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ABSTRACT. We introduce a general strategy for proving quantitative and uniform
bounds on the number of common points of height zero for a pair of inequivalent
height functions on P'(Q). We apply this strategy to prove a conjecture of Bo-
gomolov, Fu, and Tschinkel asserting uniform bounds on the number of common
torsion points of elliptic curves in the case of two Legendre curves over C. As a
consequence, we obtain two uniform bounds for a two-dimensional family of genus
2 curves: a uniform Manin-Mumford bound for the family over C, and a uniform

Bogomolov bound for the family over Q.

1. INTRODUCTION

In this article, we use the arithmetic Arakelov-Zhang intersection of heights on
P}(Q) to prove a uniform Manin-Mumford bound for a two-dimensional family of
genus 2 curves over C. The Manin-Mumford Conjecture, proved by Raynaud [Ra],
asserts

(L.1) jp(X) N J(X)P7] < o0

for any smooth complex projective curve X of genus g > 2 and any point P € X (C),
where jp : X — J(X) is the Abel-Jacobi embedding of X into its Jacobian .J(X)
based at P, and J(X)%" is the set of torsion points of the Jacobian. In the case
of genus g = 2, the curve is hyperelliptic, and the fixed points of the hyperelliptic
involution provide geometrically natural choices of base point for the Abel-Jacobi
map. We provide a uniform bound on the torsion images under such a map, provided
the curve admits an elliptic involution.

Theorem 1.1. There exists a uniform constant B such that
ip(X) N J(X)*"| < B

for all smooth curves X over C of genus 2 admitting a degree-two map to an elliptic
curve and all Weierstrass points P on X.

The curves satisfying the hypothesis of Theorem 1.1 form a complex surface £y in
the moduli space My of genus 2 curves. These X are also characterized by the
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property that their Jacobians admit real multiplication by the real quadratic order
of discriminant 4. Further details on £, are given in Section 9.

Remark. We do not give bounds on B, but this bound can be made effective by
providing explicit estimates for the continuity constants of Section 4. Regarding this
constant, it follows from Theorem 1 of [Po] that there are infinitely many curves
X € L, for which [jp(X) N J(X)™™| is at least 22 for a Weierstrass point P, and we
know of no curve X € My and point P € X satisfying |jp(X) N J(X)™"s| > 22.

The question of uniformity in (1.1) was raised by Mazur in [Ma] who asked if a
bound could be given that depends only on the genus g of the curve X. Quantitative
bounds on torsion points on curves have been obtained when the curve is defined
over a number field, notably by Coleman [Co|, Buium [Bu], Hrushovski [Hr], and
more recently by Katz, Rabinoff, and Zureick-Brown [KRZG]. By quantifying the
p-adic approach to (1.1), these authors achieve bounds for general families of curves;
however, these bounds all involve dependence on field of definition or the choice of a
prime for the family of curves, so are not uniform for families over Q or C.

Our new technique which yields Theorem 1.1 is a quantification of the approach
of Szpiro, Ullmo, and Zhang [SUZ, Ul, Zh1] to proving (1.1), utilizing adelic equidis-
tribution theory. We first reduce to the setting where the curve is defined over Q.
Over Q, we build on the proof of the quantitative equidistribution theorem for height
functions on P'(Q) of Favre and Rivera-Letelier [FRL1].

In fact, we deduce Theorem 1.1 from a case of the following conjecture, discussed by
Bogomolov and Tschinkel [BT] and stated formally as [BET, Conjectures 2 and 12,
which asserts uniform bounds on common torsion points for pairs of elliptic curves.
By a standard projection m : E — P! of an elliptic curve E over C, we mean any
degree-two quotient that identifies a point P and its inverse —P for some choice of
identity point for F.

Conjecture 1.2. [BFT| There exists a uniform constant B such that
|mi (B{) Ny (EBy)| < B

for any pair of elliptic curves E; over C and any pair of standard projections m; for
which m(E1[2]) # m(Es[2]).

Note that if the four 2-torsion points of E; and of Ej satisfy m(F1[2]) = ma(Es[2]),
then E) is isomorphic to Fy and 1 (E}°™) = my(EL™). The finiteness of m (E}°™) N
mo(E4™), under the assumption that m(E1[2]) # ma(F»[2]), follows from the main
theorem of Raynaud in [Ral; indeed, the diagonal in P! x P! lifts to a (singular) curve
C C E; X Ey via m; X my with normalization of genus g > 2 [BT].

We prove Conjecture 1.2 in the case of maximal overlap of the 2-torsion points;
i.e., when

T (E1[2]) Nma(Ea[2])] = 3.
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This setting corresponds to the case where the (normalization of the) curve C' in
E, x E, has minimal genus 2. By fixing coordinates on P!, we may work with the
Legendre family of elliptic curves

E =z —1)(z -1
with t € C\ {0,1} and the standard projection 7(z,y) = z on E;.
Theorem 1.3. There exists a uniform constant B such that
[m(EL) A =(BL™)| < B,
for all t; # ty in C\ {0,1}.

To prove Theorem 1.3, we introduce a general strategy for bounding the number of
common height-zero points for any pair of distinct height functions hy, hy : P1(Q) — R
that arise from continuous, semipositive, adelic metrics on the line bundle Op:(1). Our
heights are normalized so that their Arakelov-Zhang intersection number, which we
denote by hy - he, will satisfy

hy - ho > 0 with equality if and only if Ay = hs.

Details on these heights and the pairing are given in Section 2. The value of hy - ho
provides a notion of distance between the two heights (as was observed by Fili in
[Fi]). Large numbers of common zeroes between hy and hy will imply that h; and hy
are close. Indeed, it follows from equidistribution [CL1, FRL1, BR] that

lim h2($n) = hl : h2

n—oo
for any infinite sequence of distinct points z, € P'(Q) such that h;(z,) — 0 as
n — oo. While this measure of closeness between two heights is not generally uniform
in families of heights, by bounding the height pairing hA; - ho from below, we obtain
an upper bound on the number of common zeroes.

In the context of Theorem 1.3, we consider the family of height functions h; on
P'(Q) induced from the Néron-Tate canonical height on the elliptic curve E;, for
t € Q\ {0,1}; its zeroes are precisely the elements of 7(E}°"*). We implement this
general strategy by proving three bounds on the intersection pairing fltl . iLtQ. We
prove a uniform lower bound on the pairing:

Theorem 1.4. There exists § > 0 such that
he, - by, >0
forallt, #t, € Q\ {0,1}.

We also prove an asymptotic lower bound for parameters ¢t; and t, with large height:
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Theorem 1.5. There exist constants c, 8 > 0 such that
hiy - hey > ah(ty,ty) — B
for all t; # ty in Q\ {0,1}. Here h(ty,ts) is the naive logarithmic height on A%(Q).

We find an upper bound that depends on the number of common zeroes of Htl and
ht, as well as the heights of the parameters ¢; and t:

Theorem 1.6. For all € > 0, there exists a constant C() > 0 such that

e, -y, < (5 + %) (h(t1,t) + 1)

for all ty and ty in Q\ {0,1}, where N(t1,t5) = |m(E[™) Nw(EP™)|.

The three theorems combine to give a uniform bound on the number N(t1,ts) of
common zeroes of hy, and hy, for all t # ¢, in Q \ {0,1}.

Theorems 1.4 and 1.5 follow from estimates on the local height functions and the
local equilibrium measures on the v-adic Berkovich projective line at each place v of
a number field containing ¢; and t5, computing using the dynamical Lattes map f; :
P! — P! induced by multiplication by 2 on a Legendre curve E;. The non-archimedean
contributions to hy, - by, turn out to be straightforward to compute for these heights.
Significant technical issues arise when v is archimedean and both parameters ¢; are
tending to the singularity set {0, 1,00} for this family; we resolve these issues by
appealing to the theory of degenerations of complex dynamical systems on P!(C), in
which a family of complex rational maps degenerates to a non-archimedean dynamical
system acting on a Berkovich space, as in the work of DeMarco-Faber [DF'1] and Favre
[Fal, using the formalism of hybrid space as discussed by Boucksom-Jonsson in [BJ].

For Theorem 1.6, we expand upon the quantitative equidistribution results of Favre-
Rivera-Letelier [FRL1] and Fili [Fi] to analyze the rates of convergence of measures
supported on finite sets of zeroes of a height h to the associated equilibrium measures
at each place v. To do so requires control on the modulus of continuity of the local
heights, and again we rely on estimates from the hybrid space to treat the cases where
a parameter ¢ is tending to one of the singularities for the family F;.

Although Theorem 1.4 alone was not enough to prove Theorem 1.3, it implies a
uniform bound of a different sort, when combined with Zhang’s inequality on the
essential minimum of a height function [Zh2]:

Proposition 1.7. Choose any b satisfying 0 < b < §/2 for the 6 of Theorem 1.4.
Then the set

S(b,ty,ty) := {x € PHQ) : hy, () + he, () < b}
is finite for each pair t; # t; € Q\ {0,1}.
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Our proof of Theorem 1.1, however, gives more; it provides a uniform version of the
Bogomolov Conjecture for this family of genus 2 curves. The Bogomolov Conjecture
was proved for each individual curve X over Q in [Ul, Zhl]. To state our result
precisely, we fix ample and symmetric line bundles on the family of Jacobians J(X)
for the genus 2 curves X defined over Q that we consider in Theorem 1.1. Specifically,
we take Ly = ®*Lp for the isogeny ® : J(X) — E; X Ey of Proposition 9.1, with Lp
the line bundle associated to the divisor D = {O1} x Ey + F1 x {Os}, where O; is the
identity element of Fj.

Theorem 1.8. There exist constants B and b > 0 such that
[{z € jp(X)(Q) : hry(z) <b} < B

for all smooth curves X over Q of genus 2 admitting a degree-two map to an elliptic
curve and all Weierstrass points P on X, where hy, is the Néron-Tate canonical

height on J(X).

Finally, we mention that we implement this general strategy towards uniform
boundedness in a follow-up article [DKY] in another setting, providing a uniform
bound on the number of common preperiodic points for distinct polynomials of the
form f.(z) = 2% 4+ ¢ with ¢ € C.

Outline of the paper. We fix our notation and provide background in Section 2.
Sections 3, 4, and 5 provide the estimates on local height functions and local measures
needed to prove all of our theorems. Theorem 1.5 is proved in Section 6, and from
it we deduce Theorem 1.4 and Proposition 1.7. A generalization of Theorem 1.6 is
proved in Section 7 which treats points of small height, not only of height 0. We
prove Theorem 1.3 in Section 8 and finally Theorems 1.1 and 1.8 in Section 9.
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Trust (RG74916), and H. Ye was partially supported by ZJNSF (LR18A010001) and
NSFC (11701508).

2. HEIGHTS, MEASURES, AND ENERGIES

This section develops the background and notation needed for the proofs that
follow. Throughout, K is a number field with places M.
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2.1. The canonical height. Fixt € Q\{0,1}. Let E; be the Legendre elliptic curve
and 7 : E; — P! the projection defined by 7(x,y) = x. The multiplication-by-two
endomorphism on E; descends via 7 to a morphism of degree 4 on P! given by

(2.1) fi(z) = 43;(35:6— 1_)2 &

The canonical height on the elliptic curve

~ J—

hEt . Et(@) — R
can be defined via the projection 7w and the iteration of f; as hg, (P) := %ﬁt(ﬁ(P))

where
he : PH@) = R
is the dynamical canonical height defined by

. 1
(2.2) hi(z) = lim —h(f]'(x)).

n—oo 4n
Here, h is the (logarithmic) Weil height on P'(Q). Note that h,(z) > 0 for all
r € PY(Q), and

~

h(z) =0 < z € n(E°)
[Si], [CS).

