_ L 4.2 =
o] 1/ 4 e
We therefore have, for r = |¢;| > 230 and square roots satisfying 7«1% < [y —v/el <

2, at least one of the four disks of radius 1/|2¢,|"/? around a solution to f2 (0) is disjoint

from the four disks of radius 1/|2¢;|"/? about the four solutions of f2 () = 0. By the
+ symmetry, two of these disks must be disjoint. As these two disks carry 1/2 of the
measure [i.,, we have by Proposition 3.6 that

1
/)\Cl dftc, > Elog|01|.

Case 3. Suppose there is a choice of square roots for which

3 2
5 S Wa—vel < 5.

We will argue precisely as in Case 2, but with the third preimages of 0 rather than
second. Two solutions of f2(z) = 0 have the form

. 1 1 1 1
S(C) —Z\/E+§—8—\/E+8—C+O(|C|—3/2)

and
1 31 1 1
"(¢) =1 —+——-—4+0—5)-
s'(c) Z\/E+2+8\/E =t (\0\3/2)
From the Taylor expansion, and the fact that |c¢| > 100, the above big-O’s have the
following estimate, to be proved below:

4 1 7 1 1
s(c)—(z\/z+§—8—\/z+§)‘§5lc‘g (4.1)
and similarly for s’(c). Notice that under the action of f., we have s(c) — [(c) and
s'(c) = B'(c), and that both s(c) and s'(c) are distance at least 1/2 from all other
solutions of f3(z) (except each other).

If the disk of radius 1/|2¢y| about s(cs) intersects any disk of radius 1/|2¢;| about a
solution of f2 (z) = 0, then that disk must be centered at either s(c;) or s'(¢;), because
of the form of the power series expansions of the various third preimages of 0. If this
disk D(s(c),1/[2¢s|) is disjoint from both D(s(c1),1/]2¢1]) and D(s'(¢1),1/|2¢1]),
then from the + symmetry and Proposition 3.6, we have

1 1
Aey Aptey, > 1 =—1 :
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Now, we have by our assumed bounds that |/c; — /2| < 2|e1|7'/2, so that

4|Cl|1/2 B

o1 = eal = (yer —VE) (e + V@) < i = 4

and therefore,

s(er) — s(e)] > 2 101
S| C — S\ C — — E—
' N 2le|  8leaf? leolz  eal

for |c1] > 1000. So the disks D(s(c1),1/|2¢1|) and D(s(c2),1/|2¢2|) are disjoint. But
if

1(er) - s(e2)] < |—1|
then
s(c1) — §'(c2)| = |s(c1) = s'(c1) + 5 (1) — s(ca) + s(cz) — §'(c2)]
> |s(c1) — 8'(e1) + s(ca) — 8'(ca)| — é

V4
[\3|N|
Y

S‘H

+  +
&‘H
~__

_|_

[\

@)

> (ﬁw% 0 1

—_
‘ -

> -
= 2|V e

for |c¢;| > 1000. We conclude in this case that the disk D(s'(c3),1/|2¢2|) is disjoint
from the eight disks of radius 1/|2¢;| about solutions of f2 (z) = 0, and hence (again
using symmetry and Proposition 3.6) we have

1
/Acl dpte, = £ loglea.

Finally, since
3 3 3

Ve — @G| < =— = e — 6] < =—(2]e1]V?) € ——

| C1 C2| 2|cl| |Cl C2| 2|Cl|( |Cll )— |Cl|1/27

these three cases cover all possiblities for the stronger lower bound in Theorem 4.1.

Proof of estimate (4.1). From the estimate (3.1), we have
1

8y/c

1
B:i\/a—é-i- +a
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with |a| < 5/4|c| whenever |c| > 25. Furthermore, let us assume that
1 1 1 i
a
s=y—c+pB=ive|l+—+—+ —— — - )
p=ive ( ive 2 8i\/E c)

For convenience, we set

1/2
b " 1 N 1 . 1 a / d 1 N 1 . 1 a
= —_—t—t —— — - and e= —+ — + —— — —
ive 2 8i\J& ¢ ive 2 8o ¢
and then one has

1 1, 1
b=(1+e)/? =1+ 3¢~ ge + 1—66 + ZC{‘/Qe” (4.2)

where C7), are the binomial coefﬁments In the following, we assume that |¢| > 100,

so that e can be estimated as |e| < 11 \/_ Consequently as |C',| < 1, we have
1 1 1 1 a )
Cloe™ <1.7— and = — 4+ — | ==< ’
; 1/2 | | 2 | (Z\/E 2c 82'\/53) 2cl = 8|c|?
and moreover
1 1 1 1 1 1 1
~le? — (== | < =leff and — |€* — (——)| < =3
8 i/ 16 ive |~

Finally, we get an estimate of b using the expansion (4.2) and therefore the estimate
(4.1) of s since s = i/c - b.
OJ

We are now ready to complete the proof of the theorem. Choose any L > 1000. If
max{|ci],|ce|} < L or |e; — 02| < 2, then |¢; — ¢3] < 2L and the lower bound holds
trivially with the constant — log 2L.

Otherwise, if |¢; — ¢o| > max{|cl| |c2|}, the hypotheses of either Case 0 or 1 hold,
and we have

1 1
glog+ ley — o] < Zlog|cl\ < /Acl(z) dfbc,,

as needed. On the other hand, if max{|c1|, |c2|} > L and 2 < |¢1—c2| < max{|c1], |2},
then the hypotheses of either Case 0, 1, or 2 hold, and we have

1 1
S 108" o1 — ea] < g log el el < [ A e

Thus in every case we have the first lower bound

1
ElogJr leg — o] = C < /)\cl djtc,

for C' > —log2L
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To prove the upper bounds, suppose first that |c;| = max{|ci|, |ca|} > 2. If |ca| > 2,
then by Proposition 3.4, the Julia set of f., is contained in the disk D(0, 2%/2|cy|'/?);
this also holds for |cs| < 2 as in that case, J., C D(0,2). Also by Proposition 3.4, we
have for all z € D(0,2%2|¢;|'/?) (which contains D(0,23/2|cy|'/?)) that

3 1
A, (2) < 510g2 +3 log |1 + log 2. (4.3)

On the other hand, for |¢;| = max{|c1],|c2|} < 2, we use the fact that A\, (z) is
subharmonic in both z and ¢4, so that the inequality (4.3) holds on the circle {|z| = 4},
replacing |¢;| with 2, for all |¢;| < 2.

Applying this inequality to z € J., we see that

1
/)\c1 dpte, < §log+ max{|ci|, |co| } + log 8

for all ¢1, ¢y € C. This completes the proof of Theorem 4.1.

5. NONARCHIMEDEAN BOUNDS FOR PRIME p # 2

Let ¢; # ¢, be two elements of Q. Fix a number field containing ¢; and ¢y, and fix
a non-archimedean place v which does not divide p = 2. In this section, we provide
estimates on the local energy

EU = /)\cl’v d,U/27qJ = /)\cg,v d,u‘LVJ'

Because the place v is fixed throughout this section, we will drop the dependence on
v in the absolute value | - |,, denote the local Julia set of f. by J., its escape rate by
Ae, and the equilibrium measure by p..

Theorem 5.1. Fixz a number field K and place v of K that does not divide p = 2.
For all ¢1,c9 € K, we have

1 1
Zlong et — | < E, < 510g+ max{|ci|, |c2|}.

