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COHOMOLOGICAL CONDITIONS ON ENDOMORPHISMS OF PROJECTIVE
VARIETIES

HOLLY KRIEGER AND PAUL RESCHKE

AsstracT. We characterize possible periodic subvarieties for stive endomorphisms of complex
abelian varieties in terms of the eigenvalues of the cohogicél actions induced by the endomor-
phisms, extending previous work in this direction by Pinkl &voessler [17]. By applying our charac-
terization to induced endomorphisms of Albanese varigtiesdraw conclusions about the dynamics
of surjective endomorphisms for a broad class of projeatanieties. We also analyze several classes
of surjective endomorphisms that are distinguished by enttgs of their cohomological actions.

1. INTRODUCTION

In this note, we study the nature of periodic subvarietieefalomorphisms of smooth complex
projective varieties. The starting point for our investiga is a theorem due to Pink and Roessler:

Theorem 1.1([17], Theorem 2.4) Let f : A — A be an isogeny of a complex abelian variety A,
and suppose that no eigenvalue 6ffo(s) is a root of unity. Suppose that¥ A is a reduced and
irreducible subvariety satisfying(¥) = V. Then V is a translate of an abelian subvariety of A.

By the Lefschetz Fixed-Point Theorem, the eigenvalue dmrdin Theoreni 111 guarantees that
f has a fixed point, and therefore is conjugate by a translatian isogeny, even if is only assumed
to be a surjective endomorphism (i.e., not necessarily aodmeonphism). Thus the conclusion holds
for any surjective endomorphisinsatisfying the eigenvalue condition. (S¥&3 and§2.4 below.)
We will not assume in the following that a surjective endopiosm of an abelian variety is an
isogeny.

We extend Theorei 1.1 to the case whErenay have eigenvalues di-°(A) that are roots of
unity; here (V) denotes the Kodaira dimension of any smooth birationalehofia varietyV:

Theorem 1.2. Let f be a surjective endomorphism of a complex abelian tsa#e and suppose
that V C A is a reduced and irreducible subvariety satisfyiny = V. Then there is a reduced
and irreducible subvariety W& V with (W) = dim(W) = «(V), and some iterate X such that
V = Stal} (V) + W and #(Stal}(V) + w) = Stat} (V) + w for every we W.

The proof of Theorem 112 has a similar flavor to the proof ofdreeiI.1 by Pink and Roessler:
by Ueno[21], all subvarieties @ can be built from tori and varieties of general type; we thegpla
Kobayashi and Ochiai [12], which states that every ratiGed-map of a variety of general type
has finite order. (Se§2.1 and§2.2 below.) Note thatV may be singular or zero-dimensional; in
particular, if«(V) = 0, thenV is a translate of an abelian subvarietyfof

As a corollary of Theorerm 11.2, we recover the following mitcesgthening of the theorem of
Pink and Roessler:
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Corollary 1.3. Let f be a surjective endomorphism of a complex abelian tyaf¢ and suppose
that V € Ais a reduced and irreducible subvariety satisfyiny¥ = V. Let u denote the number
of root-of-unity eigenvalues of'ff;10,4) with multiplicity. Then

k(V) < us;
in fact, the inequality is strict except possiblk (/) = 0.

Suppose now thaX is an arbitrary smooth complex projective variety, and that a surjective
endomorphism oK. Since the Albanese variety AlKj is generated by the image #funder the
Albanese majpy, f induces a surjective endomorphigimof Alb(X); moreover, ifax(X) # Alb(X),
thenax(X) is a reduced and irreducible proper subvariety of XlpgatisfyingF(ax(X)) = ax(X).
(See§3.1 below.) So we can use Theorem 1.2 to draw conclusiong abdomorphisms of varieties
with non-surjective Albanese maps, as in:

Corollary 1.4. Let X be a smooth complex projective variety wigt{>§ # Alb(X), and suppose
that f is an infinite-order surjective endomorphism of X. Ttieere is a proper positive-dimensional
subvariety of X that is periodic for f.

Note that any variet)X in Corollary{1.4 must have(ax(X)) > 0; but it will follow from the proof
that this is not necessarily true for the periodic subvgysi this corollary cannot be used for induc-
tion. Note also that a smooth curve with a non-surjectiveafiise map is necessarily hyperbolic
and hence, by the De Franchis Theorem, does not admit anjténrdirder endomorphisms. If we
write ax(X) = B+ W, whereB is the stabilizer obx(X) in Alb(X) andW hask(W) = dim(W), then
the periodic subvariety in Corollafy1.4 can be taken to leepite-image undeay of B + w for any
w e W. (See§3.2 below.)

We turn now to an assessment of certain classes of endorsorplthat are characterized by
cohomological properties.

Definition 1.5 ([14],[23]). Let f be a surjective endomorphism of a projective varietW¥e say
that f ispolarizedif there is an ample line bundle & Pic(X) such that f(L) = L®1 for some integer
q> 1

The study of polarized endomorphisms - and those varietigshacarry them - is of particular
interest to dynamicists. For an endomorphiraf a complex varietyX, Fakhruddin[[5] showed
that the condition that is polarized is equivalent to the existence of an embeddiri — PN and
a morphismF : PN — PN so thati o f = F oi; in the case wheré is defined over a field with
arithmetic (i.e. a number field or function field), Call andv8iman [2] showed that polarization
implies the existence of a dynamical canonical height fienadbn X, an important tool in arithmetic
dynamics.