The height h; has a local decomposition as follows: for any number field K con-
taining ¢, and for each place v € Mk, there exists a local height function \;, such

that
. r
ho(z) =y " > M)
verty | Gal(K/K) - ] yeCal(K/K)-«
for all € K, where
(K, : Q]
Ty i = ————.
(K : Q]

The local heights );, can be chosen to extend continuously to P*(C,) \ {co}, where
C, is the completion (w.r.t. v) of an algebraic closure of the completion K,, and to
satisfy

Nol() = log |z], + O(1)

as |x|, — oo.

2.2. Local heights and escape rates. To compute the local heights, we will often
lift the maps f; : P! — P! of (2.1) to homogeneous coordinates. Define

Fy(z,w) = ((2° — tw?)? 4zw(z — w)(z — tw))

for z and w in C,. As observed in [BR, Chapter 10}, its escape-rate function

1
(2.3) Gro(z,w) == lim —log || )" (2, w)||s,
n—oo 4M
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where ||(z,w)ll, = max{|x|., |y|,}, satisfies

ha() = > |Ga1(?;KM > Gra®

vEM jeGal(K /K) i

for z € P'(K) and Z any choice of lift of z to K. In particular, we may take
(2.4) Mio(x) = Gpo(x, 1)

as a local height for hy.
The elliptic curves £; and E,_; and E); are isomorphic, with the following trans-
formation formulas for the local heights:

Proposition 2.1. Fiz any number field K andv € M. Then, for allt € K\ {0,1},
we have

Gr w(1—2,1) =GR (z,1) = Gpl/tyv(z,t) = Gpl/mv(z/t, 1) + log |t|,.
Proof. Let A be the automorphism A(z,w) = (w — z,w). Then
AoF'=—F",0A
for all iterates, proving the first equality. Similarly, let B(z,w) = (z,tw). Then
BoF'=FJ) 0B

for all iterates, proving the second equality. The final equality follows from the
logarithmic homogeneity of G. U

2.3. The Berkovich projective line. Let K be a number field. For each v € My,
let Al*™ denote the Berkovich affine line over C,. The points of Al-*" come in four
types. For v € M}, the Type I points in A" are, by definition, the elements of the
field C,; the Type II points are in one-to-one correspondence with disks D(a,r) =
{r eC,:|x—al, <r}withr > 0rational. (We will not need the Type III or Type IV
points in this article.) A Type II point corresponding to D(a, r) will be denoted by ;-
The Gauss point (p; is the Type II point identified with the unit disk. The Berkovich
projective line PL%" = AL U {co} is the one point compactification of A" which
is a canonically-defined path-connected compact Hausdorff space containing P'(C,)
as a dense subspace. If v is archimedean, then C, ~ C and P.*" = P!(C).

For each v € M there is a distribution-valued Laplacian operator A on P2, The
function log™ |z|, on P!(C,) extends naturally to a continuous real valued function
PLe" — R U {oo}, and the Laplacian is normalized such that

Alog™ |z], = wy — 0uo

on PLa" where w, = mg1 is the Lebesgue probability measure on the unit circle when
v is archimedean, and w, = dg is a point mass at the Gauss point of P1%" when v
is non-archimedean. A probability measure j, on PL%" is said to have continuous
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potentials if p, —w, = Ag with g : P> — R continuous. The continuous potential
for p, is unique up to the addition of a constant. See [BR] for more details. Note
that the Laplacian used here is the negative of the one appearing in [PST] and [BR],
but agrees with the usual Laplacian (up to a factor of 27) at the archimedean places.
Suppose v € MY with MY being the set of non-archimedean places. We set

H:=AL"\C,.

The hyperbolic distance dyy, on H gives it the structure of a metrized R-tree and
satisfies

dhyp(cllﬂ”lv Ctlﬂ"2) = IOg(T‘l /TZ)

for any a € C, and any ry > ro. We will say that a probability measure p, on H is
an interval measure if it is the uniform distribution on an interval [(1, (3] C H with
respect to the linear structure induced from the hyperbolic metric dpyp.

2.4. Canonical measures and good reduction. For each Legendre elliptic curve
E; with t in a number field K and each v € M, the local height \;,, of (2.4) extends
to define a continuous and subharmonic function on AL with logarithmic singularity
at oo. We have

A/\t,v = Mt — 500
on Pl where y;, is the canonical probability measure for the dynamical system f;
at v [FRL1], [BR].

For archimedean v € Mp, the measure j;, is the unique f;-invariant measure
on P!(C) achieving the maximal entropy log4. It is the push-forward of the Haar
measure on E;(C) via the projection 7 introduced in §2.1. See, for example, [Mi] for
a dynamical discussion of the maps f; on the Riemann sphere.

For non-archimedean v € My, if the curve E; and the map f; have good reduction,
the measure p, is the point mass de supported on the Gauss point (p;. The map
f+ has potential good reduction, meaning that it has good reduction under a suitable
change of coordinates on P!, if and only if the measure y;, is supported at a single
Type II point in H. In general, the support of 1, is equal to the Julia set of f; in
plan,

Recall that the j-invariant of the elliptic curve E; over C is given by

(25) i) = 2

For t € K and non-archimedean v € My, the map f; has potential good reduction at
v if and only if the curve E; has potential good reduction at v. This equivalence can
be proved via equidistribution of torsion points on E; at all places [BPe, Theorem 1]
(thus implying that the measure p;,, will also be supported at a single point of PL")
or via a direct calculation showing that the Julia set of f; is a singleton if and only if

70 < 1.
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2.5. The height as an adelic metric. Suppose t € K \ {0,1}. The height A, on
P!(Q), introduced in §2.1, is induced from an adelic metric on Opi(1), in the sense
of Zhang [Zh2]. Fixing coordinates on P! and a section s of Op:i(1) with (s) = (00),
then a metric || - ||;,» can be defined at each place v of K by setting

—log|[s(2)llew = Aro(2) = Gro(z, 1),
for the function G, , of (2.3). The height h, satisfies

he(z) = Y . > (—loglls(y)lls)

vert | Gal(K/K) - yeGal(K/K) -«

for all z # oo in PY(Q). Writing A\;,(2) = log|z|, + ¢, + o(1) as |z|, — oo with a
constant ¢, at each place v of K, we may compute that

(26) 0= ilt<OO) = Z Ty Co,

veEMK

because oo is the projection of the origin of F;.

2.6. The intersection pairing. For these heights hy coming from the Legendre
family of elliptic curves, with ¢ € Q \ {0, 1}, we have

(27) ]A’Ltl = ]tLt2 < 11 = 1s.

Indeed, any height coming from an adelic metric on Op:(1) is uniquely determined, up
to an additive constant, by the associated curvature distributions; see, for example,
[FRL1]. For heights of the form Ay, at each archimedean place v of a number field
containing ¢, the curvature distribution s, on P!(C) is the push-forward of the Haar
measure on F;(C) by m; it therefore has a greater density at the four branch points
{0,1,¢,00} of m, and thus determines t.

There is a well-defined intersection number between any pair of such heights, as in
[Zh2] (see also [CL2]). By the non-degeneracy of this height pairing and (2.7),

(2.8) he, - he, > 0 with equality if and only if ¢, = o,

as computed in [PST].

To define the pairing hy, - hy,, we fix sections s and u of Opi(1) such that their
divisors do not intersect. Given t; and 5 in a number field K, and a place v of K,
we set

<]A1t17ilt2>1s)7u = /log ”S“t_l,lv A(log ||u||t_2,1v) = <iLt27 il’t1>g7s'
The integral is over the Berkovich analytification P1-*" of P!, over the field C,. The
metrics satisfy
A(log [sllze) = 0 = s

and fi;, is the associated curvature distribution.
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The height pairing is then defined as
(2.9) ]Alh ) Btz = ﬁtl((u)) + Bt2((8)) + Z Ty <iLt1’ iLt2>1$;’u
veEMK

which is independent of the choices of s and w. This pairing is easily seen to be
symmetric, and since h;(oco) = 0 for all ¢, it can be expressed as

iI‘tl 'iLtQ = ﬁt2<oo)+ Z rv/(logHsH;}U) d:utmv = Z TU/)\tl,U d:th,v

vEMK vEMK
(2.10) = () + S / Gog sl dis = 3 70 / Mo diteyo
vEMK vEMK

when (s) = (00).
As hy-hy =0 for all t € Q\ {0,1} from (2.8), note that

(211) Z TU/At,vd,ut,v =0= Z Ty Cu,

'L)GMK ’UEMK

by combining (2.10) and (2.6). The pairing can be rewritten as:

- . 1 /(. .
htl 'htz = 5 (ht2<00> + ht1 (OO> + Z Ty (/ >\t1,v d,utz,v + /)\tz,v d,utl,v)>
vEMK
1
(212) = 5 E% Ty </ ()\tl,v - /\tz,v> dﬂtg,v + / ()‘tg,v - /\t1,v> dﬂ/thv) .
v K

The advantage of working with (2.12) is the following local version of the non-
degeneracy property (2.8):

Proposition 2.2. [FRL1, Propositions 2.6 and 4.5] Let K be a number field and
v € My For any ty,ts € K\ {0,1}, the local energy

1
Ev(tlatQ) = 5 </ ()\tl,v - Atg,v) dﬂtg,v + / ()\tz,v - >\t1,v) dﬂ'thv)

is non-negative; it is equal to 0 if and only if ji, v = [ty 0-
Proposition 2.3. Let v € My, and fix t1,to € K\ {0,1}. We have
Ev<t2,t1) — Ev(tl,tg) — Ev(l - tl, 1 — tg) — Ev(l/tl, 1/t2)

Proof. Given measures ji, , and ju, ,, the local energy E,(1,t3) can be expressed as

1
-3 /9 d(ﬂtl,v - Mtz,v)

for any continuous potential g of the signed measure fi, ,, — ft1, 0, because g = A, , —
Aty 0 + € for some constant c¢. We have

fise=ao fioa™
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for a(z) =1— 2z = a !(z2), such that 14, = Qupiey and g = (A0 — Ap) 0@t is a

potential for the measure fi1_4, » — fl1—t,0. Lherefore, E,(1 —t1,1 —t3) = E,(t1,12).
Similarly, we have fi,(z) = ao f, 0o a™'(z) for a(z) = z/t, so E,(1/t1,1/ty) =
E,(t1,ts). O

2.7. Measures and mutual energy. Suppose that v; and v, are signed measures
on P!(C) with trace measures |v;| for which the function log|z — w| € L' (11| ® |va|)
on C?\ Diag. The mutual energy of vy and v, is defined in [FRL1] by

(2.13) (v1, 1) := —/ log |z — w| dvy ® duvs.
C2\Diag

This definition extends to the non-archimedean setting by replacing |z — w| with the
Hsia kernel 6,(z,w) based at the point at co. In this way, for v € MY, a pairing is
defined similarly as

(2.14) (1, 19)y = —/ log 6, (z, w) dvy ® dvs.
Al anXAl an\Dlag

See [FRL1, §4.4] and [BR, Chapter 4].
For measures v; of total mass 0 with continuous potentials on PL*" we have

(V17V2>'u = —/91 dvy

for any choice of continuous potential g; for vy. Further, (14,14), > 0 with equality
if and only if 14y = v, [FRLI1, Propositions 2.6 and 4.5]. Note that Proposition 2.2 is
a special case of this fact. Indeed, in this notation, the local energy F,(t,t,) defined
in Proposition 2.2 is given by

1
o (,utl,v - ,utg,va ,utl,v - th,v)v

(2.15) E,(t1,ty) = 5

at each place v of a number field containing t; and t5, for the canonical measures
introduced in §2.4.

