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During the Arizona Winter School 2008 (held in Tucson, AZ) we worked
on the following problems:

a) (Expanding a remark by S. Lang [1]). Define E0 = Q. Inductively, for
n ≥ 1, define En as the algebraic closure of the field generated over En−1 by
the numbers exp(x) = ex, where x ranges over En−1. Let E be the union
of En, n ≥ 0. Show that Schanuel’s Conjecture implies that the numbers
π, log π, log log π, log log log π, . . . are algebraically independent over E.

b) Try to get a (conjectural) generalization involving the field L defined
as follows. Define L0 = Q. Inductively, for n ≥ 1, define Ln as the algebraic
closure of the field generated over Ln−1 by the numbers y, where y ranges
over the set of complex numbers such that ey ∈ Ln−1. Let L be the union of
Ln, n ≥ 0.

We were able to prove the more general result:

Theorem 1. Schanuel’s Conjecture implies E and L are linearly disjoint
over Q.

And deduced from it the following ones:

1. π 6∈ E and e 6∈ L.

2. π, log π, log log π, . . . are algebraically independent over E.

3. e, ee, eee

, . . . are algebraically independent over L.

4. E ∩ L = Q.
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Remember:

Conjecture 1 (Schanuel). Let x1, . . . , xn be Q-linearly independent complex
numbers. Then the transcendence degree over Q of the field

Q(x1, . . . , xn, e
x1, . . . , exn)

is at least n.

Definition 1. Let F/K be a field extension and F1, F2 ⊆ F two subexten-
sions. We say they are linearly disjoint over K when the following holds:

{x1, . . . , xn} ⊆ F1 linearly independent over K ⇒ {x1, . . . , xn} linearly
independent over F2.

We say they are free (or algebraically disjoint) over K when:
{x1, . . . , xn} ⊆ F1 algebraically independent over K ⇒ {x1, . . . , xn} alge-

braically independent over F2.

Remark 1. Linear disjointness is equivalent to the multiplication map

F1 ⊗K F2 −→ F

being injective. Therefore this is a symmetric condition in F1 and F2.

Remark 2. Algebraic disjointness is equivalent to the existence of transcen-
dence basis B1, B2 of the extensions F1/K and F2/K (respectively) such that
B1 ∪ B2 is algebraically independent over K. Therefore this one is also a
symmetric condition in F1 and F2.

Remark 3. For a set S ⊆ F1 to be algebraically independent over K means
all its monomials being linearly independent over K. Thus linearly disjoint-
ness implies freeness, and in general the converse is not true (although we
are going to use a partial converse to this fact, proved in [3]).

Remark 4. If F1, F2 are linearly disjoint over K then we must have F1∩F2 =
K, since k ∈ F1 ∩ F2 will be F2-linearly dependent together with 1 whence,
they should also be K-linearly dependent.

Before going to the proof of the Theorem, we need a couple of technical
lemmas involving a key construction.

Lemma 1. We have En = Q(exp(En−1))
1.

1
F meaning the algebraic closure of the field F .
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Proof. With induction in n, the base case follows by definition since

E1 = E0(exp(E0)) = Q(exp(E0)) = Q(exp(E0)),

and E0 = Q.
In general

En = En−1(exp(En−1))

En = Q(exp(En−2))(exp(En−1))

En = Q(exp(En−2))(exp(En−1))

En = Q(exp(En−1)), (1)

since En−2 ⊆ En−1.

Lemma 2. For every x ∈ En there is a finite set An−1 ⊆ En−1 such that x
is algebraic over Q(exp(An−1)) (or equivalently, x ∈ Q(exp(An−1)) ).

Proof. We have x ∈ En = Q(exp(En−1)) which means it is a root of a
nontrivial polynomial with coefficients in Q(exp(En−1)). Each coefficient
involves only finitely many exponentials of elements in En−1. Therefore,
taking An−1 the union of those exponents will work.

Lemma 3 (the Key Lemma). For every x ∈ En there is a finite set A ⊆ En−1

such that x ∈ Q(exp(A)) and A is also algebraic over Q(exp(A)).