If fis a polarized endomorphism, then the ample line buhdiatisfyingf*(L) = L®9 also has
the property thaf*(L) ® L=* is ample, which leads to a generalization of the notion oappétion.

Definition 1.6. Let f be a surjective endomorphism of a projective variety\e say that f is
amplifiedif there is a line bundle le Pic(X) such that f(L) ® L* is ample.

Note that the line bundlk in Definition[1.6 need not itself be ample in general. Suppbaéf
is an amplified endomorphism of a variety A theorem due to Fakhruddin|[5] states that the set of
periodic points forf is Zariski dense irX. If V is a subvariety oK satisfyingf(V) = V, then the
restriction off to V is again amplified; so the periodic points fbiinclude a Zariski dense subset
of V as well. In particular, amplified endomorphisms satisfy direction of a dynamical version
of the Manin-Mumford conjecture; indeed, we observe thatdlass of endomorphisms for which
a dynamical Manin-Mumford conjecture can be made sensstikély to be precisely the class of
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amplified endomorphisms. (S&8.3 and§4.7 below.) Thus the study of varieties carrying amplified
endomorphisms is again of dynamical interest.

Definition 1.7. Let f be a surjective endomorphism of a projective varietyitk Alb(X) # {0}. We
say that f isunity-freeif no eigenvalue of 10, is @ root of unity.

Note that the condition AltX) # {0} in Definition[L.7 is equivalent to the conditidh™°(X) # {0}
(so thatf* has at least one eigenvalue b1°(X)). (See§3.1 below.) The hypothesis ofiin
Theoren Il is that it is unity-free. In this case, the cosicln thatf has a Zariski dense set of
periodic points in every periodic subvariety follows froreramd Z# and Propositign 2.5 below -
without the requirement thdtis amplified. (Se€3.3 below.)

Theoreni 1R restricts the set of varieties which admit ufiiég endomorphisms:

Corollary 1.8. Let X be a smooth complex projective variety wilf{> # Alb(X). Then X does
not admit a unity-free endomorphism.

Note that the Albanese map for a variety is non-trivial ifstrion-surjective, so that it makes
sense to speak of unity-free endomorphisms in this sett@agyollary[I.8 complements work by
Dinh, Nguyen, and Truond [4] which under the same hypothskews thatX does not admit an
endomorphism with distinct consecutive dynamical degrdé& condition that an endomorphism
has distinct consecutive dynamical degrees is disjoimhfitee condition that it is unity-free; on the
other hand, it follows from a theorem of Serire[[20] that eyaolarized endomorphism satisfies both
of these conditions. (S&8.2 below.)

Fakhruddin [[5] showed that any variety admitting a polatismdomorphism must have non-
positive Kodaira dimension, and a theorem due to Kawamdpdthtes than any variety whose
Kodaira dimension is zero has a surjective Albanese mapebemthere are many examples of va-
rieties with negative Kodaira dimension and non-surjecfilbanese maps. In particular, Corollary
[1.8 applies to any bundle over a variety whose Albanese maprissurjective; in this way it is a
generalization of the observation by S. Zhand [23] that adslurface over a hyperbolic curve can-
not admit a polarized endomorphism. (S82 below.) We note also that work by Nakayama and
D.-Q. Zhangl[14] &ers further characterizations of varieties admitting gaéd endomorphisms.

We show that Corollarly 118 applies to amplified endomorpkiaswell:

Theorem 1.9. Let f be a surjective endomorphism of a smooth complex pgregeeariety X with
Alb(X) # {0}. If f is amplified, then it is unity-free.

Theoreni LB yields the following implication diagram fonajsctive endomorphism of a smooth
complex projective variety whose Albanese map is nongtivi

polarized = amplified = unity-free = infinite-order

None of the reverse implications in the diagram hold in gahérowever, we show that every
unity-free endomorphism of an abelian surface is amplified, we speculate that the same may be
true on any abelian variety. (S€€.3 below.) We observe that the failure of an endomorphism to
be amplified indicates that the endomorphism must fix the migaleequivalence class of some line
bundle - and so is similar to the failure of an endomorphisimaanity-free. (Se§4.1 below.)

The conclusion of Corollary 1.8 for amplified endomorphisseew and provides a constraint
on the types of varieties that should constitute a natuetharfor a dynamical Manin-Mumford
conjecture. We observe that the set of varieties admittinglidied endomorphisms is strictly larger
than the set admitting polarized endomorphisms; for exangkK3 surface may admit an amplified
endomorphism but can never admit a polarized endomorpliSeed4.3 below.)

While an infinite-order endomorphism of a projective varigtneed not induce an infinite-order
endomorphism of AllX), every unity-free endomorphism of a projective varigtyloes induce a
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unity-free endomorphism of AlX). To the end of better understanding the relationships &etw
polarized, amplified, and unity-free endomorphisms in geinee ask:

Question 1.10. Does an amplified (resp. polarized) endomorphism of a ptivjewariety X with
Alb(X) # {0} induce an amplified (resp. polarized) endomorphisrlbf X)?

Note that Question 1.10 has affianitive answer for amplified endomorphisms if it is true that
every unity-free endomorphism of an abelian variety is diiepl.

The remainder of this paper is organized as follows§2n we prove Theorefn 1.2 and Corollary
[L.3, and we give a useful characterization of unity-freecemarphisms of abelian varieties; #3,
we prove Corollary T}4 and Corollafy 1.8, we present resalitsut varieties admitting polarized
endomorphisms, and we discuss the notion of a dynamical Misliiimford problem; in§4, we
present a variety of facts about polarized, amplified, anty+free endomorphisms and the connec-
tions between them, and we prove Theofen 1.9.

