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1 Trees

Let X be a metric space. Recall that a geodesic in X is an isometrically em-
bedded arc a : I — X, and X is called geodesic if every pair of points of X is
joined by a geodesic.

Definition 1.1 A geodesic metric space T is a (metric) tree if every geodesic
triangle is a tripod.

Simplicial trees with any combinatorial metric (in which the infimum of the
distances between vertices is strictly greater than 0) are metric trees. Here is
an example of a metric tree that isn’t simplicial.

Example 1.2 (The SNCF metric) Endow R? with the metric given by

d(('r’y1>7 ($,y2)) = ‘92 - yll

and
d((x1, 1), (T2, 92)) = [y1| + w2 — 21| + |y2|

for ©1 # xo. This is clearly a metric tree, but not simplicial. For an example
with second countable topology, take the subspace consisting of the union of the
x-axis and those vertical lines with rational x-coordinate.

2 Isometries of trees

For any metric space X and any isometry -y, define

l(y) = Tlg)f( d(z,yx).

In general, isometries of X fall into three classes.
Definition 2.1 Let v be an isometry of X.

1. If v fizes a point of X then v is called elliptic.



2. If there exists x € X such that

then ~ is hyperbolic.
8. Otherwise, 7y is called parabolic.

Intuitively, parabolic isometries fix a point at infinity, and are the hardest
to describe. But in the case of trees, these don’t arise.

Lemma 2.2 Let T be a tree, and vy an isometry that doesn’t fiz a point. Then
there exists a unique embedded line

Axis(y) C T
on which v acts as translation by l(v). In particular, v is hyperbolic.

Remark 2.3 [t is surprisingly easy to find an axis for ~v: it suffices to find
x €T such that
d(z,v*z) = 2d(x,yx).

It is then clear that the ~y-translates of [x,~vx] form a v-invariant line. Further-
more, note that if such a line L exists then any y-invariant subtree must contain
L, so ~ is hyperbolic and L is an axis and the unique y-invariant line.
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Figure 1: the mid-point is moved less far.

The intuition behind the proof of the lemma arises from the observation
that, if m is the mid-point of [z, vyz], then

d(w, @) > d(m, ym).

So this mid-point looks like a good place to look for the axis.



Proof of lemma 2.2: Consider the tripod [z, vz, v?x]. Let o be its crux, and let
m be the mid-point of [z, yz]. It’s clear that if d(m,x) > d(o,x) then v fixes m,
contradicting the assumption that + is not elliptic. Therefore, d(o,z) > d(m, ).

By remark 2.3, it now suffices to show that d(m,y?m) = 2d(m,ym). But o €
[m,ym] and yo € [ym,y?m], so we only need to show that d(o,y0) = 2d(o, ym).
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Figure 2: The axis of a hyperbolic isometry.

Since o € [m,ym] and likewise v(0) € [ym,y?m], we only need to show that
d(o,v0) = 2d(o,ym). But
d(0,v0) = d(yz,y*z) — 2d(0, yx)
1
— d(z. 1) — 2(d(z.x) ~ d(o.ym)
= 2d(o,ym)

as required. QFED

In summary, a hyperbolic isometry + has a unique invariant line Axis(7y),
whereas an elliptic isometry « has a fixed point set Fix(y). These are precisely
the subtrees on which the function z — d(x,vx) attains its infimum, so are
sometimes collectively denoted Min(v).

3 Composition of isometries

To understand the structure of groups acting on trees, we need to know how
these isometries compose. It’s clear that, if v,d € Isom(T) are elliptic and
Fix(y) N Fix(d) # @, then o J is elliptic. The next lemma generalizes this
observation.

Lemma 3.1 Let v, 6 € Isom(T).
1. If 7,0 are elliptic with disjoint fized-point sets then 4§ is hyperbolic with

I(v6) = 2d(Fix(v), Fix(6)).

2. Ifv,6 are hyperbolic with disjoint axes then vdis hyperbolic with
1(v8) = U(y) + 1(6) + 2d(Axis(y), Axis(d))



and, furthermore, Axis(yd) intersects Axis(vy) and Axis(9).
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Figure 3: The axis of the composition of two elliptic isometries with disjoint
fixed-point sets.

Proof: Suppose 7, are elliptic with disjoint fixed-point set. Note that Fix(7)
and Fix(d) are closed subtrees of T'. Let = € Fix(y) be the unique point closest
to Fix(4), and let y € Fix(d) be the unique point closest to Fix(y). Then unique
geodesic from y to vy is [z, y] U~v[z,y] so

d(y,voy) = d(y,vy) = 2d(x,y)

because no points in the interior of [x,y] are fixed by v. Likewise the geodesic
from y to (y6)%y is

[z, y] Uz, y] Uydle, yl Uydyle, y]
SO
d(y, (10)*y) = 4d(z,y) = 2d(y,70y)
as required. See figure 3.
Now suppose 7, d are hyperbolic isometries with disjoint axes. Let x be the
unique point of Axis(vy) closest to Axis(d), and y the unique point of Axis(J)
closest to Axis(y). Then the geodesic from z to ydy is

[z, y2] U]z, y] Uvly, 6y] U~dly, z]
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Figure 4: The axis of the composition of two hyperbolic elements with disjoint
axes.

d(y,v6y) = U(7y) +1(6) + 2d(z,y).

Likewise, the geodesic from z to (vd)%x is

[z, yz] Uy[z, y] Uyly, 0yl U~dly, 2] Uz, ya] Uydy[z, y] Uydvly, 0yl U~dydly, x]

and so
d(y, (v6)%y) = 20(7) + 2(8) + 4d(z,y) = d(y,70y)
as required. See figure 3. QED

4 Minimal trees

If a group G acts by isometries on a tree T', then T is called a G-tree. T is trivial
if there exists a point of T fixed by all of G. If T' doesn’t contain any proper
G-invariant subtrees, then T is called minimal.

