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1 Definitions and examples

Let P be a class of groups. A group G is
residually P if, whenever g € GG \\ 1, there exists

a homomorphism
f:G—Q

where @ € P and f(g) # 1.

More generally, a subgroup H C G is closed in
the pro-P topology if whenever g € G ~ H there
exists a homomorphism f: G — Q with Q € P

and

fg) & f(H).



We will, at first, be most interested in the case
where P is the set of finite groups. If H C G is
closed in the pro-finite topology then we call H
separable. The group G is subgroup separable if
any finitely generated subgroup is separable.
(Such groups are also called LERF.)

Example 1.1 Abelian groups are subgroup
separable.

Example 1.2 (M. Hall ’49) Free groups are

subgroup separable.

Example 1.3 (Burns ’71, Romanovskii ’69)
Free products of subgroup separable groups are

subgroup separable.

Example 1.4 (P. Scott ’78) Surface groups

are subgroup separable.



However, subgroup separability fails to be

preserved by many natural operations.

Example 1.5 If F' is a finitely generated free
group, F' X F' 1is not subgroup separable.

So it is not closed under direct products.

Example 1.6 (Burns, Karrass & Solitar ’87)
Fiz a basis a,b for Z?. Let G be the
HNN-extension of Z* corresponding to the map
sending a — b. Then G is not subgroup

separable.

So you have to be careful when taking

HNN-extensions or amalgamated products.



Here are some elementary properties of
subgroup separability.

Proposition 1.7 Let G be a subgroup

separable group.

1. If H C GG is a subgroup then H 1is subgroup

separable.

2. If G is a finite-index subgroup of G’ then

G’ is subgroup separable.

The first property is immediate from the
definition. The second is a short exercise.



2 Some topology

I will explain how to prove Hall’s Theorem
using the topology of graphs. We will need

some reformulations of separability.

Lemma 2.1 Let G be a group and H C G a
subgroup. Let X be a complex with G = m1(X)
and X — X the covering corresponding to H.

The following are equivalent.
1. H 1is separable.

2. For any g € G~ H there exists a
finite-index subgroup K C G so that
HCK andg ¢ K.

3. Whenever A C X* is a finite subcomplex
there exists an intermediate, finite-sheeted

covering
X" X 53X
so that A embeds in X .



A map of graphs f: A — I' is an immersion if
it is a local embedding; that is, an embedding
in a neighbourhood of every vertex. If f is in
fact a local isomorphism then f is a covering.
An immersion looks like a piece of a covering.
Remarkably, in the case of graphs every

immersion arises in this way.

Proposition 2.2 Let A and I' be finite graphs
and A — I' an immersion. Then A — I’
extends to a finite-sheeted covering I > T.

This is most easily seen when I' is a rose. Fix
an orientation and a colouring on the edges of
['. This lifts to an orientation and a colouring
on A. In fact, immersions A — I' correspond

precisely to colourings on A.



Proof. For each colour, simply count how
many edges of A are ‘missing’ going into a
vertex, and how many are ‘missing’ going out.
Summing over all vertices, we get the same

number!

Pairing them up arbitrarily and filling in the
missing edges gives the required cover I. []

We can exploit this fact to prove Hall’s
Theorem, because free groups are precisely the
fundamental groups of graphs.

Corollary 2.3 Free groups are subgroup
separable.

Proof. Let I' be a finite rose and H a finitely
generated subgroup of F' = 7{(T'). Let T# — T
be the covering corresponding to H, and
consider a finite subcomplex A C ', Because
H is finitely generated, we can enlarge A to
assume that m1(A) = H. But A —» T'is an
immersion, so can be completed to a
finite-sheeted covering I - T. []



Versions of this topological proof were given
independently by J. Hempel, P. Scott and

J. Stallings. Stallings went on to show how to
use the topology of graphs to easily deduce
many properties of free groups.

The stronger theorem originally proved by Hall
also follows from this proof.

Corollary 2.4 Let F' be a free group and
H C F a finitely generated subgroup. Then
there exists a finite-index subgroup F’

containing H so that

F'= H=xF".



3 Limit groups

We now turn our attention to the case where P
is the set of free groups. Recall that a group G
is residually free if, whenever g € G \. 1, there

exists a homomorphism f : G — F' so that
flg) # 1.

A group G is w-restdually free if, for any finite
subset X C G, there exists a homomorphism
f: G — F so that f|X is injective.

Remark 3.1 Being w-residually finite is just
the same as being restdually finite, because a

direct product of finite groups is finite.

A finitely generated, w-residually free group is

called a limit group.
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Here are some examples of limit groups
Example 3.2 Free groups are limit groups.

Example 3.3 Free abelian groups are limit
groups.

Example 3.4 If X is a closed surface and

X(2) < —1 then w1 (X) is a limit group.

Here are some properties of limit groups.

Proposition 3.5 Let G be a limit group.
1. G 1is torsion-free.

2. FEvery finitely generated subgroup of G is a
limit group.

3. G is commutative transitive—that is, for
x,y,z € G, if lz,y] =y, z] =1 then
[z, z]=1.

4. Abelian subgroups of G are finitely
generated.

5. G 1s finitely presented.
6. There exists a finite K(G,1).
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Limit groups are historically of interest because
of their connection to the logic of groups.
Given a group G, the elementary theory of a
group is the set of sentences in first-order logic
that are true in G. For example, if GG is abelian
then the sentence

v Vy. ([z,y] = 1)
is in the elementary theory of G.