Acknowledgements. We thank Mihnea Popa, Laura DeMarco, and Ramin Takloo-Bigtar
several useful discussions in the early stages of writirgytaper.

2. INVARIANT SUBVARIETIES FOR ENDOMORPHISMS OF ABELIAN VARIETIES

We say that a subvariety of an abelian variety is an abeliawagiety if it is a reduced and
irreducible group subvariety. Given a complex abelianetsrA and a reduced and irreducible
subvarietyV C A, the stabilizer ofV in A is the reduced (but not necessarily irreducible) group
subvariety

Stal(V) ={ac Ala+V =V} CA
The connected component of Stgld) containing the identity is an abelian subvariety 3(&&) CA
(See, e.g.[]8].) Given an endomorphigm A — A, there is a homomorphisg : A — A (which
is an isogeny iff is surjective) and an element € A such that

f(a) = ¢1(a) + 7s

for everya e A. (See, e.g.[T13§1.) If f(V) =V, theng¢(Stalk(V)) c Stal}(V) (with equality if f
is surjective).

For a complex projective variet), we let«(X) denote the Kodaira dimension of any smooth
birational model ofX and we say thaX (whether it is smooth or not) is a variety of general type if
k(X) = dim(X). (Compare, e.g.. [22] and [11§7.)

2.1. Characterization of Subvarieties of Abelian Varieties.

Theorem 2.1. Let V be a reduced and irreducible subvariety of a completiab@ariety A. Then
V= Statg\(V)+W for some reduced and irreducible subvarietyd¥ with «(W) = dim(W) = «(V).

Proof. SetB = Statg\(V). By the proof of Theorem 3.10in[21], there is an abeliansuietyB’ ¢ A
such that the quotient map : A —» A/B’ givesV the structure of a fiber bundle whose bag®/)
has«(q'(V)) = dim(q'(V)) and whose fibers are isomorphicBa Since each fiber af is invariant
under the action oB’, we haveB’ C B. The quotient mag : A — A/B satisfiesg(q(V)) = V,
and hence also givasthe structure of a fiber bundle (ovg(V) with fibers isomorphic td). Since
Statg\/B,(q’(V)) = g'(B), q'(V) is a fiber bundle oveq(V) with fibers isomorphic tay (B). Thus we
must have
dim(q’(V)) > dim(q(V)) > «(q'(V)) = dim(q’(V)).
(See, e.g.[122].) So dimg((B)) = 0, B’ = B, andq’ = q.
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By the Poincaré Reducibility Theorem, there is an abelidovarietyT € AsuchthaA =B+ T
and the addition map froB x T to Ais an isogeny. (See, e.d.][8].) So the restrictignT — A/B
is an isogeny, and we can choose an irreducible compaenty N T so thatg : W — g(V) is a
finite surjective morphism. Then

dim(q(V)) = dim(W) = «(W) 2 «(q(V)) = dim(q(V)).

(See, e.g./122].) Sincg(W) = q(V), everyw € W can be written asv = b + v for someb € B
andv € V; likewise, every € V can be written as = b + w for someb € B andw € W. So
V=B+W. O

2.2. Dominant Maps to Varieties of General Type.

Theorem 2.2([12], Theorem 1) Suppose that Y is a complex projective variety of general &ypl
that X is a complex projective variety. Then there are at rfiniely many dominant rational maps
from X toY.

Suppose that is a surjective endomorphism of a complex abelian varetynd thatB C Ais an
abelian subvariety satisfyings(B) = B. Theng¢; certainly descends to a surjective endomorphism
of A/B and, sincef (a+ b) = ¢¢(b) + f(a) for everya € Aandb € B, f also descends to a surjective
endomorphism of\/B.

Proof of Theoreri 1]12SetB = Stal}(V), write V = B+ W as in Theoreri 211, leg : A — A/Bbe
the quotient map, and Ildg : A/B — A/B be the quotient of. Then dim§(V)) = «(q(V)) and fg
is a surjective endomorphism qfV). Thus, by Theorein 2.2, some iterafgeis the identity map on
q(V). So for anyw € W, q(f(y)) = f&(a(w)) = q(w) and f*(B + w) = B + w. O

Remark 2.3. It can be impossible to choose W in Theofem 1.2 such th&) & W (even when
f is an isogeny): let A be an abelian surface, let C be a smoggetbolic curve in A, and let
f: AxA— AxAbegiven by (a1, ap) = (a1 + a2, &); then f(Ax C) = Ax C, but no subset of
A x C that maps finitely onto C under the second projection gfAcan be preserved by f.

2.3. Eigenvalues for Actions on First Cohomology Groups.

Given a complex abelian variey of dimensionn, we can writeA = C"/A for some rank-2
lattice A € C". Then the setdz, ..., dz} of holomorphic 1-forms oit" descends to a basis for
HLO(A). Since any translation ofinduces a trivial cohomological action, any surjective@mar-
phismf : A — A satisfiesf* = ¢} on every cohomology group @& Moreover, given such an
endomorphism, there is sondg € GL,(C) satisfying®:(A) = A such thaip¢ is the quotient of
®¢—so thawp; = @] onHO(A).

