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1 Trees

Let X be a metric space. Recall that a geodesic in X is an isometrically em-
bedded arc α : I → X, and X is called geodesic if every pair of points of X is
joined by a geodesic.

Definition 1.1 A geodesic metric space T is a (metric) tree if every geodesic
triangle is a tripod.

Simplicial trees with any combinatorial metric (in which the infimum of the
distances between vertices is strictly greater than 0) are metric trees. Here is
an example of a metric tree that isn’t simplicial.

Example 1.2 (The SNCF metric) Endow R2 with the metric given by

d((x, y1), (x, y2)) = |y2 − y1|

and
d((x1, y1), (x2, y2)) = |y1|+ |x2 − x1|+ |y2|

for x1 6= x2. This is clearly a metric tree, but not simplicial. For an example
with second countable topology, take the subspace consisting of the union of the
x-axis and those vertical lines with rational x-coordinate.

2 Isometries of trees

For any metric space X and any isometry γ, define

l(γ) = inf
x∈X

d(x, γx).

In general, isometries of X fall into three classes.

Definition 2.1 Let γ be an isometry of X.

1. If γ fixes a point of X then γ is called elliptic.
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2. If there exists x ∈ X such that

d(x, γ(x)) = l(γ) > 0

then γ is hyperbolic.

3. Otherwise, γ is called parabolic.

Intuitively, parabolic isometries fix a point at infinity, and are the hardest
to describe. But in the case of trees, these don’t arise.

Lemma 2.2 Let T be a tree, and γ an isometry that doesn’t fix a point. Then
there exists a unique embedded line

Axis(γ) ⊂ T

on which γ acts as translation by l(γ). In particular, γ is hyperbolic.

Remark 2.3 It is surprisingly easy to find an axis for γ: it suffices to find
x ∈ T such that

d(x, γ2x) = 2d(x, γx).

It is then clear that the γ-translates of [x, γx] form a γ-invariant line. Further-
more, note that if such a line L exists then any γ-invariant subtree must contain
L, so γ is hyperbolic and L is an axis and the unique γ-invariant line.
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Figure 1: the mid-point is moved less far.

The intuition behind the proof of the lemma arises from the observation
that, if m is the mid-point of [x, γx], then

d(x, γx) ≥ d(m, γm).

So this mid-point looks like a good place to look for the axis.
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Proof of lemma 2.2: Consider the tripod [x, γx, γ2x]. Let o be its crux, and let
m be the mid-point of [x, γx]. It’s clear that if d(m,x) ≥ d(o, x) then γ fixes m,
contradicting the assumption that γ is not elliptic. Therefore, d(o, x) > d(m,x).
By remark 2.3, it now suffices to show that d(m, γ2m) = 2d(m, γm). But o ∈

[m, γm] and γo ∈ [γm, γ2m], so we only need to show that d(o, γo) = 2d(o, γm).
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Figure 2: The axis of a hyperbolic isometry.

Since o ∈ [m, γm] and likewise γ(o) ∈ [γm, γ2m], we only need to show that
d(o, γo) = 2d(o, γm). But

d(o, γo) = d(γx, γ2x)− 2d(o, γx)

= d(x, γx)− 2(
1

2
d(x, γx)− d(o, γm))

= 2d(o, γm)

as required. QED
In summary, a hyperbolic isometry γ has a unique invariant line Axis(γ),

whereas an elliptic isometry γ has a fixed point set Fix(γ). These are precisely
the subtrees on which the function x 7→ d(x, γx) attains its infimum, so are
sometimes collectively denoted Min(γ).

3 Composition of isometries

To understand the structure of groups acting on trees, we need to know how
these isometries compose. It’s clear that, if γ, δ ∈ Isom(T ) are elliptic and
Fix(γ) ∩ Fix(δ) 6= ∅, then γ ◦ δ is elliptic. The next lemma generalizes this
observation.

Lemma 3.1 Let γ, δ ∈ Isom(T ).

1. If γ, δ are elliptic with disjoint fixed-point sets then γδ is hyperbolic with

l(γδ) = 2d(Fix(γ),Fix(δ)).

