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1 Definitions and examples

Let P be a class of groups. A group G is

residually P if, whenever g ∈ Gr 1, there exists

a homomorphism

f : G→ Q

where Q ∈ P and f(g) 6= 1.

More generally, a subgroup H ⊂ G is closed in

the pro-P topology if whenever g ∈ GrH there

exists a homomorphism f : G→ Q with Q ∈ P

and

f(g) /∈ f(H).
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We will, at first, be most interested in the case

where P is the set of finite groups. If H ⊂ G is

closed in the pro-finite topology then we call H

separable. The group G is subgroup separable if

any finitely generated subgroup is separable.

(Such groups are also called LERF.)

Example 1.1 Abelian groups are subgroup

separable.

Example 1.2 (M. Hall ’49) Free groups are

subgroup separable.

Example 1.3 (Burns ’71, Romanovskii ’69)

Free products of subgroup separable groups are

subgroup separable.

Example 1.4 (P. Scott ’78) Surface groups

are subgroup separable.
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However, subgroup separability fails to be

preserved by many natural operations.

Example 1.5 If F is a finitely generated free

group, F × F is not subgroup separable.

So it is not closed under direct products.

Example 1.6 (Burns, Karrass & Solitar ’87)

Fix a basis a, b for Z2. Let G be the

HNN-extension of Z2 corresponding to the map

sending a 7→ b. Then G is not subgroup

separable.

So you have to be careful when taking

HNN-extensions or amalgamated products.
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Here are some elementary properties of

subgroup separability.

Proposition 1.7 Let G be a subgroup

separable group.

1. If H ⊂ G is a subgroup then H is subgroup

separable.

2. If G is a finite-index subgroup of G′ then

G′ is subgroup separable.

The first property is immediate from the

definition. The second is a short exercise.
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2 Some topology

I will explain how to prove Hall’s Theorem

using the topology of graphs. We will need

some reformulations of separability.

Lemma 2.1 Let G be a group and H ⊂ G a

subgroup. Let X be a complex with G = π1(X)

and XH → X the covering corresponding to H.

The following are equivalent.

1. H is separable.

2. For any g ∈ GrH there exists a

finite-index subgroup K ⊂ G so that

H ⊂ K and g /∈ K.

3. Whenever Δ ⊂ XH is a finite subcomplex

there exists an intermediate, finite-sheeted

covering

XH → X̂ → X

so that Δ embeds in X̂.
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A map of graphs f : Δ→ Γ is an immersion if

it is a local embedding; that is, an embedding

in a neighbourhood of every vertex. If f is in

fact a local isomorphism then f is a covering.

An immersion looks like a piece of a covering.

Remarkably, in the case of graphs every

immersion arises in this way.

Proposition 2.2 Let Δ and Γ be finite graphs

and Δ→ Γ an immersion. Then Δ→ Γ

extends to a finite-sheeted covering Γ̂→ Γ.

This is most easily seen when Γ is a rose. Fix

an orientation and a colouring on the edges of

Γ. This lifts to an orientation and a colouring

on Δ. In fact, immersions Δ→ Γ correspond

precisely to colourings on Δ.
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Proof. For each colour, simply count how

many edges of Δ are ‘missing’ going into a

vertex, and how many are ‘missing’ going out.

Summing over all vertices, we get the same

number!

Pairing them up arbitrarily and filling in the

missing edges gives the required cover Γ̂. �

We can exploit this fact to prove Hall’s

Theorem, because free groups are precisely the

fundamental groups of graphs.

Corollary 2.3 Free groups are subgroup

separable.

Proof. Let Γ be a finite rose and H a finitely

generated subgroup of F = π1(Γ). Let Γ
H → Γ

be the covering corresponding to H, and

consider a finite subcomplex Δ ⊂ ΓH . Because
H is finitely generated, we can enlarge Δ to

assume that π1(Δ) = H. But Δ→ Γ is an
immersion, so can be completed to a

finite-sheeted covering Γ̂→ Γ. �
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Versions of this topological proof were given

independently by J. Hempel, P. Scott and

J. Stallings. Stallings went on to show how to

use the topology of graphs to easily deduce

many properties of free groups.

The stronger theorem originally proved by Hall

also follows from this proof.

Corollary 2.4 Let F be a free group and

H ⊂ F a finitely generated subgroup. Then

there exists a finite-index subgroup F ′

containing H so that

F ′ = H ∗ F ′′.
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3 Limit groups

We now turn our attention to the case where P

is the set of free groups. Recall that a group G

is residually free if, whenever g ∈ Gr 1, there

exists a homomorphism f : G→ F so that

f(g) 6= 1.

A group G is ω-residually free if, for any finite

subset X ⊂ G, there exists a homomorphism

f : G→ F so that f |X is injective.

Remark 3.1 Being ω-residually finite is just

the same as being residually finite, because a

direct product of finite groups is finite.

A finitely generated, ω-residually free group is

called a limit group.
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Here are some examples of limit groups

Example 3.2 Free groups are limit groups.

Example 3.3 Free abelian groups are limit

groups.

Example 3.4 If Σ is a closed surface and

χ(Σ) < −1 then π1(Σ) is a limit group.

Here are some properties of limit groups.

Proposition 3.5 Let G be a limit group.

1. G is torsion-free.

2. Every finitely generated subgroup of G is a

limit group.

3. G is commutative transitive—that is, for

x, y, z ∈ G, if [x, y] = [y, z] = 1 then
[x, z]=1.

4. Abelian subgroups of G are finitely

generated.