Lemma 2.4. Let A be a complex abelian variety of dimension n with an isgge: A — A, and
let T = {y1,...,yn) be the multiset of eigenvalues ¢f on H-%(A). Suppose that B A is an
abelian subvariety of dimension m satisfyip@) = B, and letA = {61,...,5m} be the multiset of
eigenvalues op* on HY°(B). ThenA is a submultiset of and the multiset of eigenvaluesdjf on
HO(A/B)isT — A, wheregg : A/B — A/B is the quotient o.

Proof. Write A = C"/A-so thaty is the quotient of somé e GL,(C) satisfying®(A) = A. Let
n: C" — Abe the quotient map, and ¢t = 7~3(B) C C". So Vg is anm-dimensional subspace,
Ag = Vg N A C Ais a sublattice of rankr3, andA/Ag is a lattice of rank 2{— m). Letqbe the
guotient map fromA to A/B, letp be the quotient map froi@" to C"/Vg, and letr’ be the quotient
map fromC"/Vg to (C"/Vg)/(A/Ag). Thenqo n andn’ o p have the same kernel (i.& ® A)-so
that (C"/Vg)/(A/Ag) = A/B. NowT is the multiset of eigenvalues df, Vg is ®-invariant, andA
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is the multiset of eigenvalues dfly,. Moreover,® descends to a mapg € GL(C"/Vg) and the
multiset of eigenvalues afg on HL9(A/B) is the multiset of eigenvalues dfs.

Let{x, ..., Xm} be a basis foWg that givesdly, in Jordan canonical form, and Igt, . . ., Yn-m}
be a subset of" whose image under is basis forC"/Vg that gives®g in Jordan canonical form.
Then{xy, ..., Xm, Y1, ., Yn-m} iS @ basis foC" with respect to whiclb is upper triangular. It follows
that the multiset of eigenvalues @g isT" — A. O

Suppose that is a surjective endomorphism of a complex abelian varesatisfyingf (o) = o
for someo € A. Then
¢i(@ =f@a+o)-0o
for everya € A—so thatf is conjugate (by a translation) to an isogeny. Moreaygly —o) =V -0
for anyV C A satisfyingf (V) = V.

Proof of Corollary{T.8. SetB = Stat}(V), write V = B+ W as in Theoreri 112, lej : A — A/B
be the quotient map, and I&t : A/B — A/B be the quotient of. Thenfls‘ is the identity map on
g(W) and hence, in particular, fixes some paing A/B. Thus¢f§ is the identity map og(W) — o,
and hence also on the abelian subvarietg A/B generated bg(W) — o. (See, e.g./13]§8.) It
then follows from Lemm& 24 that the number of eigenvaluesifting multiplicity) of (f)* on
HL9(A) that are equal to one is at least difj( which is at least ding(W)) = (V). Moreover, if
dim(q(W)) # 0, then dim{’) must be strictly larger than dim(W)). The proof is concluded by the
observation that the multiset of eigenvalues 8% on H°(A) is exactly the set of ak-th powers
of elements in the multiset of eigenvaluesfofon H-O(A). O

2.4. Unity-Free Endomorphisms of Abelian Varieties.

The cohomology rind1*(A, Z) of any complex abelian varietd is generated (via the cup prod-
uct) by HY(A, Z). If f is a surjective endomorphism of a complex abelian varetihen the pull-
back actionf* respects the cup product—so that, in particular, the Letzatumber forf is

DT HAZ) s HAZ)= [ @-v)a-7)
0<i<2dim(A) 1<j<dim(A)
where{yi, ..., vdim@)} iS the multiset of eigenvalues df on HO(A); it then follows from the
Lefschetz Fixed-Point Theorem théthas a fixed point if it is unity-free. (Compare [23]2.1.)
Thus any unity-free surjective endomorphism of a complealiab variety can, without loss of
generality, be viewed as an isogeny.

Given a complex abelian variety, we let Torsf\) denote the set of torsion points @n Given
an endomorphisni of a complex projective varietX, we let Preper{) denote the set of points
on X that are preperiodic fof. If f : A —» Alis an isogeny of a complex abelian vari&ythen
Tors(A) € Preperf): foranyme N, {a € A | ma= 0} is finite and preserved bf. The following
result gives a useful characterization of unity-free endgehisms of abelian varieties.

Proposition 2.5. Let f : A — A be an isogeny of a complex abelian variety A. Then the failpw
three conditions are equivalent:
1) Preperf) # Tors(A);
2) there is a positive-dimensional abelian subvariety of A thpointwise fixed by some iterate
fk; and
3) there is an eigenvalue of bn H-°(A) that is a root of unity.
Proof. (1= 2) If Preper() # Tors(A), then there is a nontorsion polRte A satisfying a preperiodic

relation; i.e., there exist® > n € Ny such thatf™(P) = f"(P). Sincef is an isogeny, any iterate
fK(P) is also nontorsion; so, without loss of generality, we ceP to be periodic and set = 0.
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Since{a € A : f¥(a) = a} is a group subvariety oA containingmP for anym € Z, it must contain
some positive-dimensional abelian subvarietpdhat is pointwise fixed by.

(2 = 3) If f¥ pointwise fixes some positive-dimensional abelian sulbtaik C A, then the
eigenvalues of {*)* on HX°(K) must all be one. So it follows from Lemrha .4 that the eigéuss
of f* on HX°(A) must include a root of unity.