The mutual energy (-,-), of (2.13) and (2.14) can also be defined for discrete mea-
sures. If ' = {x1,...,2,} is any finite set in a number field K, and v € M, then
denote by [F|, the probability measure supported equally on the elements of F' C C,.
Then

(2.16) > v ([Flos [Flo)o = Z |F|2 > logla; — ], =0

v 1#]

by the product formula.
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2.8. A metric on the space of adelic heights. The height pairing gives rise to a
metric on the space of continuous, semipositive, adelic metrics on Op: (1) [Fi, Theorem
1]. Given a number field K and any collection of probability measures {f, fven, on
PLem with continuous potentials for which u, = w, at all but finitely many places
(where w, is a point mass supported on the Gauss point), then there is a unique
metric on Opi(1) with curvature distributions given by {f, fvenr,, normalized such
that its associated height function h : P*(Q) — R satisfies h - h = 0 [FRL1]. The
height pairing between any two such heights is computed as
hy - hy = % > e (1w = p2ws 1w — fi20)e-

vEME

Fili observed that a distance between h; and hs can be defined by
dist(hy, ho) = (hy - ho)'?.

Indeed, we have already seen that hy-hy = 0 if and only if h; = hs because of the non-
degeneracy of the mutual energy (-,-), at each place. Furthermore, dist(-,-) satisfies
a triangle inequality: at each place, the mutual energy induces a non-degenerate,
symmetric, bilinear form on the vector space of measures of mass 0 with continuous
potentials on PL%" and so the triangle inequality for dist(-,-) follows from an ¢
triangle inequality:.

3. NON-ARCHIMEDEAN ENERGY

Throughout this section, we fix a number field K and a non-archimedean place
v € Mk, and provide a lower bound on the non-archimedean local energy defined in
Proposition 2.2:

Theorem 3.1. Forty,to € K\ {0, 1}, we have

log [t1/t2]o :
4 6log11?1ga)2({£t2|;,|t1|v}7 m1n{|t2\u, ‘tl'v} >1
Ey(t1,t2) — 3 log 2], > —610g0rgnir‘1{1\{2\2v|?\t1|v}’ max{|taly, [t1]o} < 1
[log [t1/ta]v]

5 ) otherwise.

FEquality holds for v {2 with min{|t; — 1],, [t — 1|,} > 1.
3.1. Measure and escape rate for v 1 2.

Proposition 3.2. Suppose t € K \ {0,1} and vt 2. Then f; has good reduction at
v if and only if |t(t — 1)|, = 1. If |t(t — 1)|, # 1, then f; fails to have potential good
reduction at v, and the canonical measure i, on PL*™ of f, is the interval measure
supported on
I = { [CO,I,CO,HM] fOT‘ |t|v > 1 or |t|v < 17
[Co,1, Ciypi—t),) Sfor |1 —t], < 1.
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Proof. By Proposition 2.1, it suffices to treat the cases with |t|, > 1. By [FRL2, §5.1],
f1(I) = I and the action of f; on I is by a tent map of degree 2. That is,

) G if1/2<r <,
Je(Cojery) = { Copp-2r O <7r<1/2.

The proposition follows. U

We may now compute the local height A ,(2) = G, (2, 1) on AL*" which is locally
constant away from the interval [0, c0] C AL,

Proposition 3.3. Suppose v 1 2 is non-archimedean and |t(t —1)|, > 1. The escape-
rate function G, , satisfies

log |2/, for ||, > [t],
log? |2
(3.1) Gro(z,1) =< 5 10gg||t‘q|J +log |t],) for 1 <|z|, < |t]s
%log |t], for |z, <1

for all z € C,.

Proof. Let A be the continuous extension of the expression on the right hand side of the
formula (3.1) to AL*. By Proposition 3.2, y;, is the interval measure corresponding
to [Co,15Co,¢, ], and a direct computation shows that

AN = Hio — 500

Thus it suffices to show that G, (-, 1) and A agree at a single point. For any 2, € C,
with |zo|, > |t|, define (z,,w,) := F*(z0, 1), so that

(3.2) (Zns1, Wni1) = Fy(zn, wn) = ((22 — tw?)?, 4zpwn (20 — wy) (20 — twy,)).

Inductively,
|Zn|v = ’20|in > |t|v|wn|v > |wn|v'

Consequently,

) 1 n
Grw(20,1) = 7}1_{204—71 log || F{" (20, 1) |lv = log |20]v = A(20)-

A similar application of Proposition 3.2 yields

Proposition 3.4. Suppose v 1 2 is non-archimedean and |t|, < 1. The escape-rate
function Gp,, satisfies

log |l, for |zly 2 1
o] 2 Zlv
(3.3) Gru(z,1) = —gelide £ loglz|, for [t], < |zl, <1
5 log [t], for 2] < It],

for all z € C,.
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3.2. Proof of Theorem 3.1 for v { 2. We compute the local energy E,(t1,t2) by
cases.

Case (1): |t1], > 1 and [ts], < 1. Recall the local energy can be expressed as

QEv(tlth) = /1 (/\tl,v - )\tz,v) d,utg,v + /1 ()\tz,v - )\t1,v) d,utl,v-
Pv,an vyan

Therefore by Proposition 3.2, 3.3 and 3.4,

2Ev(t17 t2) = / (>\t1,v - )\tg,’u) d,utz,’v + / (>\t2,v - )\tl,’u) d,“/h,ir
Pl,an Pl’an

v v

0 log |t1] z? dx
fd — — + x -
log |t2 o 2 210g|t2|v —10g|t2|v
log [t1|v 1 2 dx
+ Tr— = + log |t1],
[ (s (g osioh) i

_ IOg |t1/t2|v

Case (2): |ti|, > 1 and |t2|, > 1. Without loss of generality, we assume that
|t1], = max{|t1|y, |t2]»}. By Proposition 3.2 and 3.3,

QEU(t17 t2) - / <>\t1 v )\tz v) d,utg,v + / (Atz,v - )\tl,v) d,utl,v‘
]Pl ,an ]P)’Ll),an

1°g|t2|” 1 1 x? dzx
= +loglti|y | —= | ———— + 1o tv>)—
(5 (1 o) =5 (g o5l )) e
logltalv /1 22 1 72 dx
+ = +log |ta|y | — = + log |t1], _—
/o (5 (e o=1t) = 5 (et *5141) ) e
log|tafv 1 x? ) dz
—l—/ (x——( +logtv)>
log |2 2 \log |t1], ' log [t1]s

_ log2 |t1/ta]y
3log max{|t1 |, [t2]}

Case (3): |ta(ts — 1)|, = 1 and |t; — 1|, > 1. In this case, f;, has good reduction, so
I, 1S @ point mass supported on the Gauss point (p;. Hence

log [t1]]  |log [t /Eals
2B, (t1, 1) — Og?ll’ | 0g|31/ 2lo]

Case (4): The remaining cases reduce to the above three by the symmetry relations
of Proposition 2.3. This completes the proof of Theorem 3.1 under the assumption
that v 1 2.
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3.3. Measure and escape rate for v | 2.

Proposition 3.5. Suppose v | 2 is non-archimedean. The canonical measure pi,, on
PLan of f is the interval measure corresponding to the interval I with

[Coe/ats o] Jor [ty < [16]o,
I'=<¢ [CojiyapsCojar,]  for [t[y > 1/[16],,

[CLt—tu/140> CLja]  for [1 —t[, < [16],.
For |16|, < |t|, < 1/|16|, with |1 —t|, > |16]|,, fi(2) has potential good reduction, and
Hep @5 supported on a single point in H.
Proof. We proceed as in the computations of [FRL2, §5.1], though the authors had
assumed for simplicity that the residue characteristic of their field is not 2. If |¢|, >
|1/16],, the interval [Co j1/4),, Co,ja¢|,] is totally invariant by f;, and

ft(<0,|4t\v|16t\17r> = <0,|4t|v\16t\;2T and ft(<0,|4t\v|16t\2—1) = Co,|4t\v|16t\;2’“

for r € [0,1/2]. Thus p, is the interval measure on [(o1/4f,,Co,u,]. The cases
|t], < |16], or |1 — t|, < |16/, can then be deduced from Proposition 2.1.

For all |16/, < [t|, < 1/]|16], with |1 —t|, > [16],, we have |j(t)|, < 1, so f; has
potential good reduction. 0

Following the proofs of Propositions 3.3 and 3.4, from Proposition 3.5 we obtain

Proposition 3.6.

log |z|, for |z|, > |4t|,
log? |4z|,
(3.4) Grau(z,1) = $ SGEAa +logtl) for 1/|4], < |2l < |4,
| 3 log ], for |z|, < 1/]4],
for t with |t|, > 1/|16],, and
log | 2], for |z]y > |4],
log? |42 /t|.
(3.5) Gro(z,1) = %(% +logltls) for [4], < |z[s < [t/4],
\ %log |t], for |z], < |t/4],

for t with |t|, < |16],.
3.4. Proof of Theorem 3.1 for v | 2. We compute as in the case where v { 2.

Case (1): {t1,t2} with min{|t1],, [t2]o} > 1/]|16|, and max{|t1|,, |t2],} > 1/|16|,. By
Proposition 3.6 yield

log? |t1/tal, < log? |t1/tal,
3log max{|16t1],,|16t2|,} — 3logmax{|ti|,, [ta]s}

2F,(t1,t2) =

Case (2): |t1], > 1/|16], and [t5], < |16],. Again by Proposition 3.6,
log |16, ], — log |t2/16], log |t1/t2|y
2 Ey(t1,ts) = 08 |16 30g‘ 2/16] —10g|16|v2—0g|§/ 2 :
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Case (3): [ti], > 1/[16]s, |16], > |fa]o > 1/|16], and |1 — ta], > |16],. Let ¢, € H
be in the support of s, ,. For any z € C, with |z|, > 1/|4].,

(2% = 12)],

v = > v
|ft2(z)| |4Z(Z—1)(Z—t2)|v |Z|
Hence (o141, € [y, 00). Let 2o € C,, with |2], > 1/|4],, and let (2, wy) := F{¥ (20, 1).
From the recursive formula (3.2), inductively we have |z,| = |20|2" > |wp|v/|4]s-
Consequently

log || F [

Ayw(2) =GRy, 0(2,1) = lim

= log ||,
n—00

4n

for z with |z|, > 1/|4],, and then Ay, (o) = logr for r > 1/]4|,. Moreover, as
ANy p = (5<t2 — 00, the function ), , is increasing at a constant rate along the ray
[Ct,, 00), with respect to the hyperbolic metric. Therefore Ay, ,(Gt,) < Aiyw(Co1/j4,) =
—log |4|,. Hence by Propositions 3.5 and 3.6,

2Ev(t17t2) = /1 ()\tl,v - )\tg,v) d,utg,v + /1 ()\tg,v - )\tl,v) d,utl,v-
Pv,an Pv,an

= (/\t1,v(§t2) - /\t2,v(§t2))

log |4t1 | 1 (x+10g|4| )2 dr
- r— | e tlogltily | | T
/h1g|1/4|v < 2 < log [16t4], g [t )> log |16t 1],

log |16t4 |,
T

Here we have used Ay, (G,) < —logl|4], and Ay, () = 3log|ti], for the last in-

>

equality.
Of course, for |16], < |t;], < 1/|16], and |1 — t;], > |16|, for i = 1,2, we have

1 ti/tale 8
2B, (tt) > 0 > Mwlogmv.