Furthermore, if r := |c1| = |c2| > 1 and

1
ley — co| > 2

then
1
Ev > ]__6 log r.

We also prove an estimate on A, from above, at points near the v-adic Julia set of
fe, that will be needed for the proof of Theorem 1.9.



COMMON PREPERIODIC POINTS FOR QUADRATIC POLYNOMIALS 21

5.1. Structure of the Julia set. We work with the dynamics of f,. on the Berkovich
affine line A1“" associated to the complete and algebraically closed field C,, and we
denote by (., the Type II point corresponding to the disk of radius r € Q¢ about
x.

For |¢| < 1, the map f, has good reduction, and J. = (p; is the Gauss point. For
lc|] > 1, the Julia set of f. is a Cantor set of Type I points, lying in the union of
the two open disks D(=£b, |¢|'/?) with f.(£b) = 0. In particular, all points z € J.,

will satisfy |z| = |c|['/?. For any point z with absolute value |z| > |c|'/2, we have
|f™(2)| = |2)*" for all n > 1, so that

Ae(2) = log |z]. (5.1)
It is also the case that .

A(2) < Slogld (5:2)

for all |z| < |¢|'/2.
Taking one further preimage of 0, we may choose 3 and /3’ so that

fe(B)=0b, [f(B)=—b [B=b]=|6"—b=|3-F=1, (5-3)

and the Julia set will lie in the union of the four disks D(£+3,1) and D(£p’,1). See
Figure 6.1.

|c|1/2

|C‘_1/2

e~

FIGURE 5.1. The tree structure of the non-archimedean Julia set, with
lely > 1 and v [ 2.

Note: identifying the branches from the Type II point (,; with the elements of
P'(F,), and denoting the class of z € C, by , we have

B=b+a andf =b—a
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for some a € Fp. In other words, the disks containing the Julia set are centered
around the preimages of 0. This is because the transformation from ¢, ; to its image
fe(Goa) = Co,jc1/2; acting on these branches, is linear in local coordinates. Similarly at
the Type II points (g -1/2 and (g | -1/2, the branches containing the Julia set will
be symmetric about g and f’. We will exploit this symmetry in our proof.

5.2. Proof of Theorem 5.1. If |¢;| or |c| is < 1, then because of good reduction,
we have

1 1
E, = imaux{logJr le1], log™ |ea|} = ilogJr ler — e

If |c1| and |ca| are both > 1, then we can split into further cases. For |ci| > |caf,
we have

1
>\02(21> = 5 IOg ‘61’

from 6.1 for all points z; in Julia set J.,. Similarly for |¢;| < |cq|, and therefore,
E, = %max{long le1], log™ |eal} = %log+ ler — el
For the remainder of the proof we assume that
ri=|c1| = |ea| > 1.
From (6.2), we will have
Aey(21) < %log |cal

at all points z; of the Julia set J., ,,. Therefore,
1 1
E, < Slogle| = 5 logr,

proving the upper bound in the theorem.
For the lower bound on E,, we now break the proof into cases, depending on how
close the two parameters are to one another.

Case 1. Assume that
1< <si=|c,— o <7 =ler| = |eal.

Let 2; be any point in the Julia set J,.,. Then its image 27 + ¢; must lie in the disks
D(#b;,7?) and have absolute value r'/2, so that f.,(z1) = 224cy = (22+¢;)+(ca—c1)
satisfies

|[fea(21)] = 5 > 72,

It follows that [f (21)] = 5" for all n. This gives

1 1
Aey(21) = 5 log s = §log ler — e
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for all z; in the Julia set of f.,. Therefore,

1 1
E, = 510g|cl — o] > Zlogr.

Case 2. Now suppose |c; — c3| = r'/2, and recall that b? = —¢;. Note that
(bl + bg)(bl — bg) = b% - bg = Cy — (1 (54)

and at least one of the factors on the left hand side has norm /2 so the other must
have norm 1. Let’s assume the second has norm 1, so that

by — by| = 1.

If the two branches from ¢, 1 = (p,1 containing J,, are disjoint from those contain-
ing J.,, then for any element 2, € J., we have

|for(22)| = 7Y/ and | f7 (20)] = (r1/)*" for all n > 2

so that

for all z, € J,,, and
E, = Zlogr = §log|cl — 0o
Note that from (6.3), we have
(Br = B2)(Br+ B2) = Bf = By = by —c1 = (b —c2) = (by = b2) + (c2 = c1),  (5.5)
and the right-hand-side has absolute value |c; — c3| = r'/2, so that
61— Bo| = 1.

However, it can happen that one of the branches from (3, ; containing .J,,; does coincide
with a branch containing J.,, so that, for example, D(f1,1) = D(/35,1). Indeed,

(B = B3)(Br + B3) = (b1 + b2) + (2 — 1)
and the terms on the right-hand-side might cancel to give absolute value smaller than
r1/2. But by the symmetry of the disks around the points b;, if D(31,1) = D(35,1),
then the other disks D(/31,1) and D(/3, 1) must be disjoint. Indeed, if b; + a1 = 81 =
ggl = BQ — (9 and Bl — ] = 51/ = 52 = 52 + Qo in Fp, then
200 = =209 = «a; = —ay because p # 2,

so we must have b, = by, which contradicts the fact that |[b, — by| = 1.
It follows that for all zo € D(f5,1), we can compute

1
Aei(22) = 7 logr
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By the symmetry of the Julia sets, this will also hold for points in the disk D(—/5, 1),
and together they make up half (w.r.t. the measure p.,) of J.,. Therefore,

1 1
E, > glogr = Z—llog|cl — 0.

Case 3. Assume that

1<s:=|c; —cof <12

Then from (5.4), we have
1

Also, from (5.5), we see that
1 s
1 <|Bi= Bl =g <1
and similarly for 3] and 3. Consequently, the four disks D(£/;, s/r'/?) and D(£0, s/r/?)
are disjoint from the corresponding disks around 45 and +/). Furthermore, for any
29 € J.,, we have

Fa(z2) = s, 1f2(z2)] = 52, and [£2(20)] = (sr/2)2" for all n > 2,

c1
so that )
Ao, (22) = 1 log(srl/Q)
for all z, € J.,. Therefore,

1 1 1
E, = ZlOg(S’f’l/Q) = glogr + Zlog|61 — ool

Case 4. Now suppose |¢; — ¢z| = 1. The proof here is similar to Case 2, but we

work with the disks around 8 and §’. From (5.4) and (5.5) we have
1
by — bo| = |51 — Bo| = |81 — B3] = =Y
Because of the symmetry of the Julia set around § and f’, if for example the disks
D(B1,1/r'/?) and D(3,1/r/?) coincide, then the disks D(3}, 1/r'/?) and D(By,1/r'/?)
must be disjoint, so that
fa(2) =1, [f2() =72 and |fL(2)| = (r/*)*" for all n > 2,

for all z € D(f},1/r'/?). Therefore,

1
A, (2) = 3 log r

for half of J.,, and consequently,

1
E, > 1—610g7“

in all cases with |¢; — o] = 1.
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Case 5. The final case to treat is with
1/r? < s:=|c; — o] < 1.

We have
S 1

1 o . / |
;< b1 — by| = 151—52|—‘51_52’—7T/2<m
from (5.4) and (5.5). All points zo € J., will satisfy

F(z)| =25 =rs  and |f4(2)] = (rs)* " for alln > 3,
-

so that .
)\cl (22) = g log(rs)
and
1 1
E, = - log(rs) > — logr.

