

An Introduction to Geometrization

H. J. R. Wilton

April 15, 2005

Preliminaries

Throughout this talk, a *manifold* is a connected, orientable, smooth manifold, possibly with boundary.

A 3-manifold M is *prime* if, whenever $M = M_1 \# M_2$, one of M_1 and M_2 is homeomorphic to S^3 . M is *irreducible* if any embedded 2-sphere bounds a 3-ball. Irreducibility is slightly stronger than primeness; consider, for example, $S^2 \times S^1$.

An embedded 2-sphere is *incompressible* if it is not null-homotopic. An embedding of any other surface $\Sigma \hookrightarrow M$ is *incompressible* if it induces an injection on π_1 . A surface is *essential* if it is incompressible and not isotopic to a boundary component.

Geometries

Let (X, G) be a manifold and a group of diffeomorphisms. A manifold M is *modelled on* X (or has an (X, G) -structure) if the interior of M is diffeomorphic to the quotient of X by a discrete subgroup of G acting freely and properly discontinuously.

A *geometry* (X, G) is a connected, simply connected manifold X so that:

1. there exists a complete Riemannian metric so that $G = \text{Isom}(X)$ acts transitively on X ;
2. (X, G) has a compact model.

A 3-manifold is *geometric* if it is modelled on a geometry.

2-Dimensional Geometries

Recall ‘the fundamental theorem of differential geometry’.

Theorem 1 *If X^n is a simply connected, complete Riemannian manifold with constant sectional curvature $+1$, 0 or -1 then X is isometric to S^n , \mathbb{E}^n or \mathbb{H}^n respectively.*

In particular the only homogenous, simply connected Riemannian surfaces are S^2 , \mathbb{E}^2 and \mathbb{H}^2 ; these all have compact quotients, so they are the three 2-dimensional geometries.

The interior of every compact surface admits such a geometric structure: using the Gauss-Bonnet theorem, the structure is spherical, Euclidean or hyperbolic depending on whether the Euler characteristic is positive, zero or negative.

Some compact 3-manifolds

Example 2 Let Σ be a closed hyperbolic surface. Consider $M = U\Sigma$, the unit-circle bundle in the tangent bundle of Σ .

Example 3 Consider a solid dodecahedron D . Let M be the 3-manifold obtained by identifying opposite sides, after a rotation of $3\pi/5$. The result is called ‘Seifert-Weber dodecahedral space’.

Example 4 Consider the 2-torus T . For $\phi \in SL_2(\mathbb{Z})$ the mapping class group of T , let $M = M_\phi$ be the corresponding mapping torus.

The 3-dimensional geometries

Of course, the first examples of 3-dimensional geometries are the isotropic ones: S^3 , \mathbb{E}^3 and \mathbb{H}^3 (with the usual metrics). Seifert-Weber dodecahedral space is an example of a compact hyperbolic manifold.

The simplest examples of non-isotropic geometries are $S^2 \times \mathbb{R}$ and $\mathbb{H}^2 \times \mathbb{R}$, which are modelled by trivial circle bundles over surfaces.

By contrast, $U\Sigma$ is a non-trivial circle bundle over Σ . It's clearly a quotient of $U\mathbb{H}^2$ by a discrete group action. Since $U\mathbb{H}^2 \cong \widetilde{PSL_2(\mathbb{R})}$, it's modelled on the universal cover $\widetilde{SL_2(\mathbb{R})}$.

The remaining geometries cover mapping tori of the torus.

Nil-geometry

Let Nil be the Heisenberg group, namely the space of all matrices of the form

$$\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$$

for $x, y, z \in \mathbb{R}$. Nil expresses \mathbb{R}^3 as a non-trivial line bundle over \mathbb{R}^2 . If $A \in SL_2(\mathbb{Z})$ is conjugate to a shear, then M_A has a Nil-structure.

Sol-geometry

Sol is the Lie group structure on \mathbb{R}^3 given by the multiplication

$$(x, y, t)(x', y', t') = (x + e^{-t}x', y + e^t y', t + t').$$

If $A \in SL_2(\mathbb{Z})$ is diagonalizable with distinct positive eigenvalues then M_A has a Sol-structure.

Thurston's classification

Thurston proved that the eight geometries listed above are all there are. Here is the outline of the proof, in three cases depending on S , the identity component of the (orientation-preserving) stabilizer of a point.

1. $S = SO(3)$. Then X is isotropic, and by 'the fundamental theorem of differential geometry', X is one of S^3 , \mathbb{E}^3 or \mathbb{H}^3 with the usual group of isometries.
2. $S = SO(2)$. Then X fibres over a surface. If the base has positive curvature then X is either $S^2 \times \mathbb{R}$ or S^3 . If the base is flat, X is either \mathbb{R}^3 or Nil. If the base is negatively curved, X is either $\mathbb{H}^2 \times \mathbb{R}$ or $SL2(\mathbb{R})$.

3. $S = 1$. Then X is identified with the identity component of G , so is a Lie group. A classification of 3-dimensional simply connected Lie groups gives that all the ones with compact quotients are subgroups of SU_2 , \mathbb{R}^3 , $\widetilde{SL_2(\mathbb{R})}$, Nil or Sol.

The Kneser-Milnor Prime Decomposition

We would like to be able to conjecture that every compact 3-manifold has a geometric structure, but there are some obvious counter-examples: almost no connected sums can be geometric. To get round this, we appeal to a result of Kneser and Milnor.