(3 = 1) Write A = CYM®/A—so thatf is the quotient of SOmME& € GLgimey)(C) satisfying
F(A) = A. If some eigenvalue of* on HO(A) is a root of unity, then 1 is an eigenvalue of some
iterate ¢*)* on HX(A)—and hence also 6. Let (gij)1<i, j<dim) be a matrix representation Bf as
a linear self-map o@9™® . Under the natural identification G4M® with R24MA vig

Z =X+ = (X W),
this matrix represention d¥* becomes

(%(gu) -3(gij)
J(@;)) R(gj)) 15i,jgdim(A)'

Taking @ij)1<i,j<dim(y in Jordan canonical form shows immediately that 1 is an eigjese of FK

on R29M®_and hence also on Spgm). So F* pointwise fixes some non-trivial linear subspace
V C Spany(A), and f¥ pointwise fixes the non-trivial (real) subtorlisC A corresponding to the
closure otV in R29m®  Thus Prepeff) contains all ofT, including its nontorsion points. O

Remark 2.6. In Theoreni 111, the hypothesis that f is an isogeny actuadlgl$ to a stronger con-
clusion, via an application of Propositién 2.5: setBStal}(V), write V = B+w as in Theorer 1]2
with w e A a point, let g: A — A/B be the quotient map, and leg f A/B — A/B be the quotient
of f; then, since g is an isogeny andg{q(w)) = g(w), g(w) must be an element dbrs(d/B); thus

w can be taken to be an elementTafrs(A)—so that V is in fact a torsion translate of an abelian
subvariety.

3. INDUCED MAPS ON ALBANESE VARIETIES

Given a smooth complex projective variety we let Alb(X) denote the Albanese variety fér
and we letayx denote the Albanese map fraxito Alb(X).

3.1. Functorial Properties of Albanese Maps.

Any endomorphisnf of a smooth complex projective varie¥induces a maj : Alb(X) —
Alb(X) satisfyingF o ax = ax o f; moreover, since}, gives an isomorphism from-0(Alb(X)) to
H19(X), the pull-back actiorr* on H-(Alb(X)) is conjugate to the pull-back actidri on H-0(X).
(See, e.9./19]§3.3.) The universal property of Albanese varieties stdtasany morphism fronx
to a complex abelian variety must factor througdt-so that, in particularyx (X) cannot be contained
in a translate of a proper abelian subvarietylo{See, e.g.[]1]§1.13.) SoF must be surjective if
is surjective.

Suppose now thatx(X) # Alb(X) and thatf is surjective. Then Theorelm 1.2 shows that

ax(X) = Stal ) (@x(X)) + W
for some varietyV C Alb(X) of general type, and that there is an iteratehat satisfies
FX(Stat} ) (@x (X)) + W) = Statf, x (@x(X)) +w

for everyw € W. Moreover, the universal property of Albanese varietieglies that(ax (X)) > 0,
and hence also thafWw) > 0.
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3.2. Endomorphisms of Varieties with Non-Surjective Albanese Mps.

Proof of Corollan{1.4. SetB = Statglb(x)(ax(X)), write ax(X) = B+ W as in Theoreri 112, and let

F : Alb(X) — Alb(X) be the map induced bf. Since dimV) > 0 andFX(B + w) = B + w for any
w e W, the pre-image oB + w satisfiesn;(l(B +w) # Xand

f*(ax(B +w)) = o (B + W)
foranyw e W. If dim(B) > 0 thena;(l(B + W) is a proper positive-dimensional subvariety)ofor
anyw e W.

Suppose that dinlf) = 0. If it were the case that dim({*(B + w)) = 0 for somew € W, then
ax : X = ax(X) would necessarily be a generically finite map; but tiewould necessarily have
the same dimension as(X) and hence (as in the argument tiléts a variety of general type in the
proof of Theoreni 2]1) would be a variety of general type—Wwhly Theorend 212, contradicts the
assumption thaX admits an infite-order surjective endomorphism.a§b(B + W) is still a proper
positive-dimensional subvariety offor anyw € W. m]

Proof of Corollary[1.8. Sincex(ax(X)) > 0, Corollary[ I.8 shows that no endomorphism of Adp(
thatis induced by a surjective endomorphisnXafan be unity-free. So no surjective endomorphism
of X can be unity-free. m|

Theorem 3.1([20], Théoreme 1) Suppose that f is a polarized endomorphism of a smooth cample
projective variety X of dimension n and that, in particul&tL. = L®% for some ample le Pic(X)

and qe N—{1}. Then, for every g {0, ..., 2n}, the magnitude of every eigenvalue 6foh Hi(X, Z)

is qi/2.

It is clear from Theorerf 3l1 that a polarized endomorphisrstrbe unity-free if it occurs on a
variety whose Albanese map is non-trivial - and hence caoootr on a variety whose Albanese
map is non-surjective. For a surjective endomorphfsafia smooth complex projective varie¥
the j-th dynamical degree df is

() = p(f* 1 HA(X,Z) - HZ(X, 2)),

wherep denotes the spectral radius. It is again clear from Theardhih&t polarized endomor-
phisms are excluded (because they have distinct conseayihamical degrees) from varieties with
non-surjective Albanese maps by the following result.

Theorem 3.2([4], Corollary 1.4) Let f be a surjective endomorphism of a smooth complex pro-
jective variety X of dimension n, and suppose tha(X) # Alb(X). Then there is an integer
j €10,...,n—=1} such that1;(f) = 2j.1(f).