2. If γ, δ are hyperbolic with disjoint axes then γδis hyperbolic with

l(γδ) = l(γ) + l(δ) + 2d(Axis(γ),Axis(δ))
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and, furthermore, Axis(γδ) intersects Axis(γ) and Axis(δ).
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Figure 3: The axis of the composition of two elliptic isometries with disjoint
fixed-point sets.

Proof: Suppose γ, δ are elliptic with disjoint fixed-point set. Note that Fix(γ)
and Fix(δ) are closed subtrees of T . Let x ∈ Fix(γ) be the unique point closest
to Fix(δ), and let y ∈ Fix(δ) be the unique point closest to Fix(γ). Then unique
geodesic from y to γδy is [x, y] ∪ γ[x, y] so

d(y, γδy) = d(y, γy) = 2d(x, y)

because no points in the interior of [x, y] are fixed by γ. Likewise the geodesic
from y to (γδ)2y is

[x, y] ∪ γ[x, y] ∪ γδ[x, y] ∪ γδγ[x, y]

so
d(y, (γδ)2y) = 4d(x, y) = 2d(y, γδy)

as required. See figure 3.
Now suppose γ, δ are hyperbolic isometries with disjoint axes. Let x be the

unique point of Axis(γ) closest to Axis(δ), and y the unique point of Axis(δ)
closest to Axis(γ). Then the geodesic from x to γδy is

[x, γx] ∪ γ[x, y] ∪ γ[y, δy] ∪ γδ[y, x]
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Figure 4: The axis of the composition of two hyperbolic elements with disjoint
axes.

so
d(y, γδy) = l(γ) + l(δ) + 2d(x, y).

Likewise, the geodesic from x to (γδ)2x is

[x, γx]∪ γ[x, y]∪ γ[y, δy]∪ γδ[y, x]∪ γδ[x, γx]∪ γδγ[x, y]∪ γδγ[y, δy]∪ γδγδ[y, x]

and so
d(y, (γδ)2y) = 2l(γ) + 2l(δ) + 4d(x, y) = d(y, γδy)

as required. See figure 3. QED

4 Minimal trees

If a group G acts by isometries on a tree T , then T is called a G-tree. T is trivial
if there exists a point of T fixed by all of G. If T doesn’t contain any proper
G-invariant subtrees, then T is called minimal.
The idea behind these definitions is that arbitrarily complicated trees and

theirG-translates can be glued to aG-tree, so only the minimal invariant subtree
contains information about G. In particular, in the simplicial case a trivial G-
tree corresponds to a trivial splitting of G in Bass-Serre theory.
The aim of this section is to prove the following proposition.

Proposition 4.1 If G is finitely generated and T is a non-trivial G-tree then
T contains a unique minimal G-invariant subtree, which is a countable union of
lines.

First we need a lemma.
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Lemma 4.2 Let γ1, . . . , γn be elliptic isometries of T , and suppose

Fix(γi) ∩ Fix(γj) 6= ∅

for all i, j. Then ⋂

i

Fix(γi) 6= ∅.

Proof: The proof is by induction on n. The case n = 2 is trivial. Now suppose
n > 2. By induction, there exist

xk ∈ Tk =
⋂

i6=k

Fix(γi)

whenever 1 ≤ k ≤ n. Consider [x1, x2] ⊂ Fix(γk) for each k > 2. But
x1 ∈ Fix(γ2) and x2 ∈ Fix(γ1), so [x1, x2] must pass through the (non-empty)
intersection Fix(γ1) ∩ Fix(γ2). So there exists some x ∈ [x1, x2] that lies in all
the fixed-point sets. QED
The proof of the proposition is now a simple construction.