Case (4): The remaining cases reduce to the above three by the symmetry relations

of Proposition 2.3. This completes the proof of Theorem 3.1.

4. ARCHIMEDEAN PLACES AND THE HYBRID SPACE

In this section, we provide some of the estimates we need to control the archime-
dean contributions to the height pairings. Throughout this section, we assume our
parameter ¢t € C\ {0,1} is complex. We let p; denote the probability measure on
P!(C) which is the push forward of the Haar measure on the Legendre elliptic curve
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Ei(C) via 7(z,y) = x. This measure is also the unique measure of maximal entropy
for the dynamical system defined by the Lattes map
2 2
ft<z) - 4 (z t) )

2(z—=1)(z — 1)
as noted in [Mi, §7]. We study degenerations of the probability measures p; and
their potentials as t — 0. (The cases of ¢t — 1 and ¢t — oo are similar.) To this
end, we consider the action of f; sending (¢, z) to (¢, f;(z)) on the complex surface
X = D* x PY(C), where D* is the punctured unit disk. We make use of the hybrid
space X™° in which the Berkovich projective line over the field of formal Laurent
series C((t)) creates a central fiber of X over ¢t = 0 in the unit disk D. We appeal to
the topological description of the hybrid space from [BJ] and the associated dynamical
degenerations described in [Fa].

4.1. The family of Lattes maps and their escape rates. In homogeneous coor-
dinates on C?, recall that the maps f; may be presented as

Fy(z,w) = ((2° — tw?)? 4zw(z — w)(z — tw)) .

They have escape rate functions

1
(41) GFt(Zaw> = lim _logHF;fn(sz)Ha
t—oo 47
as in (2.3).
View the families f; and F; as maps f and F defined over the field k = C(¢), and

consider the non-archimedean absolute value | - |y on k satisfying |g(t)|o = e~ 9.

Let ko = C((t)) denote the completion of C(t) with respect to this absolute value.
Let L. denote a (minimal) complete and algebraically closed field containing ko. The
non-archimedean escape rate G on L2 is defined as in (2.3). Since [t|y < 1, it is
given for x € IL by the following formula, exactly as in Proposition 3.4:

log |xo for |z]p > 1
(42)  gpla) = Gr(z,1) = 4 loglalo — GEELE for [t]y < |afo < 1
3 log to for [z]o < [tlo
—a for |z|o = [t|* with a <0
= —a+ 3a* for |zp = [t|* with 0 <a <1
-1 for |z|o = [t|* with a > 1

2
The function §; extends naturally to the Berkovich space P;*"; away from the point
at oo, it is a continuous potential for the equilibrium measure fiy of f.

The potential §; and the measure [i are invariant under the action of Gal(IL/kg) on
Pi’an. They descend to define a function and probability measure — that we will also
denote by g and fiy — on the quotient Berkovich line ]P’,igm (see [Be, §4.2] for details

on this quotient map). As computed in Proposition 3.2, the measure fi; is supported
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on the interval [o ¢, Co,1], and it is uniform with respect the linear structure from
the hyperbolic metric.

4.2. Convergence of measures. The family f, acts on the product space D* x P!
sending (¢, 2) to (, fi(2)). It extends meromorphically to X, := D x P!, or indeed to
any model complex surface X — D which is isomorphic to D* x P! over D* and has
a simple normal crossings divisor as its central fiber.

Fixing a surface X — D and letting t — 0, the degeneration of the measures p; of
maximal entropy for f; — or indeed for any meromorphic family of rational maps on
P! — to the central fiber of X is now well understood. [DF1, DF2] compute the limit
of the measures p; for any choice of model X, and a relation is shown between these
limits and the non-archimedean measure fis. In particular, if we set

Aspo i ={(t,2) €D* x C: C7Ht|* < |2| < CJt|"}
for any C' > 1 and any real numbers a and b with a > b, then
(4.3) pe(Aap,c) = i([Cojeras Co o)) = lengthg ([0, 1] N [b, a).

This follows from [DF1, Theorem B] (allowing for changes of coordinates on P! and
base changes, passing to covers of the punctured disk D*) or from the computations
described in [DF2, Theorem D] (taking I' to be a vertex set in the interval [(o.1, Co,j¢,])-
Another proof is described below in §4.3. In particular, this convergence implies:

Lemma 4.1. Giwen any € > 0 and integer n > 1, there exists 6 > 0 such that
1 , : 1
= —e < ({2 <MY < = e
n n

for all0 < |t| <6 andi=0,...,n— 1.

Taking € = 1/n? in Lemma 4.1, we observe that for any given n, there is a § > 0
such that we also have

(4.4) pe ({2 = 13 U{lz] < J]}) < %

for all 0 < |t| < §.

4.3. Convergence in the hybrid space. In [Fa], Favre gives an alternate proof of
(4.3) by showing that

(4.5) e = fu

weakly in the hybrid space X [Fa, Theorem B]. The hybrid space consists of replac-
ing the central fiber in the models X above with the Berkovich line P,if", carrying an
appropriate topology. The convergence of measures follows from the convergence of
their potentials to the potential of the measure /iy in the Berkovich line. We describe
this convergence here, as we will use it for proving our main result.
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Let m; denote the Lebesgue measure on the unit circle in C, normalized to have
total length 1. Let ®,(z) denote a continuous potential on P'(C) for the measure
1y — mq. Explicitly, in local coordinates z € C C P!, we can take

(4.6) y(2) = Gp(2,1) —log™ |2

with G, as in (4.1). In [Fa], Favre proves that the function
Dy (2)

4.7 t,2) (= ———

( ) 80(72’/) 1Og|t|,1

extends to define a continuous function on X taking the values of a potential of
the limiting measure fi; — wy on the central fiber. Here wy is the delta mass on the
Gauss point (p; of the Berkovich line IP’}{;)“". More precisely, we consider the function

0 for |z|o > 1
(4.8) pr(x) = Q loglalo — GEELE for [t]y < |afo < 1
5 log [t]o for |x]o < |t|o
0 for |x|o = [t|* with a <0
= —a+ 3a* for |z =[t|* with 0 < a <1
-1 for |x|o = [t|* with a > 1

2

for x € L, similar to the formula for g in (4.2). This function ¢; extends continuously
to all of PP it is Calois invariant over ko; and it descends to the quotient ]P’,lggm.
Favre’s theorem implies that the function ¢ of (4.7) extends continuously to X"¥°,

coinciding with ¢ over ¢t = 0:
Proposition 4.2. Given any ¢ > 0, there exists 6 > 0, such that

<é€

|80(t7 z) — &5(Coeg2)
for all0 < |t| <6, for all a € R, and all z for which
log|z|

< 9.

log [t|

Proof. Recall that the absolute value | - | on L induces a continuous function on the
Berkovich space that we will also denote by | - o : IP),lﬂf" — Ryo U {oo}. We use
the standard absolute value | - | on C, extended to a continuous function P*(C) —
RZO U {OO}

The topology on Pi;“” is such that annuli of the form

A(ry,m) i={z € IF’,IC;M iy < |x)o < ro}
are open for any choice of 0 < r; < ry < 00, as are the Berkovich disks of the form

Dy(r) :={z € IP’,lc;)a" |zl < r}and Doo(r) :=={z € P,lﬁ;)“" Dalo >}
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for any 0 < r < oo. The topology on X" is such that an annular set of the form
{(t,2) € D* x PY(C) : |t|*™ < |z < [t|*™° and 0 < |t| < 0} U A(Jt]a™0, |t]a~0)

is an open neighborhood of (g ys on the central fiber for any a and any ¢ > 0.
Similarly, the disk-like sets

{(t,2) € D* x PY(C) : |2| < [t|* and 0 < |¢] < 6} U Do(J£[2)

and
{(t,z) € D* x Pl(C) Szl > Jt* and 0 < |t] < 0} U Do ([E]3)

are open for any a € R, and allowing a and § to vary provides open neighborhoods at
0 and oo respectively in the central fiber. See [BJ, §2.2 and Definition 4.9] for details
on the hybrid topology. Note in particular that the hybrid topology restricted to the
central fiber is the usual Berkovich topology.

By the continuity statement of [Fa, Theorem 2.10] and exhibiting ¢ as a uniform
limit of model functions ([Fa, Section 4.3] provides the details in the dynamical case)
the function ¢ extends to define a continuous function on X"’ taking the values
of ¢y on the central fiber. Let L denote the closed segment in ]P’,lﬂ;fm between 0
and co. We may by compactness cover L by finitely many neighborhoods on which
lo(x) —@(y)| < e. As the values of ¢y depend only on the values of ¢ on L, each open
neighborhood of a point in the interior of L contains an open interval in L, and ¢ is
constant near 0 and oo, we may assume these neighborhoods are annular or disk-like
as defined above. Thus we obtain a uniform ¢ as claimed. 0J

As ®,(2) = Gp,(2,1) —log™ |2|, we also have a uniform continuity statement for G
when |z| is bounded from above:

Proposition 4.3. Given any e > 0 and M > 1, there exists 6 > 0 such that
GFt (Z, 1)

].Og |t|_1 - gf<govlt|8) < €
for all0 < |t| <6, for all a € R, and all |z| < M for which
1
oglz| al < 0.
log ||

4.4. Discrete measures and regularizations. Let F' be any finite set in C. Denote
by [F] the probability measure supported equally on the elements of F', and for r > 0,
denote by [F], the probability measure supported equally and uniformly on circles of
radius r about each element of F'.

Proposition 4.4. For every ¢ > 0, there exists ¢ = c(e) > 0 such that

[ (e, [F) = (e, [F])] < & max{log [t| ™", log [t — 1|, log ¢], 1}
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for allt € C\ {0,1} and any finite set F in C and any
r<c min{|t|27 |t - 1|27 |t|_2}

Proof. For any x € C and any r > 0, let m,, be the probability measure supported
on the circle of radius r around z. Recall that

o)== ol do(e) dow).

For each fixed ¢, the function G, (-, 1) is a potential for y; in C, and therefore, there
exists a constant C; such that

/ log |z — w| du(z) = Gp,(w, 1) + Ch.
C

Now let F' be any finite set in C. Then, assuming r < 1, we have

(1 [F1) — (o, [F]) = %Z(GFt<xal>— / GFt<<,1>dmm,r<<>)

_ % { ﬂ;}} (q)t(x) = / ,(C) dmx,xo)
+ % {ngz} <Gpt(x, 1) — / Gr (¢, 1) dmw,r@))

because the function log™ |z| is harmonic away from the unit circle on C.
By Proposition 4.3, there exists 6 > 0 such that

GF (Z 1) R

4.9 — - a)| < €/2
for all |z| < 2 satistying

1

oglel | _s

log ||
and all || < ¢ and any a € R. Shrinking ¢ if needed, we have
(4.10) ot 2)| < /2

for |z > 1 and all || < d, by Proposition 4.2.