8 16
This completes the proof of the theorem.

5.3. An upper bound on the local height near the Julia set. We will use the
following proposition in the proof of Theorem 1.9. This is a non-archimedean analog
to the distortion estimate provided in Proposition 3.8.

Proposition 5.2. Suppose v is a non-archimedean place of K, not dividing 2. For
each ¢ with |c|, > 1 and all 0 < r < 1, we have

Aew(2) < 1log|cly

for all z within distance
1

|C|L0g(1/7“)

of the Julia set J, in PL. For|c|, <1, we have \.,(z) =0 for all |z|, < 1.

Proof. Recall that all points = of the Julia set J. satisfy |z| = ]c]},/ > Forall z € J,
and all z = x + gy with |y| < |¢|'/?, we have

|fe(2) = fe(@)lo = 122y + 2|, = lylle]2.
Recall that \.(z) = log |2 for all |z| > |c['/2.
In particular, for any n > 1 and any point z within distance |c|/|c|["? of the Julia
set will have A.(2) = 27" A(f"(2)) < 27"log|c|. In other words, setting r = 1/2",
then

log(1/r) =nlog2 > g -1

so that any point z within distance |c|~1°81/") of the Julia set will satisfy
Ae(2) < rlog|el.

The proof of the last statement of the proposition is immediate, because f. has
good reduction with J. = (o1 and \.,(2) = log™ |z|,. O
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6. NONARCHIMEDEAN BOUNDS FOR PRIME p = 2

Let ¢; # ¢o be two elements of Q. Fix a number field containing ¢; and ¢y, and fix
a non-archimedean place v which divides the prime p = 2. In this section, we provide
estimates on the local energy

E, = />\c1,v dMCQ,U - /)\02711 d,ucl,v-

Because the place v is fixed throughout this section, we will drop the dependence on
v in the absolute value | - |,, denote the local Julia set of f. by J., its escape rate by
Ae, and the equilibrium measure by p..

Theorem 6.1. Suppose c¢; and co lie in a number field K, and v is a non-archimedean
place of K with v | 2. For all ¢y, ¢y € K, we have
1 1
Elong ey — | < E, < Elong max{|ci|, |ca| }.
Furthermore, if r := |c1| = |c2| > 16 and
lcr — co| > 2
then

1 3
B, > —logr — — log 2.
=16 %" T 16

We also prove an estimate on A, from above, at points near the v-adic Julia set of
fe, that will be needed for the proof of Theorem 1.9.

6.1. Structure of the Julia set. As in the previous section, we work with the
dynamics of f. on the Berkovich affine line AL associated to the complete and
algebraically closed field C,, and we denote by (,, the Type II point corresponding
to the disk of radius r € Q- about .

And as before, for |¢| < 1, the map f. has good reduction, and J. = (p; is the
Gauss point. For |c¢| > 1 and for any point z with absolute value |z| > |c|*/2, we have
|f™(2)| = |2)*" for all n > 1, so that

Ae(2) = log |z|. (6.1)

It is also the case that )
A(2) < 5 loge (6.2)

for all |z| < |¢|'/2.

But unlike the setting of the previous section, the geometry of the Julia set and the
dynamics on the associated tree is not constant for all |¢| > 1. First, for 1 < |¢| < 4,
the map f. has potential good reduction, so its Julia set is a single Type II point. For
all |c| > 4, the Julia set will be a Cantor set of Type I points. As in the previous
section, the Julia set is contained in {z € C, : |z| = |c|'/?} for all |¢| > 4.
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We let £b satisfy f.(£b) = 0. Note that
b~ (~)| = [20] = [bl/2 = |e"*/2.
We let § and ' be further preimages of 0, so that
fe(B)=0b, [f(B)=-b, [B-bl=[8—-0b=[8-p]=1,

and the Julia set will lie in the union of the four disks D(£4,1) and D(£+4',1).
Distances between points scale as follows:

27

(6.3)

Lemma 6.2. Suppose |c| > 4 and z is in the Julia set of f.. For any |y| > |c['/?/2,

we have
|[felz +y) = fo(2)] = yI*.
For |y| < |e|*?/2, we have
|[fe(z +y) = fe(2)] = ylle]2/2.
Proof. Computing the image of z + y, we have
fzt+y)=E+y)? +e=(2+0o) + (¥ + 2y2).

Because z lies in the Julia set, we know that |z| = |c['/2, and the result follows.

ef!/2
ef1/2/2
1

2/|c|*/*
4/|cl

0 _ﬁ’ 7b _ﬁ/ ﬂ’ b [)’

FIGURE 6.1. The tree structure of the non-archimedean Julia set, with
lcly > 4 and v | 2, vertically ordered by | - |, as noted on the right.

Note that for |¢| > 16, the Type II point
Co,lel/a = fe(Cpperrz/2)

O

will lie above (y |.1/2. This simplifies computations and is the reason for taking r > 16

in the statement of Theorem 6.1.
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6.2. Proof of Theorem 6.1. Suppose first that |c;| # |ca|. If |¢;| < 1 for at least
one 7, then

1 1
E, = émax{logfr le1], log™ |eal} = élogfr lcr — cal.

If 1 < |e1| < |eaf (or vice versa), then all points z € J,, satisfy |z| = |co|/? > |c1]"/?,
so that A, (z) = log |z| = 1 log|cs], giving

1
E, = 3 max{log™ |c;|,log™ |ca|} = 3 log™ |cy — ¢y

Note that whenever 1 < |co| < |1, we have A\i(z) < log|cy| for all z € J,,. It
follows that

1
E, < 3 max{log™ |c;|,log™ |cal}
in every case, proving the upper bound of the theorem.
If 1 < |e1] = |eo| <16, then |c; — o] < 16, so that ilog lep — co| <log2.
For the remainder of the proof, we assume that

ri=|c1| = |e2| > 16.

Exactly as in the proofs of Theorems 4.1 and 5.1, we break the proof into cases,
according to how close the two parameters are. Recall that £b; denotes the preimages
of 0 by f...

Case 1. Assume that the preimages b; and by are chosen so that
S = ’bl — bg‘ S ’bl + bg‘
and
7“1/2/2 <s<rl?
Since |b; + b;| = |bi|/2 = r'/2/2, and because
(bl — bg)(bl + bg) = b% - bg = C—C (64)
it follows that
ey — ¢ = 52

For all z € J.,, we have

n

fe (2)| = s
so that
Ai(z) = log s
and
1 1 1
E,=logs= 510g|01 — o] > §1ogr —log2 > Zlogél
for all » > 16.