Proof of proposition 4.1: Let T be a G-tree. We first aim to show that if
T is non-trivial then G contains a hyperbolic element. Let γ1, . . . , γn be a finite
generating set for G, and suppose all γi are elliptic. Then either every pair of
generators has intersecting fixed-point sets, in which case T is trivial by lemma
4.2, or some pair γi, γj has disjoint fixed-point set. In the second case, γiγj is
hyperbolic by part 1 of lemma 3.1.
Now consider the subspace T ′ ⊂ T defined as the union of the axes of all

the hyperbolic elements of G. Then T ′ is connected by lemma 3.1. Since, for
hyperbolic γ ∈ G, any γ-invariant subtree contains Axis(γ), it is clear that T ′

is contained in any G-invariant subtree. Finally, T ′ is itself G-invariant, since

δAxis(γ) = Axis(δγδ−1)

for hyperbolic γ and arbitrary δ. QED

5 The boundary of a tree

This construction of a minimal G-tree leads naturally to a coarse classification.
First, though, we need the notion of the boundary at infinity of a tree.

Definition 5.1 Let T be a metric tree. Let Y be the set of geodesic rays

[0,∞)→ T.

Then the boundary at infinity of T is defined to be the quotient of Y by the
equivalence relation equating r, s ∈ Y if and only if the function

t 7→ d(r(t), s(t))

is bounded. The boundary is denoted ∂∞T .

Note that an action of G by isometries on T extends to an action on ∂∞T .
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6 A coarse classification

The results so far give a classification of G-trees, comparable to our classification
of isometries as elliptic or hyperbolic.

Theorem 6.1 Let G be a finitely generated group and T a minimal G-tree.
Then T is one of the following.

1. Elliptic: T is a point.

2. Linear: T is a line.

3. Parabolic: G fixes a point of ∂∞T .

4. Hyperbolic: There exists γ, δ ∈ G, hyperbolic on T , whose axes intersect
in a compact subset.

Proof: From proposition 4.1 it follows that T is the union of the hyperbolic
elements of G. Then every point of ∂∞T arises as the end of an axis of a
hyperbolic element of G.
It follows immediately that ∂∞T = ∅ if and only if G is elliptic (so T is a

point) and that |∂∞G| = 2 if and only if G is a line.
Now suppose that |∂∞T | > 2. If γ ∈ G is hyperbolic on T and [r] ∈ ∂∞T

doesn’t correspond to an end of Axis(γ), then d(r(t),Axis(γ))→∞ as t→∞.
But

d(r(t), γr(t)) = 2d(r(t),Axis(γ)) + l(γ)

which also tends to infinity with t. So γ doesn’t fix [r]. In conclusion, hyperbolic
γ fixes a point of ∂∞T if and only if that point corresponds to an end of Axis(γ).
Assume that every pair of hyperbolic elements have axes that intersect in

non-compact sets, and yet G doesn’t fix a point of ∂∞T . Then there exist
hyperbolic γ1, γ2, γ3 with axes the three sides of an infinite tripod. But now
(possibly after replacing γ2 by its inverse) γ

γ2

1
is a hyperbolic element, and

Axis(γγ2

1
) ∩Axis(γ3) = γ2Axis(γ1) ∩Axis(γ3)

is compact, a contradiction. See figure 6. QED

7 The ping-pong lemma

This famous result of Tits shows that only certain groups can act hyperbolically.

Lemma 7.1 Suppose γ, δ are hyperbolic elements whose axes intersect in a com-
pact set. Then there exists n such that γn, δn generate a free group.

Proof: Consider a non-trivial word in γ and δ, and let K = Axis(γ) ∩ Axis(δ).
For φ = γ±1, δ±1 let C(φ) be the component of T−K such that φ(C(φ)) ⊂ C(φ).
Now choose n large enough that φn(K) ⊂ C(φ) for all φ. Note that now

γ±n(C(δ±1)) ⊂ C(γ±1)
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and similarly for δ±1.
Let w be a non-trivial word in γn and δn. The result follows from the claim

that, for all φ, if w begins with φn then there exist three components C of T−K
such that w(C) ⊂ C(φ).
The claim is immediate if w is of length 1. Otherwise, w = φnw′ for w′ some

word that doesn’t begin with φ−n. But the claim is true for w′ by induction on
word length, and so follows immediately for w. QED
In particular, if T is a hyperbolic G-tree then G contains a free subgroup.
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