We remark that Theorefn 3.2 is independent from Corollary théat is, there exist endomor-
phisms which are not unity-free but have distinct dynandegjrees, and there exist endomorphisms
which are unity-free but do not have distinct dynamical éegr An example of the former is sim-
ply the multiplication map [2) [1] on E x E for any elliptic curveE. On the other hand, the
automorphism (among others) Bfx E x E x E given by

(€1, €2, €3,€4) = (€, €3,€4,—€1 + 36 + 463 + 3e4)

is unity-free but does not have distinct consecutive dyeahuegrees. (See also [15].)
The constraint on varieties admitting polarized endomisipk provided by Corollary 1.8 com-
plements the following characterization.

Theorem 3.3([5], Theorem 4.2) Let X be a smooth complex projective variety admitting a po-
larized endomorphism, and suppose th@) > 0. Then there is an abelian variety A and a finite
surjective mapr : A — X.



COHOMOLOGICAL CONDITIONS ON ENDOMORPHISMS OF PROJECTIVEARIETIES 9

Since the Kodaira dimension of any abelian variety is zéro|lows from Theoreni 313 that the
Kodaira dimension of any smooth complex projective varadynitting a polarized endomorphism
must be non-positive. Corollafy 1.8 addresses the casernbath complex projective variety with
negative Kodaira dimension and a non-surjective Albanemgg. iror example, iX — Y is a fiber
bundle whose fibers have negative Kodaira dimension andevhase satisfiegy(Y) # Alb(Y),
thenk(X) < 0 and (by the universal property of Albanese varietisg)X) # Alb(X).

3.3. Implications for a Dynamical Manin-Mumford Conjecture. The Manin-Mumford Conjec-
ture (proved by Raynaud) states that a reduced and irrddusiitibvarietyV < A of a complex
abelian varietyA is a torsion translate of an abelian subvariety if and onl if Tors(A) is Zariski
dense inV. (See, e.qg.[[18] and[7].) The following conjecture (nowokm to be false) is a first
attempt to transport this idea to dynamical systems.

Conjecture 3.4([23], Conjecture 1.2.1)Let f be a polarized endomorphism of a smooth complex
projective variety X, and let ¥ X be a reduced and irreducible subvariety. Then Y is prepiio
for f if and only if YN Preper€) is Zariski dense in Y.

WhenX is an abelian variety, Propositibn .5 constrains the stigti@sY which could disprove
Conjecturd_3}4 by containing Zariski dense sets of predaripoints without themselves being
preperiodic: since, by Theordm B fLis unity-free, it follows from Proposition 2.5 that PrepBr&
Tors(X); thus, by the Manin-Mumford Conjecture, any reduced areflincible subvariety ¢ X
with Y n Preperf) Zariski dense inY must be a torsion translate of an abelian subvarietX.of
We note below that Conjectulre 8.4 does in fact fail in thigdilon—and the main counterexamples
are indeed torsion translates of abelian subvarietieshwdie not preperiodic. As for the converse
direction of Conjecturg_314, the following results showtttias true whenX is an abelian variety
even when the requirement thiabe polarized is relaxed to require only tHabe unity-free.

Proposition 3.5. Let f : A — A be a unity-free isogeny of a complex abelian variety A, aippese
that V C A is a reduced and irreducible subvariety that is preperioir f. Then Vn Preperf) is
Zariski dense in V. Moreover, V is a torsion translate of aelén subvariety of A.

Proof. There are iterate's and f* such thatfe(fl2(V)) = f¥(V). Sincef“ is a unity-free
isogeny, Remark 216 shows thHe(V) must be a torsion translate of an abelian subvariety.of
So, by the Manin-Mumford Conjecture, the $et= f¥(V) N Tors(A) must be Zariski dense in
fl2(V). Then (f%)~X(P) NV is Zariski dense itV and consists entirely of points in PrepBr(Since
Preperf) = Tors(A), V must itself be a torsion translate of an abelian subvariey. o m]

If V (with dim(V) > 0) is periodic, so fixed by some iteraf, in Propositior 3.5, theri¥|y is
again a unity-free isogeny: there is some V n Tors(A) that is fixed by some iterate< with klk’;
soV’ = V -t is an abelian subvariety d& satisfying f¥ (V') = V’; it follows from Lemmd 2%
that f¥ is unity-free onVv’; finally, sincef¥ |\ is conjugate taf*'|y, f¥ (and hence als6*) must be
unity-free onV. By the following result, we conclude th¥tin fact contains a Zariski dense set of
periodic points.

Proposition 3.6. Let f : A — A be a unity-free isogeny of a complex abelian variety A. Tthen
set of periodic points for f is Zariski dense in A.

Proof. Let B C A be the Zariski closure of the periodic points firand letB° be an irreducible
component ofB containing the identity. Sincé(B) = B, every irreducible component @& is
preperiodic, and hence is a torsion translate of an abelibmasiety of A. If B’ is an irreducible
component ofB containing the identity, then every point of the form- 7 with € B? periodic
andr’ € B’ periodic is also periodic and the set of all such points igskadense inB° + B’; so
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B’ = BC. Since the identity is a fixed point fd, it follows that f (B®) = BC. If B is any irreducible
component oB andr’ € B is periodic, therB’ — 7’ is contained irB°. Letq: A — A/B° be the
quotient map, and letz : A/B° — A/B° be the quotient of. So the image oB in A/BY is a finite
set of points. Ifo € A/BC is periodic for fg, then the orbit off (o) is finite underf and some
component ofy}(o) is periodic underf; soq (o) N B # 0 ando is in the image oB. Thus (by
LemmalZ.4)fg is a unity-free isogeny with only finitely many periodic ptsrf dim(A/B°% > 0,