Case 2. Assume that the preimages b; and by are chosen so that

S = ’bl — bg‘ S ’bl +172‘
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and
1<s< 7"1/2/2.
Then |by + by| = r'/2/2, so that
ey — c| = sr1/2)2
from (6.4). For all z € J.,, we have
fe ()| = 57272 and |f(2)] = (sr'/2/2)>" for all n > 2
so that .
M(z) = 5 log(sr2/2)
and
1 L2 1 1 1
E, = §log(3r /2) = 510g|cl — | > §logr —log2 > Zlog’r
for all r > 16.
Case 3. Assume that the preimages b; and by are chosen so that
1= |b1 — bgl < |b1 —|—b2| = T1/2/2.
Then
ey — | = rY/%/2

from (6.4).
Recall that £3; and +/! are further preimages of 0, and

(Br = B2)(Br+ B2) = Bf = B3 = by —c1 — (br —c2) = (b1 = ba) + (2 — 1) (6.5)
Similarly for 3. Tt follows that
|81 — Ba| = By — B3] = 1.
We also have
(Br = B3)(Br + B3) = B7 — (By)" = by — c1 = (=by — ¢3) = (b1 +b2) + (ca — c1). (6.6)

The right-hand-side is the sum of two terms with the same absolute value and may
lead to cancellation, so it could happen that D(S;,1) = D(/3},1). On the other hand,
we also have

(B = B2) (B + B2) = (1) — B3 = —=by — c1 — (ba — ¢2) = —(b1 + b3) + (2 — 1), (6.7)

and |(by + by) — (—(by +b))| = |2||by + ba| = 71/2/4. In other words, the cancellation
on the right-hand-sides of (6.6) and (6.7) cannot bring us smaller than r'/2/4 in both
equations. Consequently, we have

By — Bh| or |8 — Ba| = (r'/2/4)/(r'?/2) = %
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Consequently, at least half of the Julia set J., by symmetry must be at distance at
least 1/2 from the Julia set J.,. Note that r > 16 implies that 1/2 > 2/r'/2. So, for
half of the points z € J.,, we have

1/r2\*
2 e —
zEl=3(5) =5

1 1
M(z) = ) log(r/8) = Z(logr —log 8)
for these z values. We conclude that
1
4

and thus

1 1 1
E, > glog(r/S) = —log|ci — o] — §10g2 > —log|cr — ¢

16
and

1 1
E, > Elogr — §10g2
for all r > 16.
Case 4. Assume that the preimages b; and b, are chosen so that
S = ’bl — bQ‘ < ’bl + bz’ = 7"1/2/2

and
2/r'/? < s < 1.
Then (6.4) implies that
1< ey — e = sr¥?/2 < 71/2)2.
It follows that all points z € J., are distance s from J,,, so that
1F2(2)| = (r%/2)%s = rs/4 and | f.,(2)"| = (rs/4)*"" for all n > 3
and .
A, (2) = 1 log(rs/4).

Therefore,

1 1 1 1 1 1
E, = Zlog(rs/él) = Zlog le1 — co| + Zlog(r1/2/2) > glogr - Zlog2 > 1—610gr

for all r > 16.
Case 5. Assume that the preimages b; and by are chosen so that
2/7"1/2 = |b1 — b2| < |b1 + b2| = 7'1/2/2.

Then
|Cl — CQ| =1

from (6.4). Equation (6.5) implies that
81— Bl = 18] — B = 2/r'/2,
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and (6.6) and (6.7) imply that
|81 — Bal = 1By — Be| = 1.

To determine how the Julia sets might overlap, we take pass to third preimages of 0,
defining v; and ~; so that

Fes (i) = Bis fe (7)) = By and s = i = |y = Bil = |i = Bi| = 2/r'%.
But here, as in Case 3 above, we may have overlap. We compute that

(=) (71 +72) =7 =7 = (61 = B2) + (2 — 1) (6.8)

so that
1 =l = 2/,
But
(m =) +73) =71 — (3)° = (B1 = B) + (2 — 1)
and both terms on the right-hand-size have absolute value 1. So it can happen that
D(y1,2/rY%) = D(~4,2/r'/?). Similarly for v} with ;. But both pairs cannot be too
close, because
(B1 = Ba) = (By — B2) = (B1 = By) + (B2 — B3) = (B1 — By) + (B — B3) + €
for some |e| < 2/r/2. Tt follows that
(80— 85) — (8, — B)] = (8 — B5) + (B — B)] = 206 — BY)] = 5

so that
1

=4 or 1 =l = (1/2)/(r2/2) =
The same estimates will hold for the third preimages of 0 near /3,
near —(3; and —f’. Consequently, at least half of the Julia set J., must be at distance
at least 1/7/2 from the Julia set J.,. Note that r > 16 implies that 1/7/2 > 4/r. So,
for half of the points z € J.,, we have

3
13 (2)] = PENT L
“ 2 ri/z g’

1 1 1
Ao, (2) = glog(r/S) = glogr -3 log 8

for these z values. We conclude that

as well as those

and thus

1 1 1
E,>—1 = —1 ——1 )
2 16 og(r/8) 1 ogr 16 0g 8

Case 6. Assume that the preimages b; and by are chosen so that

S = ’bl — bg‘ S ’bl +62‘
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and
4fr < s < 2/rt? < s.
Then
2/r'/% < ey — ¢y = srY/?/2 < 1.
We also compute
= el =181 = B = s
from (6.5) and (6.8), and

| for (2)%] = s(r1/?/2) for all z € J,,

so that )
)\01 (Z) = g 10g(87’3/2/8)

and

1 . 1 1 1
E, = glog(sr?/8) > Slog(r'/?/2) = - logr — < log2.

Finally, note that if |b; — by| < 4/r, then |e; — co| < 2/71/2, so Case 6 completes
the proof of the theorem. The first statement of the theorem is covered by Cases 1
through 4.

6.3. An upper bound on the local height near the Julia set. We will use the
following proposition in the proof of Theorem 1.9. This is a non-archimedean analog
to the distortion estimate provided in Proposition 3.8.

Proposition 6.3. Suppose v is a non-archimedean place of K dividing 2. For any
0 <r<1/4, we have

Aewl2) < rlog max{cl,, 16}
for all z within distance
1
max{|c|,, 16 }1oe(1/7)
of the filled Julia set within C,.

Proof. First assume that |c|, > 4. Recall that all points x of the Julia set J. (which
agrees with the filled Julia set in this setting) satisfy |z| = |c|i/ ?. From Lemma 6.2,
we know that for all x € J. and all z = z + y with |y| < |¢['/?/2, we have

|fe(2) = fe(@)|o = 22y + 32|, = [ylle]/2/2.

Recall also that \.(z) = log |z| for all || > |c['/2.
In particular, for any n > 2, any point z within distance

|c| 2 \" S 1
4 \Je[i2) = 21
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of the Julia set will have A.(z) = 27" A.(f"(2)) < 27"log|c|. In other words, setting
r=1/2", then
log(1/r) =nlog2 > g -1

so that any point z within distance |c|~1°80/") of the Julia set will satisfy
Ae(2) < rlog|e| < rlogmax{|c|,, 16}.

Now assume |c|, < 4. Then f. has potential good reduction with J. = (1, where
b is any element of the filled Julia set. Consequently, all points z within distance 1
of the filled Julia set are in the filled Julia set and thus satisfy A.(z) = 0. U

7. BOUNDS ON THE ENERGY PAIRING

In this section, we use the estimates of the previous sections to prove a weak
version of Theorem 1.7, and we use it to deduce Theorem 1.6. We let h(z) denote
the logarithmic Weil height of 2 € Q and h(x;, 75) the Weil height on A2(Q).

Theorem 7.1. We have
1 log 2000

1—6h(61 — Cg) — 16

for all ¢, # ¢y in Q.
7.1. Proof of Theorem 7.1. Fix ¢; # ¢, in Q, and let K be any number field

containing them. Summing over all places of K, we have by Theorem 4.1, Theorem
5.1, and Theorem 6.1 that

S <f017f02> S h(Cl,CQ) —|—g

N —

1 (K, : Q) 1
= N B et e — o] — —10g2000 <
6 K- Q| og’ |1 — ¢ 16 0g2000 < (fers feo)
vEME
1 K, Q, 5)
< = ;M: ﬁbg max{|cyv, [c2]o} + o1
veEMK

where the added constants come from the archimedean places (Remark 4.2). This
completes the proof of the theorem.