The idea behind these definitions is that arbitrarily complicated trees and
their G-translates can be glued to a G-tree, so only the minimal invariant subtree
contains information about G. In particular, in the simplicial case a trivial G-
tree corresponds to a trivial splitting of G in Bass-Serre theory.

The aim of this section is to prove the following proposition.

Proposition 4.1 If G is finitely generated and T is a non-trivial G-tree then
T contains a unique minimal G-invariant subtree, which is a countable union of
lines.

First we need a lemma.



Lemma 4.2 Let v1,...,7, be elliptic isometries of T, and suppose

Fix(7:) N Fix(1;) # @
for alli,j. Then
(Fix(w) # 2.

Proof: The proof is by induction on n. The case n = 2 is trivial. Now suppose
n > 2. By induction, there exist

x €Ty = ﬂ Fix(7;)
itk
whenever 1 < k < n. Consider [z1,22] C Fix(yg) for each k& > 2. But
x1 € Fix(y2) and x5 € Fix(v1), so [z1, 2] must pass through the (non-empty)
intersection Fix(y1) N Fix(72). So there exists some z € [z, z2] that lies in all
the fixed-point sets. QED
The proof of the proposition is now a simple construction.

Proof of proposition 4.1: Let T be a G-tree. We first aim to show that if
T is non-trivial then G contains a hyperbolic element. Let v1,...,7, be a finite
generating set for GG, and suppose all ~; are elliptic. Then either every pair of
generators has intersecting fixed-point sets, in which case T is trivial by lemma
4.2, or some pair 7;,7; has disjoint fixed-point set. In the second case, v;7; is
hyperbolic by part 1 of lemma 3.1.

Now consider the subspace T’ C T defined as the union of the axes of all
the hyperbolic elements of G. Then T’ is connected by lemma 3.1. Since, for
hyperbolic v € G, any y-invariant subtree contains Axis(7y), it is clear that T’
is contained in any G-invariant subtree. Finally, 7" is itself G-invariant, since

SAxis(y) = Axis(0v6 1)
for hyperbolic v and arbitrary §. QED

5 The boundary of a tree

This construction of a minimal G-tree leads naturally to a coarse classification.
First, though, we need the notion of the boundary at infinity of a tree.

Definition 5.1 Let T be a metric tree. Let Y be the set of geodesic rays
[0,00) — T.

Then the boundary at infinity of T is defined to be the quotient of Y by the
equivalence relation equating r,s € Y if and only if the function

td(r(t),s(t))
s bounded. The boundary is denoted 0T .

Note that an action of G by isometries on T' extends to an action on 0xT.



6 A coarse classification

The results so far give a classification of G-trees, comparable to our classification
of isometries as elliptic or hyperbolic.

Theorem 6.1 Let G be a finitely generated group and T a minimal G-tree.
Then T is one of the following.

1. Elliptic: T is a point.
Linear: T is a line.

Parabolic: G fixes a point of 0T .

™ e e

Hyperbolic: There exists v,0 € G, hyperbolic on T, whose axes intersect
in a compact subset.

Proof: From proposition 4.1 it follows that T is the union of the hyperbolic
elements of G. Then every point of 0,7 arises as the end of an axis of a
hyperbolic element of G.

It follows immediately that 0,7 = @ if and only if G is elliptic (so T is a
point) and that |0,,G| = 2 if and only if G is a line.

Now suppose that |0,,T| > 2. If v € G is hyperbolic on T and [r] € d,T
doesn’t correspond to an end of Axis(y), then d(r(t), Axis(y)) — oo as t — oo.
But

dr(t), 7r(t)) = 2d(r(2), Axis(7)) + 1(7)
which also tends to infinity with ¢t. So v doesn’t fix [r]. In conclusion, hyperbolic
~ fixes a point of Jx, T if and only if that point corresponds to an end of Axis(v).

Assume that every pair of hyperbolic elements have axes that intersect in
non-compact sets, and yet G doesn’t fix a point of d,,T. Then there exist
hyperbolic 71, 72,73 with axes the three sides of an infinite tripod. But now
(possibly after replacing v by its inverse) v7? is a hyperbolic element, and

Axis(y,?) N Axis(y3) = y2Axis(y1) N Axis(7ys)

is compact, a contradiction. See figure 6. QED

7 The ping-pong lemma
This famous result of Tits shows that only certain groups can act hyperbolically.

Lemma 7.1 Suppose~y,d are hyperbolic elements whose azxes intersect in a com-
pact set. Then there exists n such that ™, 0™ generate a free group.

Proof: Consider a non-trivial word in v and 0, and let K = Axis(y) N Axis().
For ¢ = v*!, 6% let C(¢) be the component of T— K such that ¢(C(¢)) C C(¢).
Now choose n large enough that ¢"(K) C C(¢) for all ¢. Note that now

YE(C(H) € C(v*)
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Figure 5: The axes of 71, v2, 73 and 7{>.

and similarly for §+!.

Let w be a non-trivial word in 4™ and §". The result follows from the claim
that, for all ¢, if w begins with ¢™ then there exist three components C' of T'— K
such that w(C) C C(¢).

The claim is immediate if w is of length 1. Otherwise, w = ¢™w’ for w’ some
word that doesn’t begin with ¢~". But the claim is true for w’ by induction on
word length, and so follows immediately for w. QFED

In particular, if T is a hyperbolic G-tree then G contains a free subgroup.