5. G is finitely presented.

6. There exists a finite K(G, 1).
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Limit groups are historically of interest because

of their connection to the logic of groups.

Given a group G, the elementary theory of a

group is the set of sentences in first-order logic

that are true in G. For example, if G is abelian

then the sentence

∀x ∀y. ([x, y] = 1)

is in the elementary theory of G.

Question 3.6 (Tarksi) Classify the finitely

generated groups with the same elementary

theory as F2, the free group of rank 2.

The existential theory of G is the set of all

sentences that use just one quantifier ∃.

Theorem 3.7 (V. N. Remeslennikov ’89)

The set of finitely generated groups with the

same existential theory as F2 is precisely the

set of limit groups.
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Attempts to solve Tarski’s problem have led to

a structure theory for limit groups.

Definition 3.8 Tower spaces are defined

inductively on height. A tower X0 of height 0 is

a compact, connected one-point union of tori,

graphs and hyperbolic surfaces of Euler

characteristic < −1. A tower Xh of height h is

built from a tower Xh−1 of height h− 1 by

attaching one of two sorts of blocks.

1. Quadratic block. Xh is obtained by

gluing a compact hyperbolic surface Σ along

its boundary components to Xh−1.

2. Abelian block. Xh is obtained by gluing a

coordinate circle of an n-torus T to a

non-trivial loop in Xh−1.

It is also required that there exists a retraction

ρ : Xh → Xh−1 satisfying certain conditions.
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The following theorem provides a structure

theory for limit groups.

Theorem 3.9 (Z. Sela ’03) A group is a

limit group if and only if it is a finitely

generated subgroup of the fundamental group of

some tower Xh.

O. Kharlampovich and A. Myasnikov also

proved an essentially equivalent theorem. Sela

went on to provide an answer to Tarski’s

Problem. A tower space is hyperbolic if no tori

are used in its construction.

Theorem 3.10 (Sela) A finitely generated

group has the same elementary theory as F2 if

and only if it is the fundamental group of a

hyperbolic tower.

We call such groups elementarily free.
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It seems natural to ask what the relationship is

between the two residual properties of being

subgroup separable and being ω-residually free.

Theorem 3.11 (W.) Elementarily free groups

are subgroup separable.

The proof is inspired by the topological proof

of Hall’s Theorem. I will try to explain some

ways of simplifying the tower to make this

problem more tractable.
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4 Simplifying the tower

The aim is to pass to a finite-sheeted covering

of the tower in which the gluing maps are of a

nice form.

Lemma 4.1 If Xh and γ : S
1 → Xh is a

non-trivial curve then after a homotopy of γ

there exists a finite-sheeted covering X̂ → Xh
so that γ lifts to X̂ and furthermore:

1. γ∗H1(S
1,Z) is an infinite direct factor in

H1(X̂);

2. γ : S1 → X̂ is injective.

Applying this lemma successively to Xh−1 and

pulling the resultant cover back along the

retraction, we obtain a finite-sheeted covering

of Xh in which all the gluing maps have the

properties of the lemma.
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First, I’ll show how to obtain the homological

condition.

Fixing a base-point, the curve γ defines an

element of π1(Xh). Since Lh = π1(Xh) is

residually free, there exists a homomorphism

f : Lh → F

so that f(γ) 6= 1. By Hall’s Theorem, there

exists a finite-index subgroup F ′ ⊂ F so that

〈f(γ)〉 is a free factor in F ′. In particular,

〈f(γ)〉 is a direct factor of H1(F ′). Set

L′ = f−1(F ′). Then H1(〈γ〉) is an infinite

direct factor of H1(L
′).
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Forcing the gluing maps to be injective requires

a little geometry. It also uses that cyclic

subgroups are separable, which is true by

induction, or by a rather neat argument given

later.

Towers can be endowed with metrics so that

they are non-positively curved. In a

non-positively curved space, a loop γ is freely

homotopic to a (unique) local geodesic. Very

roughly, if γ is not an embedding then at a

singular point γ can be decomposed as

γ = γ1γ2 with γ a closed loop. But γ is the

shortest loop in 〈γ〉 and γ1 is shorter than γ, so

γ1 /∈ 〈γ〉. Because cyclic subgroups are

separable, there exists a finite-index subgroup

L′ ⊂ L so that γ ∈ L but γ1 /∈ L′. Repeatedly

desingularizing in this way, we eventually arrive

at a covering in which γ is an embedding.
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Here is a different simplification that uses

related ideas. We call a tower positive-genus if

every surface used in its construction is of

positive genus.

Theorem 4.2 (Bridson, Tweedale & W.)

Every limit group is virtually a subgroup of the

fundamental group of a positive-genus tower.

Every elementarily free group is virtually a

subgroup of the fundamental group of a

positive-genus, hyperbolic tower.

Again, the idea behind this is to find a nice

covering of Xh−1 and then pull back along the

retraction ρ.
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5 The pro-free topology

By Hall’s theorem, it is immediate that the

pro-free topology is stronger than the pro-finite

topology. (That is, if a subgroup is closed in

the pro-free topology then it is closed in the

pro-finite topology.)

Question 5.1 Which subgroups of limit groups

are closed in the pro-free topology?

Abelian subgroups are easily understood.

Lemma 5.2 If G is a limit group and A ⊂ G

is maximal abelian then A is closed in the

pro-free topology.

Proof. Suppose g ∈ GrA and fix a basis

a1, . . . , an for G. Then [g, ai] 6= 1 for all i. So

there exists f : G→ F so that f([g, ai]) 6= 1 for

all i. So f(g) /∈ f(A). �
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