Let Cs be the compact subset of C \ {0,1} consisting of all ¢ with |[¢| > § and
|t — 1| > 6 and [1/t] > §. Over C5 x P!, the family of potentials {®,;} is uniformly
continuous. So there exists ¢; = ¢;(d) such that

’(I)t(Z) — (I)t(zl)’ <e€
whenever dist(z, 2’) < ¢; and for all ¢ € Cs. Here, dist represents the chordal distance

on P!, Furthermore, we may take c¢; such that we also have

’GFt(Z7 1) - GFt(’ZI? 1)’ <€
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for all |z — 2'| < ¢; with |z] <2, and all ¢t € Cs. Thus

(et [F]r) = (e [F])] < €

for any choice of finite set F', t € Cs, and r < ¢;.
Now assume that [t| < §. We will consider three cases. First, suppose [t|'*° <
|z| < 2. Choose any ¢y = ¢3(d) such that

(4.11) |log(1 £ 26" %) < 6(log6™").
Then
/_
fog|#//2I] = [log| =2 + 1H
z
2 —z 2 —z
< max<qlog |1+ ,|log {1 —
z z
< max

t2
log(lj:62| | )‘
2|
< max ’log (1 + 0251_5) ‘
< O(logé™t) < dlog|t| ™t
for all |t| < 6. This is equivalent to
log ¢| _ log ||
logt|  log|t|
for all |z — 2| < cot|* with [¢|'"0 < |z] < 2. Combined with (4.9) and setting
a = (log|z|)(log|t|), this implies that

’GFt(Zﬂ 1) - GFt('Z/a 1)’ < elog ’t‘_l

(4.12) )

for such pairs z and 2’

Second, suppose that |z| < [t|'*°. By shrinking ¢, further if necessary, we have
cy < (1 —6°)/9, and therefore if |2| < [¢|'T° and |z — 2/| < colt|?, with [t| < §, we
also have |z/| < |t|. Applying the convergence (4.9) to the limit value of —1/2 for all
|z] < |t|**0, we have

’GFt(Z7 1) - GFt<Z/7 1)’ < €log ’t‘il
for such pairs z and 2'.
Third, for |z| > 2, by the convergence (4.10),

|Dy(2) — ®y(2)| < elog|t|™"

for all |z| > 2 and |z — 2| < eo|t|* and [t| < 6.
Together these three cases yield

|(pies [F]r) = (e, [F])] < elog [¢] ™
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for any choice of finite set F' and all [t| <, with r < co|t|*.
If |t — 1| < ¢, the arguments above go through by replacing z with 1 — z, as

GFl,t<1 —Z, 1) = GFt(Z, 1)
by Proposition 2.1. It follows that

|(pte, [F)) = (e, [F])] < elog |t — 1|7

for any choice of finite set F, [t — 1| < §, and r < ¢y [t — 1/?, with 6 and ¢, as above.
For ¢t near oo, more care is needed, as
GFt(Zv 1) = GFl/t (Z7 t) = GFl/t (Z/ta 1) + log |t|
by Proposition 2.1. Setting s = 1/t,
log || log [s| log [s|~!
and (4.9) implies that

GF (Z 1) .
413 e po)+1)| <2
( ) log |t| gf(<0,|s|0 ) + 6/
for all |z] < 2|t| satisfying
1
log [t]

with |¢| > 6! and any a € R. As in (4.10), we also have
|o(t, 2)| < e/2

for |z| > |t| and |t| > 6!, because gf(govls‘éfa) + 1 =a for all @ > 1. The choice of ¢,
in (4.11) is similar. It follows that

| (it [Fr) = (e, [F])| < elog 2]

for any choice of finite set F and all |t] > 1/§, with r < ¢y [¢t|72.
Let ¢ := min{cy, ¢} to complete the proof. |

5. ARCHIMEDEAN ENERGY

As in Section 4, assume ¢t € C\ {0,1} is a complex parameter, with p; on P'(C)
the push-forward of the Haar measure on E;(C), and \(z) = Gp,(z,1) a potential
for p; — 0 on PY(C). In this section we provide estimates on the archimedean local
energy (introduced in Proposition 2.2)

Bulstyi= 5 ([ =2d+ [0 =2pan ).

for s,t € C\ {0, 1} as one or both of the parameters tends to 0, 1, or co. We treat
three cases separately: where only one parameter escapes into a cusp, where both
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parameters escape into a cusp, and where the two parameters head to two different
cusps. By the symmetry established in Proposition 2.3, we focus on the case where s
tends to 0.

Throughout, we work in hybrid space and make use of the convergence of potentials

to gy and measures to iy as t — 0, as proved in [Fa, Theorem B] and explained in
§4.3.

5.1. A single escaping parameter.

Theorem 5.1. Given € > 0 and any compact set C C C\ {0,1}, there exists 6 > 0
such that

1 1
(6 — 8) log |s| ™t < Eno(s,t) < <6 —i—a) log |s|™*
for all s satisfying 0 < |s| < 0 and allt € C.

Proof. Suppose that C C C \ {0,1} is compact, and t € C. Recall that for any
s € C\{0,1}, ®,(2) = G, (2,1) —log™ |z as in (4.6) and (s, 2) = ®,(2)/(log|s| ™).
The local energy E(s,t) satisfies

Ewls,t) ;</(@s—(l)t)dut+/(q)t_q)s>d,us)

log |s|~t 2log |s|~1

1 D, D,
- - "t )4 oy, — 2)dps ) .
5 (/ (w(w) log‘5|_1) Mt+/log|s|—1 L /w(s z) u)

The @, functions are uniformly bounded for all ¢ € C' and all z € P!(C), so there

is a d such that
D,
djis
‘/ log [s] -+ "'

for all |s| < ¢ and all £ € C. We can also find a small r = (C) such that

m{lzl <r}) <e

for all ¢ € C. By Proposition 4.2, (shrinking ¢ if needed)

<€

|o(s, 2)| <€
for all |z| > r and |s| < d, and

|io(s, 2) < 1
for all z and all |s| < d. Consequently,

S, 2) — d < s, 2)| duy + s, 2)| dus + —_
[ (o= ) ] < [ el [ et sl [t

< 3e.

dpu
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Finally, by the weak convergence of ps — fiy and convergence of (s, z) to ¢r, we
can shrink § again such that

[ets. 21— [ 6diy
for all |s| < §. Since

1 a? 1
Ordji :/ <—a+—) da = ——,
/ ranr =) 2 3

<e€

we have | .
(6 — 45) log |s| ™! < By (s,t) < (6 —1—45) log |s|*
for all |s| < d and all t € C. O

5.2. Both parameters escaping to the same cusp.

Theorem 5.2. Given € > 0, there exists 6 > 0 such that

1 1\’ . 1 1\’ )
“(1-=) — -1 < <[=(1=-= -
<6 (1 b) z—:) log |s| " < Ex(s,t) < <6 (1 b) +5) log ||

for all s,t satisfying 0 < |s| = [t|> < |t| < &§ and for all b > 1.

Proof. For each real number b > 1, consider the function

0 for |x|o > 1
A~ og |z 2
fula) = 3 loglalo — S for iy < Ja]y <1
% log |t[o for |z|o < [t]4
0 for |x|o = [t|* with a <0
= —a+a®/(2b) for |z|op = [t|* with 0 < a <
—b/2 for |x|o = [t|* with a > b

for all x € L. Note that ¢; = ¢ from (4.8). As with ¢y, each ¢, extends naturally
to a function on the Berkovich projective line Pif” and is a potential of the measure
i, — 0c, where [, is interval measure on [C07|t|8, Co1) and d¢ is the delta-mass at the
Gauss point (p ;.

For each b > 1, the non-archimedean local energy Fy(/i1, fip) is given by

Butins i) = 5 ([ pndin+ [ 0an)
(tog(tlo/I113))’

—6log min{|t|o, [#[6}

(b—1)*
6b '

as computed in Theorem 3.1 (in the case v 1 2).




26 LAURA DE MARCO, HOLLY KRIEGER, AND HEXI YE

Fix s and ¢ in C\ {0,1}. When both s and ¢ are close to one of the three cusps, we
can estimate the archimedean local energy F.(s,t) in terms of the non-archimedean
pairing using the degeneration description in hybrid space. We first prove a special
case of Theorem 5.2:

Proposition 5.3. Given € > 0 and B > 2, there exists 6 > 0 such that
(Eo(fu, fu) — ) log [t|™" < Ex(s,t) < (Eo(fur, fi) + ) log [t~
for all s,t satisfying 0 < |s| = |t|> < |t| < § with 1 < b < B.
This proposition is an immediate consequence of the weak convergence of measures
e — fip in the hybrid space, and the convergence of potentials as described in §4.3.
We give the details to clarify how the bound b < B is used.

Fix e >0 and B > 2.
For s and t in the punctured unit disk D*, consider the functions

(I)F (Z,l) (I)F (2,1)
5.1 p(t ==t nd by ="
(5-1) (t:2) log [t|~! * (5:2) log [t|~!

defined on the fiber {¢t} x C in the hybrid space. By Proposition 4.2, there exists
01 > 0 such that

(5.2) ‘90(?57 z) — ¢1(Coeja)| < €/(4B)
for all |t| < d;, @ > 0, and all [¢t|*" < |z| < [t|*7%. In particular,

|o(t, 2)] < e/(4B)

for all |z] > 1 and all |t| < 0;.
Now fix any 1 < b < B. It follows that by(s, z) — ¢, in the hybrid space as s and
t tend to 0 with |s| = |¢|°, and uniformly in b for b < B. This is because the annulus

Ai(a,d) can be written in terms of s as
Aa,0) = {z € C: |s|PTP < 2] < |s]*/P70/0}
such that
R b®p (2,1 R
53 Ioels.2) = eolen)] = | = by | < b/ (UB) < e/

for all z € As(a,dy). In particular,
b(s, z)| <e/4

for all |z| > 1 and all |¢| < 0;. Thus the rate of convergence of ¢} to the functions ¢
on the central fiber in X™° as ¢t — 0, is uniform over all 1 < b < B.

Recall that the measures j; on the fiber over ¢ converge weakly in X" to the
measure /i; on the central fiber. For each s with |s| = [t|’, let ui denote the measure
associated to fs but viewed in the fiber {t} x P!. The measures y; converge to the
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measure fi as t — 0 with |s| = [¢|°, and this convergence can also be made uniform

in b with b < B. That is, by Lemma 4.1, for any n there exists o > 0 such that
1 1 , , 1 1

5.4 - =< HOFD/ <2 < M) < = 4+ =

(5.4 o < (T < o] < ) <

for all |t| < 69 and each i = 0,...,n. Note that this implies that

poldle] < YU {la 2 1) < -

Therefore, we also have
11 s f141b(i4+1)/n bi/n L1
(55) < IE < Ja] < ) <

and
pi(lel < PO el 2 1) < -

for all |t] < d,. Thus, the measure i, on small sub-annuli of the annulus {|¢t|* < |z| <
1} is controlled uniformly for all 1 < b < B.
Putting all the pieces together,
Eo(s,t) 1 5
gt * 2 (/ (bp(s, 2) — @(t,2)) dpe + / (p(t, 2) = bip(s, 2)) dut)
is within ¢ of

1 L NN (b—1)°
EO(MlaNb):§ (Qp— ¢1) din + [ (P1— @) djwy | = o

for all ¢ sufficiently small and all s with |s| = |t|°, for any 1 < b < B.

Here is a reformulation of Theorem 5.2 in terms of growth of |t|:

Theorem 5.4. Given € > 0, there exists 6 > 0 such that

(b—1) 1 (b—1) L
) < < | —
( o be |loglt|™ < Ex(s,t) < o +be ) log|t|

for all s,t satisfying 0 < |s| < |t| < &, where b= (log|s|)/(log [t]) > 1.

Comparing Theorem 5.4 to the statement of Proposition 5.3, we see that we have
only adjusted the € term to allow b to be arbitrarily large.