7.2. Proof of Theorem 1.6. We will assume towards contradiction that there is a
sequence of triples ¢y, # ca, € Q and &, > 0 such that

<f61,n7 fCQ’n> < 6717

where ¢, — 0 as n tends to infinity. Let K, be a number field containing c;, and
co.n- We will show that this forces the pairing at a (proportionally) large number of
archimedean places of K, to be close to 0; as a consequence we will deduce that the
height h(cy, — ¢2,) must get large. This in turn would contradict Theorem 7.1.
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Let M>* denote the set of all archimedean places of K,,. For each v € M>°, we let

Ev(cl,n7 CZ,n) = /)\cl,v dMCQ,v

denote the local contribution to the energy pairing. We let S,, C M be the set of
archimedean places with
Ev(cl,na ngn) < 2¢e,.

Since Y, e oo [Knw 0 Qo] = [Ky - Qland (fe, ., fe,,) < Eny Wesee that 30y g [Knw
Q. < [K,, : Q]/2. Therefore,

D [Knw: Q] > S

vES,
Take L = 1000 as in Remark 4.2, and choose any M > L. From the continuity and
positivity of E,, there is a sequence ¢,, — 01 as n — oo such that

E,(c1,¢0) > 2e,

[, - Q.
2

whenever |¢; — c|, > 0, and |c1]y, o]y < M for ¢, € C, = C.
If one of the ¢;, say ¢, has absolute value bigger than M and if |¢; — o, > 3/|01|1/2

then

1 1
E,(c1,c9) > alog|cll 64 — log M

from Theorem 4.1. When n is big, we have 2¢,, < @ log M, and so for any v € S,, as
Ey(c1n,can) < 2ey,, we must have

3
M2 Iz
Hence for any n with 2e, < & log M and 8, < 3/M"/2, we conclude that

’CI,n — C2,n|v < 3/]\41/2 <1

|Cl,n - CZ,n’v S maX{5n7

for all v € §,. Consequently,

KTL”U : v
h(ein —can) = > oy @] log |c1,n — cano

vGMKn\Sn [Kn : Q]
_ Z [Kn,v . @v] log 1
veM,, [Kn : Q] |Cl,n - C2,n|v
K M1/2 1 M1/2
2 Z [ n,v @fu] lo og Z - log )
& (K@ 3 2 3

We thus have by Theorem 7.1 that

1 MY?  1og 2000

—1 - < Clin) JC < n
32 Og 3 16 — <f 1,n f2,n> €

a contradiction for M sufficiently large. O




COMMON PREPERIODIC POINTS FOR QUADRATIC POLYNOMIALS 35

8. STRONG LOWER BOUND ON THE ENERGY PAIRING

Throughout this section, we assume that ¢; and ¢, are distinct elements of Q. We
prove Theorem 1.7, which gives bounds on the energy pairing (f,,, fe,) in terms of
the heights of the parameters.

The upper bound in Theorem 1.7 is easy and was stated as part of Theorem 7.1.
The lower bound is a balancing act between “helpful” primes and the other primes of
a given number field K containing the pair ¢; and cy. A place v of K will be helpful
if at least one absolute value |¢;], is large and the two parameters are not too close in
the v-adic distance. In this good setting, we can apply the stronger lower bounds on
the local energy pairing, as in the second statement of Theorem 4.1. By showing that
a significant proportion of primes are helpful, we obtain the lower bound of Theorem
1.7.

8.1. An auxiliary height. Fix some constant L > 1 and consider the following
function hz on A?(Q). For ¢y, ¢y in a number field K, we put

Ty = [Kv . @v]/[K . QL

and set

log max{|c1|y, |c2|o, L}  for v archimedean

l, = ¢ logmax{|cily, |c2]y, 16} for v|2

log max{|ci|y, |ca]v, 1}  otherwise

and define
hi(eq,e9) = Z Toply.
veEMg

Note that

h(c1,c2) < hi(cr, c2) < h(cr,c2) + log L + log 16,
where h(cy, c,) is the usual logarithmic Weil height on A2(Q).

8.2. Helpful places. With L > 1 fixed, and elements ¢; and ¢y in the number field
K, we say that the quantity /¢, is large if

log L for v archimedean
l, > < log16 for v |2
0 otherwise

We define My, to be the subset of My for which ¢, is large and

ler — caly > /{Ue_zv/z,

where
3 for v archimedean

Ky =14 2 foruv|2
1 otherwise
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and we call these places “helpful”. We define M. to be the subset of Mg for which

¢, is large and
leg — o] < ke /2

and call these places “close”. We will say that a place v is in Mpoundeq if ¢, fails to
be large.
The helpful places constitute a significant portion of the contribution to the height:

Lemma 8.1. For any c1,¢ € Q and any L > 1, we have
1 2
Z roly > ghL(Cl,CQ) — glogﬁ.

'UEMK\Mclose

Or, we can rearrange the terms to obtain
1
Z roly > ghL(Cl, ¢y) —log(16 - 6273 - L).
'UGMhC]p

for any ¢1,co € Q and any L > 1.

Proof. We use the product formula on ¢; — ¢o, so that
1= H ’Cl — CQ|ZU.
v

At the close places, we know that |c; — cs| is bounded from above by k,e~%/2. At all
other places, we have |c; — ¢3|, < e® if non-archimedean, and |c; — ¢y, < 2’ < Kk,e®

if archimedean. Therefore, we have

I < H (Kpe /2y H (Fpet)™ H (b))

VEMglose 'UeMoo\Mclose UGMK\(MOOUMclose)
S 6 H (G—EU/Q)TU H (eev)'rv.
V€ Mlose 'UEMK\Mclose

Taking logarithms gives

% ST ont < Y nfy+log6. (8.1)

veMClose ’UEMK\Mclose
roly to both sides yields

1
éhL(ClaCZ> <

Addlng % ZUEMK\M

close

NN GV]

Z roly + log 6,

'UGMK\Mclose

proving the first statement of the lemma.
Expanding the right-hand-side of (8.1), we see that

% Z Toly, < Z roly + Z roly, + log 6

vE Mclose UEMhelp VEMpounded
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so that )
DRTIELID SRV SR
vthelp veMclose UeMbounded
Adding % ZUEMhelp rol, to both sides, we obtain
§Zr€ >1h(cc)—§ Z roly, — log 6
9 vty = 9 L\C1, €2 9 vtu g
VEMpelp V€ Myounded
1 3
> §hL(C1,C2) - i(logL—i—log 16) — log 6
3
= §hL(cl, c2) — ) log(16 - 62/% - L),
which proves the lemma. 0

8.3. Proof of Theorem 1.7. Fix ¢, c; and choose any number field K containing
both. Fix any L > 1000 so that Theorem 4.1 is satisfied. Decompose Mg into
Mheip U Meiose U Mpounded as in §8.2. Note that %logr — f’—ﬁlogQ > 6i410gr for any
r > 16. Then Theorems 5.1, 6.1, and 4.1 applied in the helpful places combine to say

<fCl7fC2> = Z T’UE’U 2 Z T’UE’U

1
> 6 Z ry log max{|ci |y, |c2|v}

’UEMhe]p
1
ol E Toly (8.2)

Combined with Lemma 8.1, this proves that for all ¢; and ¢, in Q, we have

L) > o

3-64
> e ) — - log(16- 625 - L)
- 192 ’ 64
This proves the lower bound of the theorem with o7 = 1/192 and C; = 6—14 log(16 -
623 . L) < 0.17 < 2 for L = 1000. The upper bound of the theorem was proved

17
already as Theorem 7.1 with e = 1/2 and Cy = 5/2.