Proof. Start with An−1 as in the previous lemma and iterate the reasoning
finding a sequence of subsets An−1, An−2, An−3, . . . , A0 as follows:

• Since An−1 ⊆ En−1 is finite, it follows that An−1 is algebraic over
Q(exp(An−2)) for some finite An−2 ⊆ En−2.

• Next An−2 is algebraic over Q(exp(An−3)) for some finite An−3 ⊆ En−3.
. . .

• Finally A1 is algebraic over Q(exp(A0)) for some finite A0 ⊆ E0 = Q.

Then just take A =
⋃

m≤n−1 Am ⊆ En−1. Since An−1 ⊆ A we get x ∈

Q(exp(A)) and since each Am is algebraic over Q(exp(Am−1)) then it is so over
Q(exp(A)) and therefore, the whole set A is algebraic over Q(exp(A)).
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In a similar way we get analogues of these lemmas in the case of the
logarithmic extensions Lm. Let us state them for the sake of preciseness.

Lemma 4. We have Ln = Q(exp−1(Ln−1)).

Lemma 5. For every x ∈ Ln there is a finite set Cn ⊆ C such that exp(Cn) ⊆
Ln−1 and that x is algebraic over Q(Cn).

Lemma 6 (the Key Lemma). For every x ∈ Ln there is a finite set C ⊆ C

with exp(C) ⊆ Ln−1 such that exp(C) ∪ {x} is algebraic over Q(C).

The proofs follow the same outline as in the exponential case.
Now we are ready to go the proof of the theorem:
Assuming the Schanuel’s Conjecture to be true, let us prove Em and Ln

are linearly disjoint for arbitrary m and n (this will be enough since E is the
union of the Em and L is the union of the Ln).

Proceeding by induction, let us assume it is true that Em−1 and Ln are
linearly disjoint over Q.

Suppose Em and Ln are not linearly disjoint. Let us take {li} ⊆ Ln

linearly independent over Q and {ei} ⊆ Em such that
∑

liei = 0.
By the Key Lemmas:

• ∃ finite A ⊆ Em−1 such that A ∪ {ei} algebraic over Q(exp(A)).

• ∃ finite C ⊆ Ln finite such that exp(C) ∪ {li} algebraic over Q(C).

Now take B ⊆ A such that exp(B) is a transcendence basis of Q(exp(A)),
and take D ⊆ C such that D is a transcendence basis of Q(C).

We claim B ∪ D is linearly independent over Q.
Consider any linear relation over Q and by cleaning denominators if nec-

essary take ∑

b∈B

pbb =
∑

d∈D

qdd

with all the pb, qd integers.
Since the expression on the left is an element in Em−1 and that of the

right is an element of Ln, and by hypothesis these two fields were linearly
disjoint over Q, we should have Em−1 ∩ Ln = Q and both expressions would
represent an element r ∈ Q.

But
∑

d∈D qdd = r is an algebraic relation of D with coefficients in Q,
hence it must be the trivial relation (keep in mind that D was taken to be
algebraically independent over Q).
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We get at once r = 0 = qd for all d ∈ D.
Now from

∑
b∈B pbb = 0 taking exponentials on both sides we get

∏

b∈B

(exp(b))pb = 1

which is an algebraic relation with coefficients in Q (and hence in Q) among
the elements of the set exp(B), taken algebraically independent. Therefore,
the (Laurent) monomial

∏
b∈B(Xb)

pb should be the trivial one, i.e. the inte-
gers pb must be all equal to zero.

Summarizing, we have proven B ∪ D is Q-linearly independent.
By Schanuel’s Conjecture trdegQQ(B, D, exp(B), exp(D)) ≥ |B| + |D|.
However

trdegQQ(B, D, exp(B), exp(D)) = trdegQQ(B, C, exp(A), exp(D))

since exp(A) is algebraic over Q(exp(B)) and C is algebraic over Q(D).
We also have

trdegQQ(B, C, exp(A), exp(D)) = trdegQQ(C, exp(A))

because B ⊆ A and the latter was algebraic over Q(exp(A)), and similarly
exp(D) ⊆ exp(C) ⊆ Q(C).