Proof of Theorem 5.4. Fix € > 0.
As in the proof of Proposition 5.3, we make use of the weak convergence of measures
iy — fu1 and convergence of the potentials ¢(¢, z) — ¢; in the hybrid space as t — 0.
Choose r satisfying 0 < r < €/100. There is a J; such that

p({l2| < Jt]}) < ¢/50
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and
lo(t, 2)| < e/50 for |z| > |¢|"
and

1
[p(t,2)] < 5 + /50 for all 2
for all [t| < §,. Thus, for s € C* with |s| = |¢|* and any choice of b > 1/r, we have
lbp(s, z)| < be/50 for |z| > |t

and

b
lbp(s, )| < 5t be/50 for all z

for all |t| < d2. By shrinking d, further if necessary, we appeal to the weak convergence
of measures u; — f1; to deduce that

~ A 1 x2
‘/%O(t>z)dut—/901du1 = ‘/¢(t,z)dut+/ (x—7> dx
0

(5.6) = ‘/go(t,z) dpu +%

for all |t| < 0.
Now fix B > 1/r such that

< /10

b—12 b
— =1 <b
5D 6l < /50
for all b > B. For this B, we can find a g > 0 such that Proposition 5.3 is satisfied
for all 0 < |s| = [t|® < || < dp with 1 < b < B. Choose any § < min{dg, d2}, and we
obtain the theorem for b < B.
Now suppose b > B. We will estimate

e =3 ([ oot = ot due+ [ (ott2) = ot 2) )

log|t|-t 2

(5.7) ‘

for all [t| < § and any s with |s| = |¢| by estimating the two integrals separately.
As shown above,

lbo(s,z) —@(t,2)| <1/24¢/50+be/50 < be/10
for all |2| > |t| and 0 < |s| = |t|* < |t| < § with b > B, and
lbp(s,z) —o(t,z)| <1/2+¢/504+b/2 + be/50

for all z and 0 < |s| = [t|> < |¢t| < §. Writing the first integral as

/ (b (s, 2) — (t, 2)) dpie = /| o bols2) (0, 2)) dt / (b (s, 2)—p(t, 2)) dpa,

|2[<[¢]
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it follows that
Jts.2) = ott.2) du

for all b> B and 0 < |s| = [t|® < |t| < 4.
Write the second integral as

/(90(7572') — b(s, 2)) dp; = /w(t,Z) dyu; —/bw(w) dps;.
As || is bounded by 1/2 4 /50 for all z, we have

\ [ el

for all b > B. On the other hand, we have

[vets 2y =b [ ot du.

<be/10+ (1/2 + /50 + b/2 + be /50)(/50) < be/5

1
< 5 +e/50 < be/25

such that
b
‘/bg&(s,z) dp; + g‘ <be/10

for all 0 < |s| = [t|® < |t| < § from (5.6).
We conclude that (5.9

Eo(s,t b

oz be/2

log [¢]~1 6' <be/

for all b sufficiently large and all |t| < §. On the other hand, we also have

b (b—1)

6 60
for all b > B by our choice of B, so the theorem is proved. OJ

< be/50

5.3. Parameters escaping to different cusps.

Theorem 5.5. Given € > 0, there exists 6 > 0 such that

1 1 B 1 1 »
Z Z) = < <[z Z
(6 (1 + b) 5) log|s| " < Ex(s,t) < (6 (1 + b) +5) log ||

for all s,t satisfying 0 < |t| < & and |s| = 1/|t|> and for all b > 1.

Proof. Suppose that t — oo and s — 0. We aim to estimate E(s,t). The proof is
nearly identical to that of Theorem 5.2, working in the same hybrid space over a unit
disk that we will parameterize by u € D. For ¢t = 1/u near infinity and |s| = |u|® near
0, consider the functions

Gr,, (%, (%,
gu(z) = She ) G )

loglul=t  log]t]
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and

GFS <Z7 1)
= g o

in the fiber {u} x P!
As in Proposition 3.3, the limit of ¢,(z) as u — 0 with |z| = |u|® is

—a for a < —1
Jool(a) == ¢ 3(a®>+1) for —1<a<0
% fora>0

The measures u; on {u} x P! with u = 1/t will converge the uniform measure /i, on
the interval [(o 1, Cov‘uwl] as u — 0.

As s — —0 with |s| = 1/]t]°, b > 1, bg, — g, exactly as in the proof of Theorem
5.2. The non-archimedean local energy is computed in Theorem 3.1 as

N b+1

Efioo, fis) = 5

We conclude as in the proof of Theorem 5.2 that, for all given € > 0, there exists
0 > 0 such that

b+1 b+1
(% - ba) log |t| < Exo(s,t) < (% + ba) log |¢|

for all |t| > 1/0 as claimed. O

6. PROOF OF THEOREMS 1.4 AND 1.5

In this section, we first prove Theorem 1.5, which states there exist constants
a, f > 0 such that

il/tl . Btz Z Oéh(tl,tg) — /6
for all t; # t, in Q\ {0,1}. We then use this lower bound to prove Theorem 1.4 and
Proposition 1.7.

6.1. Balancing local contributions. Fix any r such that
0<r<1/16.

Fix t1,t, € Q\ {0,1}, and let K be any number field containing ¢; and t,. We split
the places Mk into “good” and “bad” subsets, depending on the pair 1, ¢, and the
choice of r. Let Myood(t1,t2) be the set the places v € My with

| log [t2/t1]u] = r - max{|log [ta[,|, |log [t1]u]};
and set Mpaa(t1,t2) = Mg\ Mgood(t1,t2). We further decompose Myoo4(t1,t2) into its

archimedean (Mg5, ) and non-archimedean (Mg, 4) places.
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Lemma 6.1. There exists an integer Ny such that
3r
6 Ey(t1,t2) > Z| log [t1/t2],] — log Ny

for any choice of t; and ty in Q\ {0,1} and for all archimedean v € M2 ,(t1,t5).

good

Proof. Let

7,2

T2
and let ; be the minimum of the ¢’s from Theorems 5.2 and 5.5 for this choice of ¢.
Let 95 be the § of Theorem 5.1 for the compact set

{tE(C:51 S |t| S 1/(51 and |t—1’ 251}
in C\ {0,1}. Let &y be the minimum of §; and d2, and let Ny be an integer bigger
than 1/p.
Now fix t1,t5 and any number field K containing ¢; and t,, and fix a place v €

Mgsoq(t, t2) C My If 6g < [ti], < 1/dp for i = 1,2, we have

€

3
6 Ey(t,ts) > 0 > Zr|log|t1/t2|v|—logNg.

Asv e Mggod’ if |t2|v < |t1|v < ]_, then

b—1
ltalo = [ta]y < [fa], for >

and therefore, by Theorem 5.2, if additionally [t1], < d1, then we have

b—1)?
6 Ey(tr,ta) > (( b2) —66)|log|t1!Z!

b—1)r r?
> (85251 otk

3rbo—1 3r
> = log [t1]%] = —|log |t1 /ta]o].
2 5 Nogltuls] = —-[log [t /tal,|
If |t1|, < 6, and |ta|, = 1/]t1]° for some b > 1, then by Theorem 5.5

b+ 1
6 E,(t1,12) > (Lb) - 6e> log %] >

if 07 < |t1], < 1/d1, |t1 — 1], > 61 and [ts], < &y, we have by Theorem 5.1 that

3(b+1)r 3r
0L tog 11, = ¥ 1og 1 1ol

3r
6Ev(t1,t2) 2 (1 — 66)’ lOg ‘tg‘v’ 2 Z' log |t1/t2’v‘ — lOgNo.

Combining the above inequalities with the symmetry relations of Proposition 2.3, we
obtain

3r
6Ev(t1,t2) 2 Z‘ lOg ’tl/t2’0| — IOgNo.
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Lemma 6.2. There is a constant C > 0 such that
3 3r?
N BnE(th) > Zrh(tg/tl) - %h(tl,tz) —C
UeMgood(tlth)

for any ty # t, € Q\{0,1}.

Proof. Fix t; and t5 and any number field K containing them. For the non-archimedean
places v € M2 _.(t1,t5), by Theorem 3.1, we have

good
6E,(t1,ta) > 1 - [log|ta/ti]u] — 8log™ [1/2],,
and thus

(6.1) S rE(tt) > >y (re|loglta/ti]u] — 8logT [1/2],) .

UeMgood(tl,t2) UEMg(;]ood(tl’tQ)

From Lemma 6.1, for each archimedean v € Mgs,,(t1,12),

3r
6Ev(t1,t2) Z Z| lOg ’tg/t1|v| — IOg N(),

where Ny is an integer which is independent of the choice of v. With h the naive
logarithmic height on Q, we set

1 1
Then, we have

Z GTUE’U (tb t2) = Z GTUE’U (tla t2) + Z 67"va (tla t2)

VEMgood (t1,t2) vEMZS 4 (t1,t2) veEMY 4 (t1,t2)
3
> Y rvzr|log|tg/t1|v| — 3" r, (8log* [2], + log* [No|,)
UeMgood(tlth) vEMpg

3r
= > ro | log [ta/ta],| — 2C

veMgood(tlyt2)

3r 3r
= > roplloglta/tilel = D m S lloglta/tal| - 2C
veMg VE Mpad (t1,t2)
3r,r 3rir,
> Y T oglio/nl — Y 2 max{log ol | o nfef} — 20
veMg VEMpad (t1,t2)

2
> 37? 2 h(ta/t)) — 3% A h(ty, b)) — 2C

For the last inequality, we use the facts 2h(x) = > | log |z|,], and

vEM g

> vy max{|log [tau], |log [t ]s]} < 2 (h(ta) + h(t1)) < 4h(ta, t1).

vEMK
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6.2. Proof of Theorem 1.5. We begin with a standard lemma.

Lemma 6.3. There is a constant C' > 0, such that

to 1—1t 1
h|— —h(ti,1 C
(tlvl_t1> 2 (17 2)

fort; #t, € Q\ {0,1}. Here the h is the naive logarithmic height on A%(Q).

Proof. Let g(t1,ts) = (ta/t1, (1 —t2)/(1 —t1)); it is birational on P? with inverse
_ 1l—y z(1—vy
g (zy) = ( A )>
r—y -y

of degree d = 2. For each rational map f : P2 --» P2, there exists a constant C

depending only on f such that

hMf(z:y:2) <(deg f)h(z:y:2)+C
outside of the indeterminacy set for f [HS, Theorem B.2.5]. Applying this to f = ¢!
we have a constant C' > 0 such that
h(g ' (z:y:2)<2h(z:y:2)+C
for (z:y:2)¢€{(0:1:0),(1:0:0),(1:1:1)}. Therefore, letting (t; : t2 : 1) =
g Yz :y:1), we obtain
h(tl, tz) S 2 h(g(tl, tg)) + C
for all t; # t5 in Q\ {0,1}. In other words,
to 1
h< 22 > —h(tl,tQ) ——C

tyt—1

O

Now fix t; # t5 in Q \ {0,1}. From Lemma 6.2, we know there is a constant C
(independent of ¢; and t5) such that

3}Altl'ilt2 = 3 Z T‘v tl,tg

veEMK
Z 3 Z Ty Ev(tth)
veMgood(tl t2)
3r 3r?
(6.2) > Zh(tg/tl) — —h(tg,tl) C
for any ¢, # t, € Q\{0,1}. Substituting #; in the (6.2) by 1 —¢; for i = 1,2, we also
have

. A 3r 1—1ty 3r?
3h1—t1 'hl_tz Z Zh(l_tl) _Th(l_tQ,l_tl) C



34 LAURA DE MARCO, HOLLY KRIEGER, AND HEXI YE

Combining this with Proposition 2.3, we find that

3 (1t 3
(6.3) 3hy, - by, > Zrh (1 ;) - %h(l ity 1—t) —C.
— U

Consequently, by adding the inequalities (6.2) and (6.3), we have

A 3 1—1 3r?
O iy = 5 (nitafe) + 0 (12 ) ) = % (et 1~ 10,1 = 1)) = 2C,

1—-t 2
Observe that there is a constant C’ > 0 from Lemma 6.3 such that

1—t, ty T—t,\ 1 ,
h(ts/t h >h|— > — - h(t1,ts) — C".
(t2/t1) + (1—751)_ (tl’l—tl)_2 (t1,t2)

Since |h(1 — ty,1 — t1) — h(ty,t)| is uniformly bounded over all pairs t1,t, € Q, we
may combine the above inequality with the previous to conclude that

6 hy, - by, > %h(tl,tg) —3r2 - h(ty, ts) —6C",

In other words,
e, - hey > (716 — 1% /2)h(ts, ;) — C”,
and the proof of Theorem 1.5 is complete by taking a« = r/16 —r?/2 and 8 = C”. [

Remark. If we set r = 1/16, the constant o > 0 in Theorem 1.5 can be taken as
a=1/512.