1
hi(ci,c) — 64 log (16 - 6% - L)

9. QUANTITATIVE EQUIDISTRIBUTION

Our goal in this section is to prove Theorem 1.9, providing an upper bound on the
energy pairing (f.,, fe,), in terms of the number of common preperiodic points, for
c1 # ¢y in Q, assuming f., and f., share at least one preperiodic point other than
oo. We build upon the ideas developed in the proof of [FRL, Theorem 3| and [Fi,
Theorem 4].
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9.1. Adelic measures and heights on P*(Q). Following Favre and Rivera-Letelier
[FRL], we define the mutual energy of measures p and p’ on P*(C) by

o)== | / o B2 () d ),
X iag

where Diag is the diagonal, assuming log |z —w| is in L'(p® p). If the measures have
total mass 0 with continuous potentials on P!, we have (p, p) > 0 with equality if and
only if p = 0. Similarly, one defines

== [[ A dw 0.1

on the Berkovich line over C,, with respect to a non-archimedean valuation, with the
appropriate kernel ,(z,w) in place of log |z — w|,. More information can be found in
[BR2].

Now let K be a number field. An adelic measure is a collection p = {1, }penr, of
probability measures on the Berkovich P} with continuous potentials at all places
v and for which all but finitely many are trivial (meaning that they are supported at
the Gauss point). For any adelic measure g, a height function is defined on P*(Q) by

mlF) =5 3 B (= -

veEMK

where F is any finite, Gal(K /K )-invariant subset of K, and [F] is the probability
measure supported equally on the elements of F. We put

o= L,

The equidistribution theorem of [FRL, BR1, CL1] states that if F}, is a seqence
of Gal(K/K)-invariant finite sets with h,(F,) — 0 and |F,| — oo as n — oo, the
discrete probability measures

1
Hn = 51‘
P
converge weakly to the measure j1, on P19 at each place v of K.

There is a pairing between any two such heights, h, and h,, associated to adelic
measures g and v, as

1 (K, : Q)

hahy =3 T Mo T Yy ey = Uy )y 9.2

theh) =3 3 gt ) (92)
veEMK

It satisfies (h,, h,) =0 <= h, = h, <= p=v. The energy pairing (1.3) between

two quadratic polynomials is a special case, taking the dynamical canonical heights

h., and h., associated to their adelic equilibrium measures.
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Remark 9.1. The height h, can be defined for arbitrary adelic measures, but small
sequences (meaning the sequences {F),} of Galois-invariant sets with h,(F,) — 0 and
|F,,| = 00) do not always exist.

9.2. Height pairing as a distance. Following [Fi], we consider a distance between
two adelic measures p = {p,} and v = {v,} on P! over a number field K, defined by

d(/% V) = <h,u7 hu>1/27

where (h,,, h,) was defined in (9.2); see [Fi, Theorem 1].

Suppose that ¢; and ¢y are elements of a number field K. Let py = {pe,0}
and e := {fe,»} be the equilibrium measures of f., and f.,, respectively. Let F
be any finite, nonempty, Gal(K /K )-invariant subset of P*(Q). Let [F] denote the
probability measure supported equally on the elements of F'. For each place v of
K, choose a positive real ¢, > 0, with ¢, = 1 for all but finitely many v. The
collection € := {&, }venr, Will be called an adelic radius. As in [FRL], we consider the
adelic measure [F|., defined as a regularization of the probability measure [F]: it is
supported on the circles of radius e, about each point of F. At a non-archimedean
place, this means the Type II or III point associated to the disk of radius ¢,. The
triangle inequality implies that

<f617 f62>1/2 = d(y’hu?) S d(:ulv [F]a) + d(M% [F]6) (93)

for any choices of F' and ¢.

It is worth noting that, if the radius €, — 0 at some place, then the right-hand-side
of (9.3) will tend to co. This is because the potential of the measure [F]. at v will
blow up near the points of F'. On the other hand, for €, too large, the measure [F. is
not a good approximation of [F]. Thus, for (9.3) to be useful in our proof of Theorem
1.1, we will need to choose € well. This general strategy also appears in the proofs of
[FRL, Theorem 3] and in [Fi, Proposition 13]. In our case, the choice of € = {&, } ey
will be governed by Proposition 3.8 and its non-archimedean counterparts, and this
leads to Theorem 1.9.

Lemma 9.2. Let K be a number field and fix ¢c; # co in K. We have
s (5 K0 toa(1/=) )
R < }:#(_ Z.’FMJFM)

for any choice of finite, non-empty, Gal(K / K )-invariant subset F' of Q and any adelic
radius € = {&, }oeny -
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Proof. We first observe that

o [ = 53 % (e = [Fles i = [Fe),
_ [Kv : Qv] o 1
a Z [K : @] < (,u“ [F]s)v + 2([F]€7 [F]s)v>

(2

because (pi, pt;)y = 0 at every place. The self-pairing of [F]. can be estimated in
terms of the self-pairing of [F] ([Fi, Lemma 12] and [FRL, Lemma 4.11]), as

([F)o, [F))e < (IF), [F])o + %

But observe that

K, : Q) _
;m([F]a[F])v =0

by the product formula on K. So the triangle inequality (9.3) completes the proof of
the proposition. O

9.3. Proof of Theorem 1.9. Fix any L > 27, and recall the definition of the auxil-

iary height hj, on A?(Q) from §8.1. An appropriate choice of ¢ = {g,} in Lemma 9.2

gives:

Proposition 9.3. Fiz any L > 27. Fiz ¢, and ¢y in Q, and assume f., and f., have

N > 1 preperiodic points in common in PY(Q). Then for all 0 < § < 1/4, we have
3log(1/0

(fers fer) <4 (5 + %) hi(ci,c2)

Proof. Fix a number field K containing ¢; and c,. Let F be the Gal(K /K)-invariant
set of common preperiodic points for f., and f., in Q, so that |F| = N — 1. For each
place v € Mk, recall the definition of ¢, from §8.1. Fix 0 < 0 < 1/4 and set

g, = %0,

Note that €, = 1 for all but finitely many places v € M.
For each archimedean place v, note that

£, = 6—3&, log(1/0) _ max{|cl|y, |02|’U7 L}—Slog(l/é)’

so Proposition 3.8 implies that

)\ci,v(z) < 5£v
for any point z within a neighborhood of radius ¢, of the filled Julia set K.,. As all
points of F' lie in K, this implies that

— (i, [Fle)o <64,

for this choice of ¢, and each i.
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Similarly for each non-archimedean place v 1 2, we apply Proposition 5.2, and for
each non-archimedean v | 2, we apply Proposition 6.3.
Summing over all places, we find that

Ko Q) (- log(1/e,) K, : Q) 3log(1/4)
Ug%,uzz@]< P10+ ) EQ‘ﬁ?i@r(d@*“‘Eﬁﬂ—‘“)

(04 ZEE ) huter,ca

Lemma 9.2 then implies

2

(forr ) ? <>

=1

1/2
T (K, Q) log(1/ey)

vEMK

: 2(<5+31%(;|/5>) hL(cl,c:Q))l/2

Squaring both sides yields the proposition. [l

Now fix any ¢ between 0 and 1, and let § = £/25. Applying Proposition 9.3 with
L = 27, we have

s for) < 4 (6+

< 4 (5 + M) (h(c1,ca) + log 16 4 log 27)

< (5+ ) ) (h(c1,co) + 1)

N -1
with C'(e) = 401og(25/¢). This completes the proof of Theorem 1.9.