Question 3.6 (Tarksi) Classify the finitely
generated groups with the same elementary

theory as Fy, the free group of rank 2.

The existential theory of G is the set of all
sentences that use just one quantifier 4.

Theorem 3.7 (V. N. Remeslennikov ’89)
The set of finitely generated groups with the
same existential theory as Fy 1is precisely the

set of limit groups.
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Attempts to solve Tarski’s problem have led to

a structure theory for limit groups.

Definition 3.8 Tower spaces are defined
inductively on height. A tower Xy of height 0 is
a compact, connected one-point union of tort,
graphs and hyperbolic surfaces of Euler
characteristic < —1. A tower X}, of height h is
built from a tower Xj_1 of height h — 1 by

attaching one of two sorts of blocks.

1. Quadratic block. X, is obtained by
gluing a compact hyperbolic surface X along

its boundary components to Xp_1.

2. Abelian block. X; is obtained by gluing a
coordinate circle of an n-torus T to a

non-triwial loop in Xp_q.

It is also required that there exists a retraction

p: Xy — Xp_1 satisfying certain conditions.

13



The following theorem provides a structure

theory for limit groups.

Theorem 3.9 (Z. Sela ’03) A group is a
limit group if and only if it is a finitely
generated subgroup of the fundamental group of

some tower Xy,.

O. Kharlampovich and A. Myasnikov also
proved an essentially equivalent theorem. Sela
went on to provide an answer to Tarski’s
Problem. A tower space is hyperbolic if no tori

are used in its construction.

Theorem 3.10 (Sela) A finitely generated
group has the same elementary theory as Fy if
and only if it is the fundamental group of a

hyperbolic tower.

We call such groups elementarily free.
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It seems natural to ask what the relationship is
between the two residual properties of being
subgroup separable and being w-residually free.

Theorem 3.11 (W.) Elementarily free groups

are subgroup separable.

The proof is inspired by the topological proot
of Hall’s Theorem. I will try to explain some
ways of simplifying the tower to make this
problem more tractable.
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4 Simplifying the tower

The aim is to pass to a finite-sheeted covering
of the tower in which the gluing maps are of a

nice form.

Lemma 4.1 If X}, and v: S — X}, is a
non-trivial curve then after a homotopy of ~y

there exists a finite-sheeted covering X — Xy,
so that v lifts to X and furthermore:

1. v.H{(SY,Z) is an infinite direct factor in

Hl(X);

2. v: St = X is injective.

Applying this lemma successively to X;_; and
pulling the resultant cover back along the
retraction, we obtain a finite-sheeted covering
of X3 in which all the gluing maps have the

properties of the lemma.
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First, I'll show how to obtain the homological

condition.

Fixing a base-point, the curve v defines an
element of 71 (X}). Since Ly = 71 (X}) is

residually free, there exists a homomorphism
f : Lh — F

so that f(v) # 1. By Hall’s Theorem, there
exists a finite-index subgroup F’ C F' so that
(f(7)) is a free factor in F’. In particular,
(f(7)) is a direct factor of Hy(F"). Set

L' = f~1(F"). Then Hy({7)) is an infinite
direct factor of Hy(L').
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Forcing the gluing maps to be injective requires
a little geometry. It also uses that cyclic
subgroups are separable, which is true by
induction, or by a rather neat argument given

later.

Towers can be endowed with metrics so that
they are non-positively curved. In a
non-positively curved space, a loop -y is freely
homotopic to a (unique) local geodesic. Very
roughly, if v is not an embedding then at a
singular point v can be decomposed as

v = v1y2 with v a closed loop. But -y is the
shortest loop in () and ~; is shorter than ~, so
v1 ¢ (). Because cyclic subgroups are
separable, there exists a finite-index subgroup
L' C L so that v € L but v; ¢ L’. Repeatedly
desingularizing in this way, we eventually arrive

at a covering in which v is an embedding.
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Here is a different simplification that uses
related ideas. We call a tower positive-genus if
every surface used in its construction is of

positive genus.

Theorem 4.2 (Bridson, Tweedale & W.)
Every limit group is virtually a subgroup of the
fundamental group of a positive-genus tower.
Every elementarily free group is virtually a
subgroup of the fundamental group of a

positive-genus, hyperbolic tower.

Again, the idea behind this is to find a nice
covering of X _1 and then pull back along the
retraction p.
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5 The pro-free topology

By Hall’s theorem, it is immediate that the
pro-free topology is stronger than the pro-finite
topology. (That is, if a subgroup is closed in
the pro-free topology then it is closed in the
pro-finite topology.)

Question 5.1 Which subgroups of limit groups

are closed in the pro-free topology?

Abelian subgroups are easily understood.

Lemma 5.2 If G is a limit group and A C G
18 maximal abelian then A s closed in the

pro-free topology.

Proof. Suppose g € G . A and fix a basis
ai,...,a, for G. Then |g,a;] # 1 for all i. So
there exists f : G — F so that f(|g,a;]) # 1 for

all ©. So f(g) ¢ f(A). ]
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