Computing solutions to systems of equations over free and hyperbolic groups

Daniel Groves and Henry Wilton

28th March 2008

1. Elementary Theory

If Γ is a group, Theory(Γ) is defined to be the set of first-order logical sentences that are true in Γ , using only the group elements and operations.

Example 1 The group Γ is abelian if and only if the sentence

$$\forall x, y ([x, y] = 1)$$

is in Theory(Γ).

Example 2

 $\forall x \exists n \ (x^n = 1)$

is not a valid sentence.

Exercise 3 If $m \neq n$ then

Theory(\mathbb{Z}^m) \neq Theory(\mathbb{Z}^n).

What about non-abelian free groups F_n ?

Theorem 4 (Kharlampovich–Miasnikov, Sela) Whenever m, n > 1,

Theory (F_m) = Theory (F_n) .

Kharlampovich and Miasnikov go on to prove that the elementary theory of free groups is *decidable*—that is, there is an algorithm that determines if a given sentence is true or false.

Sela's techniques extend to cover torsion-free (word-)hyperbolic groups.

Question 5 Is the elementary theory of a torsionfree hyperbolic group decidable?

2. Equations over groups

The simple sort of sentence is an equation, so the first step is to study the solutions to systems of equations over groups. Consider a finite set Φ of equations

 $w_i(x_1,\ldots,x_n)=1$

in n unknowns over a group Γ . Let G_{Φ} be the group with presentation

$$\langle x_1,\ldots,x_n|w_i(x_1,\ldots,x_n)\rangle.$$

Exercise 6 The set of solutions to Φ is in bijection with

Hom
$$(G_{\Phi}, \Gamma)$$
.

So finitely presented groups correspond naturally to varieties over Γ .

Let's fix attention on $\Gamma = F$ a non-abelian free group.

Definition 7 A finitely generated group L is fully residually free or a limit group if, whenever $g_1, \ldots, g_n \in L \setminus 1$ there exists a homomorphism $f: L \to F$ such that

$$f(g_i) \neq 1$$

for each *i*.

Note that the choice of F does not matter.

Theorem 8 (K–M,S) For every finitely generated group G there is a finite set of limit group quotients

 $\{q_i: G \to L_i\}$

such that any homomorphism $f : G \to F$ factors as

$$G \xrightarrow{q_i} L_i \to F.$$

This can be rephrased as the assertion

$$\operatorname{Hom}(G,F) = \bigcup_{i} q_{i}^{*}\operatorname{Hom}(L_{i},F).$$

Limit groups correspond to irreducible varieties.

3. Enumeration

Theorem 9 (Groves–W) The set of limit groups is recursively enumerable.

That is, there is a Turing machine that outputs a list of presentations of limit groups. A presentation of every limit group appears on this list.

This answers a question of Delzant.

The most interesting corollaries of this come when we combine our theorem with Makanin's Algorithm.

Theorem 10 (Makanin) There is an algorithm that takes as input a system of equations and inequations over F and determines if the system has a solution.

7

Corollary 11 There is an algorithm that takes as input a presentation $\langle X | R \rangle$ for a group Gand outputs a finite set of limit group quotients

$$\{q_i: G \to L_i\}$$

with the property that every homomorphism $G \rightarrow F$ factors through some q_i .

Proof: Using our theorem, we can list all finite sets of limit group quotients

$$\{q_i : G = \langle X \mid R \rangle \to L_i = \langle X \mid S_i \rangle \}.$$

The statement that every homomorphism factors through some q_i is equivalent to the system of equations

$$\forall X \subset F \ (R(X) \Rightarrow S_1(X) \lor \ldots \lor S_n(X)).$$

This can be checked by Makanin's Algorithm. **QED**

Of course, there is no algorithm to tell if an arbitrary group presentation represents the trivial group. But with a solution to the word problem, there clearly is. Combining our theorem with Makanin's Algorithm, we get a similar result for limit groups and, perhaps more surprisingly, free groups.

Corollary 12 There is an algorithm that takes as input a finite presentation for a group Gand a solution to the word problem in G, and determines whether G is a limit group.

Corollary 13 There is an algorithm that takes as input a finite presentation for a group Gand a solution to the word problem in G, and determines whether G is a free group.

4. Hyperbolic groups

Now let Γ be a (torsion-free) hyperbolic group. The work of Rips, Sela and Dahmani has made inroads into an algorithmic understanding of equations and inequations over Γ .

Theorem 14 (Dahmani, Sela) There is an algorithm that takes as input a finite set of equations and inequations over Γ and determines whether the system has a solution.

If the system does not use constants then Γ acts naturally by conjugation on the set of solutions, so if there is one then there are infinitely many. But how many conjugacy classes are there?

Theorem 15 (Groves-W) There is an algorithm that takes as input a finite set of equations and inequations (without constants) over Γ and determines whether the system has infinitely many conjugacy classes of solutions.

We can define Γ -limit groups to be 'fully residually Γ ' groups. This includes all fg subgroups of Γ ! So there are considerable technical difficulties. Many fundamental problems are unsolvable, and Γ -limit groups can be badly behaved: they may not be finitely presented, or admit a nice geometry, for instance.

Definition 16 A subgroup H of Γ is called immutable if there are only finitely many conjugacy classes of embeddings $H \hookrightarrow \Gamma$.

For instance, if Γ is the fundamental group of a closed hyperbolic 3-manifold then it follows from Mostow Rigidity that Γ is an immutable subgroup of itself. Theorem 15 enables us to get some sort of algorithmic purchase on immutable subgroups.

Corollary 17 There is a Turing machine that outputs a list of all finite subsets of Γ that generate immutable subgroups.