10. PROOF OF THEOREM 1.1

In this section, we prove Theorem 1.1, providing a uniform bound on the number
of common preperiodic points for any pair f., and f., with ¢; # ¢ in C.

10.1. Proof over Q. Assume that ¢; and ¢y are in Q.
We first use Theorem 1.7 and 1.9 to provide a bound on

N = N(Ch 02) = |Preper(fcl) N Preper(sz)‘

when the height h(cq, c9) is large. The two theorems combined show that, if N > 1,
then it must satisfy
C(e)

aj h(cy,co) — C1 < (a + ﬁ) (h(eq,e2) + 1)
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for every choice of 0 < € < 1, and thus,

(a1 —c— ]\C;(_E)J (h(c1,c2) +1) < Cy + .

Taking € = a1/2, we have

aq 0(6) < Cl—l-Oél
2 N—l_h(cl,@)—f—l'

If we assume that

4(C
h(01762) _|_ 1 > M’
aq
then the inequality becomes
4C 2
N1 < /) (10.1)
aq

providing a uniform bound on N for all pairs (¢, ¢2) of sufficiently large height.
Now suppose that h(ci,c2) +1 < 4(Cy + aq)/a;. We combine the uniform lower
bound of Theorem 1.6 with the upper bound of Theorem 1.9 to obtain

5 < (s+ &) (h(cr,e2) +1) < (H Cle) ) 4G+ )

N -1 N -1 (0%}
for any choice of 0 < & < 1. This unwinds to give
C(e)
N-1<—; — (10.2)
4(C’1+a1)

Choosing any € < a;0/4(Cy + a1) gives a uniform bound on N.

10.2. Proof over C. Let B denote a uniform bound on the number of common
preperiodic points over all ¢; # ¢y in Q. Now fix ¢; in C\ Q. For any ¢, € C, if f.,
and f., have at least one preperiodic point in common, then the field Q(cq, ¢2) must
have transcendence degree 1 over Q. Moreover, if xy,x9,..., 211 denote distinct
common preperiodic points for f., and f.,, then k = Q(c1, o, 21, ..., xp41) will also
be of transcendence degree 1, as each x; satisfies relations of the form

Pi(xy) = f(x) forng >m; >0 and  f¥(x;) = fU(x;) for k; > 1; > 0. (10.3)

C1 Cc2

We may view k as the function field K(T") of an algebraic curve 7' defined over a
number field K. In this way, the maps f., and f., are viewed as families of maps,
parameterized by ¢ € T(C), and the relations (10.3) hold persistently in ¢.

Now assume c; # c;, so that the specializations f. ) and f.,) are distinct for
all but finitely many ¢ € T(C). As the elements {zi,...,zp1} are distinct in £,
their specializations {z1(t),...,zp.1(t)} are also distinct for all but finitely many ¢

in 7'(C). In particular, this implies that we can find ¢ € T'(Q) so that ¢;(t) # c2(t) in
Q and f., ) and fe,) share at least B + 1 preperiodic points; this is a contradiction.
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Thus, the theorem is proved for all pairs ¢; # ¢ in C, with the same bound as for
pairs ¢; # ¢ in Q.

11. EFFECTIVE BOUNDS ON COMMON PREPERIODIC POINTS

In this section, we make effective Theorems 1.6, 1.7, and 1.9, to produce an explicit
value for the bound B of Theorem 1.1:

Theorem 11.1. For all ¢; # ¢; € C, we have
|Preper(fc1) n Preper(f62)| < 1082'

11.1. An explicit lower bound in Theorem 1.6. In order to provide an effective
lower bound ¢ for Theorem 1.6, we need to improve our estimates on the energy pairing
E,(c1,c9) when |¢; — o, is small at an archimedean place v. Here we compute that
we can take § = 1077,

Let H = 2001999 Suppose that ¢; and ¢, lie in a number field K, and suppose
that for at least 99/100 of the archimedean places of K, we have

’Cl — C2’,U S 1/H
Then h(c; — ¢3) > 2 log H, and the proof of Theorem 7.1 implies that

100
log(2001/2000)
16

Now suppose that we have |¢; — ¢o|, > 1/H for at least 1/100 of the archimedean
places of K. Let M = 9H? so that

1 1
(Jeir feu) = Lphler = c2) = 75 10g(2000) > >3.12-107° > 107,

I3
o~ ML/2
at all of these places. If max{|ci|,,|c2|,} > M, then Theorem 4.1 implies that

‘Cl — Cle >

1
E,(c1,c9) > 6—410gM > 0.14

at this place v. On the other hand, if max{|ci|,,|c2|,} < M, we have the following
bound:

Proposition 11.2. Fiz any M > 1000. Then for all s > M?, we have
|Cl - 02|2 117 M3

Eo(cr,c0) > ———— — ——
(c1,c2) 3254 100 s°

provided max{|cy|, |c2|} < M.

Assuming Proposition 11.2, we complete our computations. With M = 9H?, we have

Bercp) > ey — o2 117 - 93HS L1 117 - 2593 8
v\ C 7C = — = —_
b2 3254 10056 3254 2 10052
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for all archimedean places v with |¢; — ca|, > 1/H, max{|ci|,, |c2|,} < 9H?, and
s > 92H*. Choosing s satisfying s? = 117 - 2693 H® /100, we conclude that
1007
Bolen) 2 srgiimms
for all such places v. This shows that, summing only over the archimedean places,
we have

<fc17f02> Z Z MEU(CLCQ)

veEMp? [K : Q]
1 1002 .

whenever |¢; — 3], > 1/H for at least 1/100 of the archimedean places of K. This
completes the computation of §, and it remains only to prove Proposition 11.2.

Proof of Proposition 11.2. The result will follow from a series of elementary estimates
on the values of the escape-rate functions outside the filled Julia set. Let ¢. be the
Bottcher function for f.(2) = 22 + ¢, so that p.(f.(2)) = ©2(2) for all z large enough,
and therefore ¢. has expansion

pe(2) 22+2—CZ+~' (11.1)

for z near co. We set
)‘(Z> = )‘01 <Z> - >‘C2 (z>7

the difference of two escape-rate functions. The energy pairing satisfies

2F.(c1,05) = 2 / Ao, ddNe, = — / AddeN = / X A dON.
C C C

Now fix any large s > 0, and define D¢ := {z € C: |z| > s}. By Green’s formula,
1 A A
2B (1, ca) > / AN doN = —/ ANAN=—— | A (8—612 - a—_dz)
D¢ D¢ 211 D¢ 0z 0z

We will estimate the latter integral.
Note that )\ satisfies

A(z) = log e, | — log |p, |
near oo. For simplicity, write € := ¢; — ¢5. By the expansion (11.1) of ¢,
€ 5 1
2Mz2)=—+—=+0|(— ).
(2) 222 * 2z2 * (|z|3)

Similarly, by using the Taylor expansion and letting z = se? on the boundary 9D

O\ o € 3 1Y].
2 (&dz — &dz) = [— (48362i9 + 4836_2“9) +0 (9)} 1sdf.

c
ER
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Consequently
1 oA oA EE 1
—4— A =—dz — —dz — —
2mi Jope <(9z T oz ) 45 O <s5>
This gives
1 oA oA €€ 1
2E(c1,00) > —— M =—dz——=—dz | = — 11.2
(c1,¢2) 2mi Jope <(9z T oz Z) 16s* o (35) (11.2)

where € = ¢; — ¢3. To prove the proposition, we need control on the big-O term.
In the rest of this section, we fix an M > 1000.