which cannot happen. S = A. O

As shown by Ghioca, Tucker, and Zhang [7], counterexampléSanjecturé_3J}4 can be con-
structed on an abelian surface of the foEx E, whereE is an elliptic curve with complex multi-
plication: an endomorphism given by coordinate-wise miitation by distinct elements of Eny
with the same magnitude will always be polarized, but mag dfe diagonal irE x E an infinite
orbit; on the other hand, the diagonallix E will always contain infinitely many torsion points,
all of which must be preperiodic for the endomorphism. Fatitohal details, see [7§2. Many
similar examples can also be constructed on higher-dirnaakabelian varieties; sele |16]. All of
the known counterexamples to Conjectlird 3.4 come from ¥ipie bf construction, and attempts
have been made to modify Conjectlirel 3.4 to accommodate &éxasaples. Ghioca, Tucker, and
Zhang dter the following modification:

Conjecture 3.7([7]). Let X be a projective variety, f X — X a polarized endomorphism defined
overC, and Y a subvariety with no component contained in the sarguart of X. Then Y is
preperiodic under f if and only if there exists a subset ofatinpreperiodic points x Y which are
Zariski dense in Y, such that the tangent subspace of Y atrgpepodic under the induced action
of f on the Grassmanian @) (Txx)-

In [[7], Conjecturé 317 is verified for group endomorphismsbélian varieties, and for the case
X = P! x P!, Y aline, andf a product map. It is worth noting that the tangent space tiomdis
essentially used only to eliminate counterexamples of ¢ fmentioned above, though they can
appear subtly in the form of Lattés maps.

Remark 3.8. In light of Proposition§3J5 arld 3.6, it is natural to ask iEthssumption in Conjecture
B4 that f is polarized should be replaced by the assumptiantt is unity-free (along with whatever
other changes are made to account for the known counterdeainpiowever, outside the realm of
abelian varieties, a unity-free endomorphism can fail twdn@ Zariski dense set of preperiodic
points: the endomorphism Bt x E (where E is an elliptic curve) given by

([%0: x1],€) = ([2%0 : X1], 2€)

is unity-free, but has all of its preperiodic points contadhin {[0, 1], [1,0]} x E. Moreover, it is
possible in general for a unity-free endomorphism to havenaariant subvariety on which the
restriction is not unity-free.

4. CoHOMOLOGICAL PROPERTIES OF ENDOMORPHISMS

4.1. Properties of Polarized and Amplified Endomorphisms. We place the cohomological con-
ditions of the above theorems into context among other endpinisms of projective varieties.

Proposition 4.1. Let X be a smooth projective variety ov@rand¢ : X — X a surjective endo-
morphism. The following hold:

(1) If f is polarized (resp. amplified or unity-free)¥ fs polarized (resp. amplified or unity-
free) for all k> 1.
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(2) If f is polarized (resp. amplified) and Y is a closed subvarat X satisfying €Y) = Y,
then f|y is polarized (resp. amplified).

(3) If f is amplified, each set of the forfr e X : f™(x) = f"(X)} form> n > Ois a finite set.

Proof. The first two statements are easily checked, since the aéstriof an ample divisor to a
closed subvariety is ample, and restriction commutes wighaiction off *. For the third, note that
if m>n>0and{xe X: f(x) = f"(X)} is not finite, then it is a closed, positive-dimensional
subvarietyY of X, andZ = f"(Y) is pointwise-fixed byf™™". Sincef is amplified,g := f™" |;

is amplified, so there exists a line bundlen Z such thaig*(L) ® L™ is ample. Howevery acts
trivially on Z; so we conclude that the trivial bundle dris ample, a contradiction. m|

When an endomorphisiis not amplified, there is an immediate consequence for ttieracf
f* on the Néron-Severi group N%): since the linear transformatioif — ID cannot be surjective
on NSX)q (as it must miss the ample cone), 1 must be an eigenvaldé oh NS(X)g; so there
must be some line bundle in PX) has numerical equivalence class is fixedfby

As discussed if3.3, the simplest proposed version of a dynamical Manin-Ktudhconjecture
was proven to be false in][7], and an alternate conjectuneqeed. Both versions include the strong
hypothesis that the endomorphism: X — X be polarized. However, for the direction of the
conjecture which is true, this hypothesis is unnecessstribng, as was shown by Fakhruddin.

Theorem 4.2([5]). Let X be a projective variety over an algebraically closettifiand f: X —» X
a dominant amplified morphism. Then the subset of X congisfiperiodic points is Zariski dense
in X.

As noted in Remark3] 8, unity-free endomorphisms are likelythe right setting for a dynamical
Manin-Mumford conjecture; however, Fakhruddin’s theorgiwes hope that a dynamical Manin-
Mumford conjecture may hold in the much broader setting gbléfired endomorphisms.

4.2. The Implication Diagram for Varieties with Non-Trivial Alb anese Maps.

Proof of Theorerh 1]9SupposeX is a smooth complex projective variety with non-trivial Altrese,

f : X - X is a dominant, amplified endomorphism, ahds not unity-free. By Proposition 4.1,
these conditions will hold for any iterate ffas well. By Theorem 412, some iteratefolias a fixed
point. Replacingf by this iterate,f has a fixed point, and so the Albanese map can be chosen so
that the induced map : Alb(X) — Alb(X) is an isogeny.