Theorem 5 *Every 3-manifold M has a decomposition as*

$$M = M_1 \# \dots \# M_n \# S^1 \times S^2 \# \dots \# S^1 \times S^2$$

where each M_i is irreducible. The decomposition is unique up to permutations of the pieces.

The proof relies on the theory of normal surfaces.

Another counter-example

There's another obstruction to geometric structures: neither hyperbolic nor spherical manifolds admit essential tori. For example, consider N the complement of a tubular neighbourhood of the figure-eight knot, a simple example of a hyperbolic manifold with a 'cusp'; that is, a boundary torus with Euclidean structure.

Let M be the double of N along the boundary. Then M is irreducible, and clearly can't admit any non-hyperbolic structures. But it also can't admit a hyperbolic structure, since the boundary torus of N is essential in M .

Seifert-fibred 3-manifolds

M is *Seifert-fibred* if it is foliated by circles, and each leaf has the following local structure.

- A generic leaf has a tubular neighbourhood homeomorphic to a solid torus with the obvious foliation by circles.
- A singular leaf has a tubular neighbourhood homeomorphic to a solid torus, with the foliation induced by cutting along a disc and gluing again after a twist through $2\pi p/q$ (for p, q coprime).

Seifert-fibred manifolds should be thought of as examples of manifolds with lots of essential tori.

The best way of thinking about Seifert-fibred manifolds is as circle bundles over orbifolds. Let M be Seifert-fibred, and let Σ be the leaf space. Then because of the local structure of the leaves of M , Σ has the topological type of a surface; generic leaves correspond to ordinary points, while singular leaves of type (p, q) correspond to \mathbb{Z}_q cone points. That is, Σ naturally inherits an orbifold structure.

This gives two important invariants of M : χ , the *orbifold Euler characteristic* of Σ ; and e , the Euler class of the bundle structure on M .

It's now easy to see the essential tori in M . Just pick an essential curve in Σ . Then its preimage in M is an essential torus. Note that, in general, essential tori may intersect essentially.

The JSJ decomposition

To remove the problem of essential tori, we appeal to a theorem of Jaco–Shalen and Johannson. A 3-manifold is *atoroidal* if it contains no essential tori.

Theorem 6 *In a closed 3-manifold M there exists a finite collection of disjoint essential tori T_1, \dots, T_n , unique up to isotopy, so that every component of*

$$M - \bigcup_i T_i$$

is either Seifert-fibred or atoroidal.

In contrast to the case of the prime decomposition, there is no canonical way of closing off the resulting toral boundary components.

There is a remarkably constructive proof of the existence of this decomposition, due to Neumann and Swarup. An essential torus is *canonical* if any other embedded torus can be isotoped off it. The JSJ decomposition is defined simply to be a maximal collection of canonical tori.

Let N be a piece of the complement that isn't atoroidal. Cut it along some maximal collection of disjoint essential tori, S_1, \dots, S_m . Since no S_i is canonical, for each i there exists an essential torus in N that can't be homotoped off S_i . Therefore, every component of

$$N - \bigcup_i S_i$$

contains an essential annulus. A case-by-case analysis of how the annulus intersects the boundary tori now shows that each component is Seifert-fibred. Finally, you observe that the Seifert structures on each component match up to give a Seifert-fibred structure for N .

The Geometrization Conjecture

We are now in a position to state Thurston's conjecture.

Conjecture 7 *If M is a closed 3-manifold, let M_1, \dots, M_n be the manifolds obtained by applying first the Kneser-Milnor decomposition, then the JSJ decomposition. Then each M_i is geometric.*

The Easy Pieces

Fortunately, the non-spherical and non-hyperbolic geometries are well understood.

Theorem 8 *Let M be a closed 3-manifold.*

1. *M has a Sol-structure if and only if M is finitely covered by the mapping torus of a hyperbolic torus automorphism.*
2. *If M is Seifert-fibred then M is modelled on one of S^3 , \mathbb{E}^3 , $S^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$, Nil or $\widetilde{SL_2(\mathbb{R})}$.*

The geometry of a Seifert-fibred manifold is, as you would expect, determined by χ and e .

The Hard Pieces

The problematic pieces are the atoroidal ones. In this case, the conjecture splits into two.

Conjecture 9 (Elliptization) *Let M be a closed 3-manifold with $\pi_1(M)$ finite. Then M has a spherical structure.*

Conjecture 10 (Hyperbolization) *Let M be a compact atoroidal 3-manifold with $\pi_1(M)$ infinite. Then M has a hyperbolic structure.*

Elliptization in turn is equivalent to two famous conjectures, both very poorly understood.

Conjecture 11 (Poincaré) *Every closed simply connected 3-manifold is homeomorphic to S^3 .*

Conjecture 12 (Smale) *Every finite group action on S^3 by diffeomorphisms is conjugate to an action by isometries.*

Much more progress has been made with hyperbolization. A 3-manifold is *Haken* if it contains an incompressible surface.

Theorem 13 (Thurston) *Every atoroidal Haken 3-manifold is geometric.*

Conjecturally (the Waldhausen conjecture), every 3-manifold is finitely covered by a Haken 3-manifold. The Waldhausen conjecture is one of the few big conjectures in 3-manifolds not implied by geometrization.