Lemma 11.3. Let z,¢; € C with |z| > M?, |¢;| < M fori= 1,2 and ¢ = ¢; — ¢».

Then l e
€ € 202 |c; 101 |¢;
’4/\(Z) <22 - 22) - Z <100 | 2] * 100 |Z|4)

i=1,2

Proof. First note that
2 .3

|log(1+ ) — 2| = ’—?—i-g—l— ‘ S50 —Tal) (11.3)
For any |z| > |c| and |z| > 4, inductively it is easy to check that for each n > 1
(Il = le/zD* < 1f2(2)] < (2] + le/2D*, (11.4)
hence
log(|2| — |e/z]) < Ac(z) < log(|2] +[¢/z])
and

log(|2* + ¢ —[el/|2* + cl) < Ae(2” + €) = 2\e(2) < log(|2” + ¢| + |e]/|2* + ).
Consequently for any |z| > M? and |¢| < M, by (11.3) one has

<] ] |cf? 1
log|1ld ——— )| < +
(e < e e )
101 |c|
< — 1L
— 100 |z|*
Now, by the triangle inequality and (11.3) we have

2X.(2) —log|2* + || <

’4)\(2) — (% + ;)‘ < Z (‘4/\01 —2log [2* + ¢ | + ‘log 22+ ¢;) —log 2% — C—;
2

z 2 ,
1=1,2

+>
i=1,2
202 |¢; |cz|2/|z|4 202 [¢;| 101 |ef?
< == —. .
:Z <1ooyz\4 “ar) < 2 100]2[* T 100 28

22 i=1,2

)

o 2 G
log(2* +¢;) — log 2* — ?‘
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Lemma 11.4. For any z,c € C with |z| > M? and |c| < M, we have
TUCR)? ) ef (102 Jef? 104 d
-1 fiz) 21 7100 |z|* 100 |zt
Proof. For a € C with |o| < 1,
PR TI POIN (TVI P
ol = 2l ST 4]
From (11.3) and (11.4), for each ¢ > 2, it has
(/i1 (2))? 1 ( c )‘
log ——+-—| = |log 4 =llog|1— ————
fi(z) 1—c/(fi1(2))? (fe1(2))?
¢ ’(fé'*lc(z))2
< ’— 1+
() ( _ ‘;)
2\~ [wor
101 ||
< — =
— 100 (|2] = fe/2))*
here for the last inequality we use the fact that |c|/|f7(2)|* < |c|/(|z] — |¢/2])*
1/1000. Therefore, since (|z| — |¢/z|)* > M?/2, we conclude
fZ L 101 || 102 |e| 103 ||
1 S o R gt RN b NN .t e By
OgH Z 100 ([ = |e/2D)% ~ 100 (Jz[— [¢/z)* ~ 100 " |z]*
For ¢ =1,
i—1(,))2 2 2
7 ) U N ST DO NS WS (1
fi(z) 22 1+ 5 22 |z|* 1 —|e/22] — 100 |z|*

l

Finally, let

and then
e (p1-5)-0-5)

<kt e 0 (- 5)

ol o]
< (14 ) B o (e

<
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The inequalities of o and 3 give

no(pie 103 e 103 | le|
H(fc '(2))? R DR R O EE—% 100~ J2| (1+ﬂ)
LT fil=) 22|~ — 103, ||C||4 100 [z[* 1 — 103, ld HE

o 102 lc|? 104 ||
=700 2F 100 o

O
Lemma 11.5. With the same hypotheses as Lemma 11.4, we have that
20\.(2) 1 ¢ 102 |c|* 104 ||
0z z — 100 |z[> 100 |z|°
Proof. Consider
2log™ | f7 log f2 log f2(z
n—o00 on n—o00 on on
Taking partial derivatives of both sides and by Lemma 11.4, we have
200(z) 1, ||y, DL LU 1
0z z 23| |noo 2n f(z) z 23
1. T (f(2)? c
2 nivee (H i 2
102 |cf? N 104 ||
— 100 |z° 100 |z]5
O
Similarly
20\ 1 ¢ 102 2104
80_(2)_: _ﬁ_lﬂ iﬂ (11.5)
0z z z 100 |z 100 |z]5

Now we are ready to control the big-O term in (11.2). Write
(G ) b (G )
422 * 472 * 422 * 4z2

oA oN € £ oA ox ¢ el
%d = {(5%—@) _ﬁ} dz and adz— {(%+ﬁ) _ﬁ} dz.

We set

| {102 |l 104 \cl\]
11:_ AN 5

25 i=12 [100 |s[> ' 100 |s|?
1 202 Jei| , 101 eif? 102 |ef* , 104 o
= - . max | ——= - — .S
& 147 10015/ T 100 87 ) ¥ \T00 s T 100 Jsp) Y

1 202 |c;| 101 e ® el
Is = = s . 1=
STy _21:2 (100 51700 [off ) 282
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Lemmas 11.3 and 11.5 along with inequalities (11.5) and (11.2) give

ee
2FE (c1,00) > —— = 2(I1 + I, + I3).
(c1 62)_1684 (I + Iy + I3)
Now since the fixed M > 1000, assume that |¢;| < M for ¢ = 1,2, and suppose that

s > M?. Then |e] < 2M, so that

[<103 M3[< 1 M3 d[<102 M3
—_— — —_— — an _— .
Y1000 s67 TP 10000 8 P800 s°
Therefore,
234 M3

20 + L+ I3) < ——.

(h+ Lt I) < 100 s
This completes the proof of the proposition. O

11.2. Explicit bound. As shown in §8.3, we have a; = 1/192 and C; = 3/17 in
Theorem 1.7, and we may take and C(g) = 40log(25/¢) in Theorem 1.9 as shown in
§9.3. Therefore, C(a;/2) = 40log(50/ay) < 367, and whenever ¢; # ¢, € Q so that
fe, and f., have N(cq,¢2) > 1 common preperiodic points and h(cy, c2) > 139, we
have

N(cp,cp) < 281857 < 10°

from (10.1). For the set of parameters with hA(cy,c2) < 139, the bound we obtain is
much larger, as it depends on the small § from Theorem 1.6. We can take § = 1077,
as explained in §11.1. Taking ¢ = a;9/(8(C1 + 1)) in (10.2), we find that

8(Cy + 1) - 401log(25/¢)
041(5
320(C1 -+ Oél) 200(01 -+ Oé)
log
0515 0615

320-35 20035

5 BT
75-320 - 35-10™ log(200 - 35 - 10),

N(Cl,Cg) -1 <

IN

IN

so that
N(Cla 02) = |Preper(f01) N Preper(fcz)| < 1082‘

The same bound holds for all ¢; # ¢, in C, as explained in §10.2.
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