6.3. Proof of Theorem 1.4. From Theorem 1.5, we deduce a uniform lower bound
on the height pairing h, - h, for all s # ¢ in Q \ {0, 1}.
Suppose there exist parameters s, # t, € Q such that

hs, - hy, =0  asn — oo.

Fix e > 0. For each n, choose a number field K,, containing s,, and ¢,,. By assumption
and non-negativity of the local energies E, (Proposition 2.2), there is N € N such
that for all n > N, the archimedean contribution to the pairing is less than ¢; that
is, for n > N,
Z Ty Ey(Sn, tn) < €,
vEM,

recalling that r, = % now depends on n. Let M, be the set of archimedean

places v in Mg such that E,(s,,t,) < 2¢, noting that for n > N, we have
1
g Ty 2> —.
2
veEM,,

Recall that the local energy E,(s,t) is continuous in s and ¢, and it vanishes if and
only if s = t. So there exists a ¢, depending only on ¢, such that one of the following
holds
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(1) |tn - Sn'v <0

(2) min|sulo. tal,} <8

(3) min{|s, — 1|y, |tn — 1]u} <9
(4) max{|splv, [tnlo} > 1/0

for every v € M,, and for all n > N. Note that we can take 6 — 0 as ¢ — 0. We may
then choose a subset M/ of M, for which all places v € M/ satisfy one of the four
conditions, and such that

Dz

veM),

Y

| —

and we conclude by the product formula that
1
max{h(s, —t,), h(sn,tn), h(s, — 1,t, — 1)} > %

We conclude by the triangle inequality that as € — 0, h(s,,t,) — oo, and therefore
by the inequality of Theorem 1.5, we must have hy, -h;, — oo as well, a contradiction.

6.4. Proof of Proposition 1.7. Fix a number field K, and fix ¢; # t5 in K \ {0, 1}.
Let || - ||; denote the adelic metric on the line bundle Op:(1) associated to the height
hy,. Let T denote the line bundle Op:i (1) equipped with the metric (|| - ||| - ]2)¥/% its
associated height function is

he () = % (s () + b))

Zhang’s inequality on the essential minimum of a height function implies that

liminf hi(,) > (g - hp)/(2des L) = 3 (g )

n—o0

along any infinite sequence of distinct points x,, € P1(Q) [Zh2, Theorem 1.10]. In
particular, the set

{z € PHQ) : hy () + Iy (2) < b}

is finite for any choice of b < hy - ht.
By the linearity of the intersection pairing, we see that

1. A 1. A 1. A 1.~ =
hf'hfzzhtl'htl_‘_éhn'htg_‘_zhtg'htg:ihtl'htg-

Therefore, we may choose any b < §/2 for the § of Theorem 1.4, and the proposition
is proved.
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7. PROOF OF THEOREM 1.6

Fix any b > 0 such that b < §/2 for the the § of Theorem 1.4. Recall from
Proposition 1.7 that the set

S(b,t1,t5) := {x € PHQ) : hy, () + hey(x) < b}

is finite for every pair ¢; # t, € Q\ {0,1}. In this section, we prove the following
generalization of Theorem 1.6.

Theorem 7.1. Let b > 0 be chosen so that b < §/2 for the § of Theorem 1./. For all
e > 0, there exists a constant C(c) so that

- Ce) )
hiy - hyy <4b+ (e + 7 ) (h(t1,t2) + 1),
o (= 50 o) (0

for all t; # ty in Q\ {0,1}.
Note that Theorem 1.6 follows from Theorem 7.1 by setting b = 0.

7.1. Adelic measures and heights associated to a finite set. Fix a number
field K, and suppose that F is a finite set in K which is Gal(K /K )-invariant. Let 7
be a collection of positive real numbers

77 = {n’U}’UGMK
with n, = 1 for all but finitely many v € Mg. For archimedean v € My and = € F,

we let m,, ,, denote the Lebesgue probability measure on the circle of radius 7, centered
at the point z € F'. We then set

1
MFEnw = m Z My v-

Similarly, for each non-archimedean v € Mg, we let mpg, , denote the probability
measure distributed uniformly on the points (,,, in AL* over all + € F. Then
Mmpy = {Mrywtvemy, 1 an adelic measure in the sense of [FRL1]. It gives rise to a
unique height hp, on P! (@) associated to a continuous and semipositive adelic metric
on Opi (1) with curvature distributions given by mpg,,, and satisfying

higy - hpy = 0.
The local heights

1
)\Fﬂ?ﬂ)(z) =y + ‘?l Zlogmaxﬂz - {L'|v, 7711}7

zeF
for z € C, satisfy
1

“ =37

>~ [ togmax(|z ~ sl .} dimr.

zeF
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Remark. The height hp, will generally not admit sequences of “small” points. In
fact, for any choices of F' and n such that > 7, a, # 0, the essential minimum of
hg,, is positive.

7.2. An upper bound on the height pairing. Now suppose that ¢; and ¢, lie in
K\{0, 1}. Recall that u; and h; respectively denote the measure and height associated
to the curve E;. By the triangle inequality for the distance function of §2.8, we have

R . oN1/2 R 1/2 R 1/2
(7.1) (htl-htz.) g(htl-hpm) +<ht2-hm)

for any choice of F' and n. By symmetry and bilinearity of the mutual energy,

A 1
hti . hF,n = 5 E Ty (,uti,v — MFEnw, Mt;o — mF,n,v)v
’UEMK

1
= 5 Z Ty ((:uti,vv Nti,v)v -2 (mF,’r],U7 ,uti,v)fu + (mF,n,m mF,n,v)U)
’UEMK

for 1 = 1,2. For fixed 7, writing the local height for ﬁti as Ay, » = log|z|, + ¢, + 0o(1)
for |z|, — oo yields

er (,uti,va Mti,v)v - - er /(/\tM) - Cv) d,uti,v =0

v

from (2.11). Therefore,

1

iLti : hFﬂ? - 5 Z Ty (_Q(Nti,vy mF,n,v)v + (mF,n,va mF,n,v)v) .

vEME

Recall from §2.7 that [F], is the probability measure on P!“" distributed equally
on the elements of F' for each v € M. By [FRL1, Lemma 4.11] and [Fi, Lemma 12],
we have

- log Ny
(mF7n7v7 mFﬂ?ﬂi)U S ([F]U7 [F]’U)U + ‘F’ .
It follows that
7 1 —logn,
b hey <5 S0t (=2 (M) + (Flos [Flo)o + —a?
2 | F|
’UEMK
1 - log My
(7.2) = 3 Ty | —2 (,uti’v,mpmvv)v + 7
vEMK

with the final equality following from (2.16).

Proposition 7.2. Suppose t # 0,1 lies in a number field K, and fix any b
Assume that F is a finite, Gal(K /K )-invariant set of points for which hy(F)
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Then

- —logn,
ht * hF,n S b + EEM Ty <_<,U/t,v7 mF,n,v)v + (Mt,m [F]v)v + 9 |F| ) .
v K

for any choice of n = {ny,}, with n, =1 for all but finitely many v € M.

Proof. The height of F' can be computed as
~ 1 ~ ~
b Z ht(‘F) = m th(l‘) = ht(OO) - Z Ty (Mt,vv [F]v)v = - Z Ty (Mt,vy [F]U>U7
zeF veEMpK vEMK

and therefore we may add b+ >, 7, (the0, [F]y)s to the right hand side of (7.2). O

7.3. Proof of Theorem 7.1. Fix 0 < b < §/2 so that Proposition 1.7 is satisfied for
all t; # to in Q\ {0, 1}. Now fix ; # ¢, in Q\ {0, 1} and a number field K containing
t, and ty. Set

F= {l’ < Pl(@) : iLt1(x) + ﬁt2(x) < b} \ {OO} = S(bv tlat?) \ {OO},

so F' is a finite, Gal(K /K )-invariant set. At each non-archimedean place v of K, we
set

= min{ 1, [¢ (8 = Do, [f2(t2 = 1)]u}-

Now fix ¢/ > 0. For each archimedean v, we set

o = el min min |2, 1 — 12, 11,7}

where the constant ¢(¢’) is from Proposition 4.4. Let n = {n,}.,; observe that n, = 1
for all but finitely many v, and

(7.3) Z —rylogn, <2 (h(ty) + h(1 —t1) + h(ts) + h(1 —t3)) — %log c(e).
vEME
For non-archimedean v, the explicit form of the measure f, ,, (described in Section
3) implies that
(Ht;00 MEw )0 = (Htss [Fo)w
for this choice of 7, because the potentials for ju, , are constant on disks of radius 7,.
We thus obtain from Proposition 7.2 that

. —logn,
hti 'hFJ] S b + Z 7"1) Ogn

UEM?( 2’F|
—10g77u
T D T T )
veEMg

for i = 1,2, where MY denotes the non-archimedean places and Mg the archimedean
places.
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We have for v € M that

_(ﬂti,vamF,n,v)v + (,utm [F]v)v S 5/ log maX{|ti|v> |tl|;17 |t7, - ]-|;1}

for © = 1,2 by Proposition 4.4.
Since the logarithmic Weil height satisfies 2 h(xz) = ), | log|z|,|, we thus obtain

~

hi, - hpy < b+2¢" (h(t;) + h(t; — 1))
N 2 (h(t1) + h(1 = t1) + h(ts) + h(1 — t2)) — 2 log c(e’)
|F|
for i = 1,2. Since h(1—t;) < h(t;)+log2 < h(ty,ty)+log?2 for i = 1,2, this inequality
becomes

. 1 1
hi, - hp, < b+ 2 (2h(t1, 1) + log2) + m(8h(t1, ty) + 4log2 — 5 log c(e"))

fori=1,2.
By the triangle inequality (7.1), we have

L N1)/2 . 1/2 . 1/2
(b hs) < (b)) + (e )

1 1 1/2
< 2 (b + 2¢" (2h(t1, t2) + log 2) + m(8h(t1, ty) + 4log2 — 5 log c(a’))) )
S0

. 1 1
he, - hyy, < 4 (b + 2¢" (2h(tq, t2) + log 2) + W(Sh(tl, ty) +4log2 — 5 log c(a’)))

32 161og 2 — 2log c(&’
(74) = 4b+ (W + 165’) hty ) + ——2 7 o8 ()

Fix any € > 0, and choose ¢’ < £/16. Since |F| = |S(b,t1,t2)| — 1 > 2, we can find
a large constant C'(¢) satisfying

+ 8¢’ log 2.