Finally

trdegQQ(C, exp(A)) = trdegQQ(D, exp(B)) ≤ |B| + |D|

since C was algebraic over Q(D) and exp(A) was so over Q(exp(B)).
From

|B| + |D| ≥ trdegQQ(D, exp(B)) ≥ |B| + |D|

we conclude trdegQQ(D, exp(B)) = |B| + |D| and the set exp(B) ∪ D turns

out to be algebraically independent over Q, whence over Q.
Therefore Q(exp(B)) and Q(D) are free over Q, and the same is true for

Q(exp(B)) and Q(D).
Since Q is algebraically closed, Q(exp(B)) and Q(D) are linearly disjoint

over Q (see [3] Theorem 4.12, page 367).
But the {li} are algebraic over Q(C) and the {ei} are algebraic over

Q(exp(A)), which means {li} ⊆ Q(D) and {ei} ⊆ Q(exp(B)) giving to us
the nontrivial linear relation

∑
liei = 0. Contradiction.
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Corollary 1. We have L ∩ E = Q.

Proof. It follows directly from the linear disjointness.

Corollary 2. We have π 6∈ E and e 6∈ L.

Proof. We have e = exp(1) ∈ E1 ⊆ E. Since e 6∈ Q it cannot be also in L.
If π were in E, iπ should also be there. But iπ ∈ L1 ⊆ L since it is a

logarithm of −1. We conclude iπ 6∈ E because it is not in Q.

Corollary 3. The numbers π, log π, log log π, . . . are algebraically indepen-
dent over E.

Proof. We are actually going to prove that iπ, log π, log log π, . . . are alge-
braically independent over E (which is an equivalent statement).

Let us write log[k] π for the kth− iterated logarithm of π.
Observe that the whole sequence iπ, log π, log log π, . . . lies in L.
Since we are assuming E and L linearly independent over Q, they are

going be free, and it will be enough to prove iπ, log π, log log π, . . . they are
algebraically independent over Q, or, which is the same, they are algebraically
independent over Q.

To prove iπ, log π, log log π, . . . , log[n] π are Q-algebraically independent,
we use Schanuel’s Conjecture again.

Without loss of generality, we may assume the statement true for

iπ, log π, log log π, . . . , log[n−1] π

(by induction).
As before, any nontrivial Q-linear relation among the iπ, log π, . . . , log[n] π

can be thought as a nontrivial Z-linear combination (by clearing denomina-
tors) and then as an algebraic relation among their exponentials (by applying
exp(.) at both sides).

More precisely:

iπq +

n∑

k=1

qk log[k] π = 0

with q, qk ∈ Z leads us to

(−1)q

n∏

k=1

(log[k−1] π)qk = 1
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which equals
n−1∏

k=0

(log[k] π)qk+1 = (−1)q

Since we are assuming iπ, log π, log log π, . . . , log[n−1] π are Q-algebraically
independent (also π, log π, log log π, . . . , log[n−1] π) this last algebraic relation
must be the trivial one, i.e. qk = 0 for all 1 ≤ k ≤ n and q even (but this is
no so important). Returning to our linear relation we get iπq = 0 meaning
q = 0.

Therefore A = {iπ, log π, log log π, . . . , log[n] π} are linearly independent
over Q and by Schanuel’s Conjecture, the transcendence degree of Q(A, exp(A))
should be at least n + 1.

Since exp(A) is algebraic over Q(A), this means

trdegQQ(iπ, log π, log log π, . . . , log[n] π) ≥ n + 1,

i.e. iπ, log π, log log π, . . . , log[n] π are algebraically independent over Q (then

over Q and hence over E).

Corollary 4. The numbers e, ee, eee

, . . . are L−algebraically independent.

Proof. As before, we only have to prove they are so over Q. Again, this
follows by induction.

Name exp[n](1) = exp(exp[n−1](1)) and exp[0](1) = 1.
Let us assume the {exp[k](1)}n

k=1 are algebraically independent over Q.
Then the set

A = {1, e, ee, . . . , exp[n](1)} = {exp[k](1)}n
k=0

is Q-linearly independent and by Schanuel’s Conjecture we should have

n + 1 ≤ trdegQQ(A, exp(A)) = trdegQQ(exp(A))

because A is algebraic over Q(exp(A)).
But exp(A) = {exp[k](1)}n+1

k=1 would be algebraically independent over Q.
This finishes the inductive step.
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