Since f is not unity-free,F is not unity-free. By Proposition 2.5, Al} contains a positive-
dimensional abelian subvarietywhich is pointwise fixed by some iterate 6f Replacef by an
iterate to assume is pointwise fixed byF. Sinceay : X — Alb(X) has image which generates
Alb(X) as a group, there exists a positive intelyesuch that the map

an XM 5 Alb(X)

given by

am(X, ..., Xom) = ax(X) + -+ + ax(Xm) — ax(Xme1) = -+ - — ax(Xam)
satisfiesT c aw(X). Let foy @ X*2M — XM denote the coordinate-wise applicationfafo X*?V.
Since f is amplified, there exists a line bundlee Pic(X) with f*(L) ® L™t ample; thenfyy is
amplified with respect to the bundig(L) ® - - - ® n3,,(L), wheren; is the usual projection to the
jth coordinate. By definitionfay fixes the fiberS; over any point € T; since foy is amplified,
Propositio 4.1l and Theordm #.2 imply that each flerontains a Zariski dense subset of periodic
points. Since there are uncountably many such fibers, theselme some positive integiirsuch that
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infinitely many points inx*?M have exact periot. Thereforex*?M contains a positive-dimensional
subvariety which is pointwise fixed bfg\‘M, which is a contradiction by Propositibn %.1. m|

4.3. Converse Directions in the Implication Diagram. We now make some remarks on the rel-
ative strengths of the various types of endomorphisms difimeughout. By Theorem 1.9, we
have the following diagram for any endomorphism of a smoaothglex projective variet with
non-trivial Albanese:

polarized = amplified = unity-free = infinite-order

In general, none of the reverse implications are true; weigeoexamples from the right-hand
side of the diagram to the left. By Proposition]2.5, the paadd any infinite-order endomorphism
on an abelian varietp with the identity mapda will have infinite-order, but not be unity-free. By
Remarl{(3.B, there exist unity-free endomorphisms whosegierpoints are contained in a proper
subvariety; by Theorein 4.2, such an endomorphism cannanpéfeed. Finally, consider the map
¢ = [2] x [3] on the producE x E of an elliptic curveE. The eigenvalues af* on HY(E x E) are
4, 6, and 9. So, by Theordm Bdl js not polarized; on the other hand, since 1 is not an eigaaval
of f* on NSKX), ¢ is amplified.

Note that the above counterexamples to the reverse imiplisatvere given foabelianvarieties,
except for the unity-free, non-amplified example. Additiiy, these counterexamples could occur
in all dimensions> 2. It is perhaps surprising then that for abelian surfaceiy4ree does imply
amplified.

Proposition 4.3. Let f be a surjective endomorphism of an abelian surface Xmikinot amplified.
Then f is not unity-free.

Proof. Let y; andy, be the eigenvalues df* on HX°(X). Then the eigenvalues df on H%(X)
are’y; andyz, and the eigenvalues df on HY1(X) arely1|?, y172, 712, andlyz?. Sincef is not
amplified, 1 is an eigenvalue ¢f on H-(X).

If [yal = 1, thenyIl is a Galois conjugate of;. So the minimal polynomial foy,, which is a
factor in the characteristic polynomial fét on H'(X, Z), is reciprocal-and hence has constant term
1. If v, is a Galois conjugate ofy, then so iSyEl—WhiCh forcegy,| = 1. So, whether or not; is a
Galois conjugate of, it follows from Kronecker's theorem that the minimal pobmial fory; is
cyclotomic. (A similar argument applieslifo| = 1.)

If ly1l # 1 and|y,| # 1, theny;yz = y1v2 = 1. So the topological degree 6fthat is, the eigen-
value of f* on H4(X)—is y1y2y1y2 = 1; thusf is an automorphism. Sindg,| = |y1|™ # 1, f has
positive entropy. Since the signature of the intersectiwmfonH1(X) is (1,3) and the signature of
the subspace dfi>*(X) generated by the eigenvectors fgi]> and|y|? is (1,1), the eigenspace for
the eigenvalue 1 must be negative definite. So any periodi@dor f would necessarily have neg-
ative self-intersection, and hence by the adjunction fdamould necessarily be a rational curve;
but abelian varieties cannot contain rational curves. Thihas no periodic curves, and Lemmal4.4
below contradicts the assumption tHas not amplified. m|

Lemma 4.4. Let f be an automorphism with positive entropy of a smoothpbexprojective surface
X. If f has no periodic curves, then f is amplified.

Proof. (See [19] for details.) The entropy dfis log(1) for some Salem numbet. There is a
sublatticeNS(X)’ < NS(X) such thatf* preserveNS(X)’ and the characteristic polynomial here
is the minimal polynomial for. So, in particularf* — ID is surjective orNS(X)’. Sincef has no
periodic curvesN S(X)’ contains classes of ample line bundles. m|
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The proof given of Propositidn 4.3 intrinsically uses thdlwederstood intersection theory of
abelian surfaces. However, in light of Propositlon] 3.6,eems possible that all unity-free en-
domorphisms of an abelian variety are amplified; we leavegtiesstion for the reader and future
exploration.

Lemmal4.% shows that the types of varieties admitting poégriendomorphisms are more re-
stricted than those admitting amplified endomorphisms.eéuald there are many examples of K3
surface automorphisms with positive entropy and no petiodives. On the other hand, a K3 sur-
face can never admit a polarized endomorphism. (See,@]g., [
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