32 C(e)
L 16 el
| F| |S(b, t1,t2)]
and
16log2 — 2log c(€’) , C(e)
+8'log2 < e+ —rF—.
[F] 85 = TS0, b, b))

The inequality (7.4) then yields

C(e)

b B <db _CE)
n i = +<5+|s<b,t1,t2>|

) (h(ta,t2) + 1)

concluding the proof of Theorem 7.1.



40 LAURA DE MARCO, HOLLY KRIEGER, AND HEXI YE

8. PROOF OF THEOREM 1.3

In this section, we deduce Theorem 1.3 from Theorems 1.4, 1.5, 1.6 for algebraic
values of t; and t9; we then extend the result to hold for parameters ¢; in C, via a

specialization argument. In fact, we prove the following stronger result over QQ:

Theorem 8.1. There exist constants B and b > 0 so that
HI S ]Pl(@) : ht1<x) + ]Ath(x> < b}‘ < B
for all t; # ty in Q\ {0,1}.
8.1. Proof of Theorem 8.1. Let § > 0 be as in Theorem 1.4 so that
he, - hy > 6
for all t; # t, in Q\ {0,1}. Fix
0<b<d/8
so that, from Proposition 1.7, the set
S(b,t1,t2) = {x € PH(Q) : hy, () + hyy () < b}
is finite for all #; # ¢, in Q \ {0,1}. Let h(t;,ts) be the naive logarithmic height on
A%(Q). Fix H > % for the a, 8 of Theorem 1.5 and such that
H—8b/a
H+1
Suppose that t; # t, € Q satisfy h(t;,to) > H. Then for ¢ = <, there exists by
Theorem 7.1 a constant C' such that

(8.1) > 3/4.

«

L C
hy, « by, < 4b ————— | (h(ty,t 1).
t1 to = +<4+‘S<b,t1,t2)|)< (1; 2>+ )
On the other hand, by Theorem 1.5 and the choice of H, we have
5 it ta) < @bty t) = B < by, - by,

Therefore

%h(tl, ty) < 4b+ (% + ) (h(t1,t2) + 1),

|S(b,t1,t2)|
and so
|S(b,t1,t2)| <

C B C < 8C

(ah/2—4b> _a o« (h—8b/a) o a
htl i 2\ htt 1

for h := h(ty,t2) > H, from (8.1).

Suppose now that ¢, # t, € Q satisfy h(t;,ts) < H. Set &' = 4(;—“), and find a

constant C” as in Theorem 7.1 so that
!

hy, - hy, < 4b (R —
" = " (‘S - |S(b7 t1’t2>|

) (h(t1,t2) + 1),
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and thus, since b < §/8, we have

Cl
§/2<0—4b < (&'+—=——=) (h(t1,t2) + 1).
/ —< rs<b,t1,tz>|)<“ )+ 1)
We conclude that
A(H + 1)
5(0.0,1)) < DD

providing a uniform bound also for t; and ¢, satisfying h(t1,t2) < H. This completes
the proof of Theorem &.1.

8.2. Specialization: proof of Theorem 1.3. We implement a standard special-
ization argument to deduce Theorem 1.3 from Theorem 8.1. Note that the division
polynomials for the Legendre curve E; have coefficients in Q[t]. Let B be the uniform
bound obtained in Theorem 8.1, so that

(8.2) im(Ef™) Nr(BE)| = [{z € PHQ) : by, (x) = hyy(x) =0} < B
for all t; # t, € Q\ {0,1}. Assume that there exist t; # t, € C\ {0, 1} with
N(t1,ty) := |m(EL™) Nw(EL™)| > B

and ¢; transcendental. If z € m(E[”"*) NP (Q), then x € w(E[*") for all t € C\ {0, 1}
as it is a root of a division polynomial. It follows that there is at least one non-
algebraic point x € w(E/°™) N w(£/°™), as only x = 0,1, 00 are torsion images for all
t € C\{0,1} [DWY, Proposition 1.4].
Now let
S = {x1, 22, - ,an} = T(ES”) Nw(EL™),

where N = N(ty,12), and assume that z; is transcendental. Because it is a torsion
image for both parameters, Q(x1,t1, ;) and therefore also the field

L:=Q(ty,t2,x1,- - ,TN)

are of transcendence degree one. Consequently L is isomorphic to a function field
k = K(X) for a number field K and an algebraic curve X defined over Q. Via the

identification of L with k, there exists an algebraic point v € X (K) with distinct
specializations z;(y) € PY(Q) for i = 1,..., N and

ti(7) # t2(v) € Q\ {0, 1}.

The division relations in L imply that the specializations E; ) and Ej,(,) have at
least N common torsion images, contradicting (8.2). Therefore, we must have

m(ER") nw(E)| < B
for all t; # t, € C\ {0,1}, and the proof of Theorem 1.3 is complete.
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8.3. Common torsion images. We obtain the following immediate corollary of
Theorem 1.3, which is a special case of Conjecture 1.2.

Corollary 8.2. There exists a uniform bound B such that
|m1 (BY") Nma(By™)| < B

for any pair of elliptic curves E; over C and any pair of standard projections ; for
which
|1 (E1[2]) N (E2[2])] = 3.

Proof. By fixing coordinates on P!, we may assume that m(FE1[2]) N my(Fs[2]) =
{0,1,00}. For each e € E;[2] the composition 7¢(P) = m;(P + e) is again a stan-
dard projection and satisfies 7¢(E™) = n¢(E!°"). Therefore, we may assume that
m;i(O;) = oo for the origin O; of E;, i = 1,2. Putting each E; into Legendre form now
shows that the corollary follows from Theorem 1.3. U

9. PROOF OF THEOREMS 1.1 AND 1.8

Throughout this section, we let £, denote the hypersurface in the moduli space
M consisting of all genus 2 curves X over C that admit a degree-two map to an
elliptic curve; see, e.g., [SV] for details on £o. The surface Ly consists of all X whose
Jacobians admit real multiplication by the real quadratic order of discriminant 4, as
explained in the proof of [Mc, Theorem 4.10].

For any smooth, compact, genus 2 curve over C, and for any Weierstrass point P
on X,

ip(X) N J(X)"" = 6
as the difference of two Weierstrass points is torsion. On the other hand, any curve
X of genus g > 2 has [jp(X) N J(X)""| < 2 for all but finitely many P, by Baker
and Poonen [BP], so an Abel-Jacobi map based at a Weierstrass point has in this
sense a large number of torsion images.

In this section we deduce Theorem 1.1 from Corollary 8.2, providing a uniform
upper bound on |jp(X)NJ(X)"| for all X in £,. We also deduce Theorem 1.8 from
Theorem 8.1.

9.1. Genus 2 curve from a pair of elliptic curves. Suppose that m : B} — P!
and my : By — P! are standard projections on elliptic curves Ej; such that

[ (B [2]) Nma(Ea[2])] = 3,

as in Corollary 8.2. Consider the diagonal D C P! x P!, and lift D to a curve
C C By x Eyviall =m xm. Let v: X — C normalize C, noting that the degree
four map ITov : X — D has branch locus m(E4[2]) U ma(E5[2]), with each branch
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point the image of two points in X, each of multiplicity two. By Riemann-Hurwitz,
the genus of X is 2, and by construction, the curve X is in L, in Ms.

9.2. From a genus 2 curve to a pair of elliptic curves. Here we observe that
every X € L, arises from the construction described in §9.1:

Proposition 9.1. Fvery X € L, is the lift of the diagonal under a product of standard
projections m; on elliptic curves E; for which

|m1 (£ [2]) N (ER[2])] = 3.

Moreover, there is a Weierstrass point Q € X(C) and a degree-four isogeny ® :
J(X) — E; x Ey such that

P o jo(X) = (m x ™) 'D in E) x Ey

where D is the diagonal in P x P, J(X) is the Jacobian of X, and jq is the Abel-
Jacobi embedding associated to Q).

Proof. As noted by [SV], each curve X € L, has an affine model
C:y? =a%— st + 5922 — 1,

where the polynomial on the right has non-zero discriminant. C' admits degree two
maps (z,y) — (22,y) and (x,y) — (1/22,iy/x3) to elliptic curves with affine presen-
tation

E; :y2:$3—31x2+82x—1
and

3 —82.’132—|—8133’— 1,

Ey: ==z
respectively, defining a map v : X — Ej x Es. For each these curves, the z-coordinate
projection m, is standard, so m; := 7, and my := 1/7, are standard projections for £
and E, respectively. The projection m ramifies over {oo, 71,79, 73} and mo ramifies
over {0, 71,72, 73}, where {ry, 9, 73} are the distinct, nonzero roots of z3—s;z*+sqz—1.
Thus

T (En[2]) N (E2[2])] = 3.
Define IT := 7 X 9, noting that for (z,y) € C, Hov(z,y) = (22, 1/2*) = (2, 2?).
Thus Mo v(X) = D, where D C P* x P! is the diagonal.

Fix r € m(E1[2]) N ma(Es[2]), and equip each E; with a group structure such
that the identity lies above 7. Observe that the [—1]-involution on E; x E, induces
the hyperelliptic involution on X. In particular, the Weierstrass points on X are
the six preimages of m(E1[2]) N ma(E3[2]) under IT o v. Choose @) € X such that
II(r(Q)) = (r,r), so that @ is Weierstrass and v factors as ® o jg for some isogeny
¢ : J(X) — E; x Ey. The nontrivial elements of the kernel of ® are precisely the
three 2-torsion points in J(X) which are differences of Weierstrass points mapping
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to the same point in the diagonal D C P! x P!, Thus ® is degree four as claimed,
completing the proof. 0

9.3. Proof of Theorem 1.1. Fix X € L£,. From Proposition 9.1, we have elliptic
curves 7 and F5 and a Weierstrass point () € X such that

ljo(X) N J(X)P| < 16 |m (E°™) N my(EL™)),

for a pair of standard projections 7; : E; — P! satisfying |71 (F1[2]) N m(Es[2])| = 3.
Given any other Weierstrass point P € X, we have [P—Q)] € J(X)™"™, so we conclude
that

ip(X) 0T (X)) = [jp(X) N J(X)""| < 16B,

where B is the constant of Corollary 8.2.

9.4. Proof of Theorem 1.8. Fix X € £; C M, defined over Q. From Proposition
9.1 there is a pair t; # ¢, in Q \ {0,1} and an isogeny ® : J(X) — E;, x E;, of
degree 4 so that ITo ® o jo(X) is the diagonal in P* x P!, where Il = 7 x 7 and @ is
a Weierstrass point on X. Recall from §2.1 that the Néron-Tate canonical height on
ﬁEt on E, satisfies

h,(P) = 5 hu(m(P))

DO | —

for all P € FE;(Q) and each t € Q\ {0, 1}.
Let

D= {01} X Et2 + Etl X {02}

be a divisor on E;, x E;, where O; denotes the identity element of E;,, and let Lp be
the associated line bundle. Let Ly = ®*Lp on J(X), and let iLLX be the associated
Néron-Tate canonical height on J(X)(Q). By the functoriality of canonical heights
[HS, Theorem B.5.6], we have

iLLX(l') = BLD(@(CU))
- }AI‘Etl (D(x)1) + iLEtQ (®(z)2)

= 2 (e (@) + (@)

®(x),y) in E;, x E,,. Restricting to the points = € jp(X)(Q),

where ®(z) = (®(x)q,
) = 7(®(x)7) in P, the theorem now follows from Theorem 8.1.

so that 7(®(x),
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