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Preliminaries

Throughout this talk, a manifold is a con-

nected, orientable, smooth manifold, possibly

with boundary.

A 3-manifold M is prime if, whenever M =

M1#M2, one of M1 and M2 is homeomorphic

to S3. M is irreducible if any embedded 2-

sphere bounds a 3-ball. Irreducibility is slightly

stronger than primeness; consider, for exam-

ple, S2
× S1.

An embedded 2-sphere is incompressible if it

is not null-homotopic. An embedding of any

other surface Σ ↪→ M is incompressible if it

induces an injection on π1. A surface is essen-

tial if it is incompressible and not isotopic to

a boundary component.

2



Geometries

Let (X,G) be a manifold and a group of diffeo-

morphisms. A manifold M is modelled on X

(or has an (X,G)-structure) if the interior of M

is diffeomorphic to the quotient of X by a dis-

crete subgroup of G acting freely and properly

discontinuously.

A geometry (X,G) is a connected, simply con-

nected manifold X so that:

1. there exists a complete Riemannian metric

so that G = Isom(X) acts transitively on

X;

2. (X,G) has a compact model.

A 3-manifold is geometric if it is modelled on

a geometry.
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2-Dimensional Geometries

Recall ‘the fundamental theorem of differential

geometry’.

Theorem 1 If Xn is a simply connected, com-

plete Riemannian manifold with constant sec-

tional curvature +1, 0 or −1 then X is isomet-

ric to Sn, En or Hn respectively.

In particular the only homogenous, simply con-

nected Riemannian surfaces are S2, E2 and H2;

these all have compact quotients, so they are

the three 2-dimensional geometries.

The interior of every compact surface admits

such a geometric structure: using the Gauss-

Bonnet theorem, the structure is spherical, Eu-

clidean or hyperbolic depending on whether the

Euler characteristic is positive, zero or nega-

tive.
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Some compact 3-manifolds

Example 2 Let Σ be a closed hyperbolic sur-

face. Consider M = UΣ, the unit-circle bundle

in the tangent bundle of Σ.

Example 3 Consider a solid dodecahedron D.

Let M be the 3-manifold obtained by identi-

fying opposite sides, after a rotation of 3π/5.

The result is called ‘Seifert-Weber dodecahe-

dral space’.

Example 4 Consider the 2-torus T . For φ ∈

SL2(Z) the mapping class group of T , let M =

Mφ be the corresponding mapping torus.
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The 3-dimensional geometries

Of course, the first examples of 3-dimensional

geometries are the isotropic ones: S3, E3 and

H3 (with the usual metrics). Seifert-Weber do-

decahedral space is an example of a compact

hyperbolic manifold.

The simplest examples of non-isotropic geome-

tries are S2
×R and H2

×R, which are modelled
by trivial circle bundles over surfaces.

By contrast, UΣ is a non-trivial circle bundle

over Σ. It’s clearly a quotient of UH2 by a

discrete group action. Since UH2
≡ PSL2(R),

it’s modelled on the universal cover ˜SL2(R)

The remaining geometries cover mapping tori

of the torus.
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Nil-geometry

Let Nil be the Heisenberg group, namely the

space of all matrices of the form






1 x z
0 1 y
0 0 1







for x, y, z ∈ R. Nil expresses R3 as a non-trivial

line bundle over R2. If A ∈ SL2(Z) is conjugate
to a shear, then MA has a Nil-structure.

Sol-geometry

Sol is the Lie group structure on R3 given by

the multiplication

(x, y, t)(x′, y′, t′) = (x+ e−tx′, y+ ety′, t+ t′).

If A ∈ SL2(Z) is diagonalizable with distinct

positive eigenvalues thenMA has a Sol-structure.
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Thurston’s classification

Thurston proved that the eight geometries listed

above are all there are. Here is the outline of

the proof, in three cases depending on S, the

identity component of the (orientation-preserving)

stabilizer of a point.

1. S = SO(3). Then X is isotropic, and by

‘the fundamental theorem of differential ge-

ometry’, X is one of S3, E3 or H3 with the

usual group of isometries.

2. S = SO(2). Then X fibres over a surface.

If the base has positive curvature then X

is either S2
×R or S3. If the base is flat, X

is either R3 or Nil. If the base is negatively

curved, X is either H2
× R or ˜SL2(R).

8



3. S = 1. Then X is identified with the iden-

tity component of G, so is a Lie group. A

classification of 3-dimensional simply con-

nected Lie groups gives that all the ones

with compact quotients are subgroups of

SU2, R3, ˜SL2(R), Nil or Sol.



The Kneser-Milnor Prime Decomposition

We would like to be able to conjecture that ev-

ery compact 3-manifold has a geometric struc-

ture, but there are some obvious counter-examples:

almost no connected sums can be geometric.

To get round this, we appeal to a result of

Kneser and Milnor.

Theorem 5 Every 3-manifoldM has a decom-

position as

M =M1# . . .#Mn#S1
× S2# . . .#S1

× S2

where each Mi is irreducible. The decomposi-

tion is unique up to permutations of the pieces.

The proof relies on the theory of normal sur-

faces.
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Another counter-example

There’s another obstruction to geometric struc-

tures: neither hyperbolic nor spherical mani-

folds admit essential tori. For example, con-

sider N the complement of a tubular neigh-

bourhood of the figure-eight knot, a simple

example of a hyperbolic manifold with a ‘cusp’;

that is, a boundary torus with Euclidean struc-

ture.

Let M be the double of N along the bound-

ary. Then M is irreducible, and clearly can’t

admit any non-hyperbolic structures. But it

also can’t admit a hyperbolic structure, since

the boundary torus of N is essential in M .
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Seifert-fibred 3-manifolds

M is Seifert-fibred if it is foliated by circles,

and each leaf has the following local structure.

• A generic leaf has a tubular neighbourhood

homeomorphic to a solid torus with the ob-

vious foliation by circles.

• A singular leaf has a tubular neighbourhood

homeomorphic to a solid torus, with the fo-

liation induced by cutting along a disc and

gluing again after a twist through 2πp/q

(for p, q coprime).

Seifert-fibred manifolds should be thought of

as examples of manifolds with lots of essential

tori.
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The best way of thinking about Seifert-fibred

manifolds is as circle bundles over orbifolds.

Let M be Seifert-fibred, and let Σ be the leaf

space. Then because of the local structure of

the leaves of M , Σ has the topological type of

a surface; generic leaves correspond to ordi-

nary points, while singular leaves of type (p, q)

correspond to Zq cone points. That is, Σ nat-

urally inherits an orbifold structure.

This gives two important invariants of M : χ,

the orbifold Euler characteristic of Σ; and e,

the Euler class of the bundle structure on M .

It’s now easy to see the essential tori in M .

Just pick an essential curve in Σ. Then its

preimage in M is an essential torus. Note that,

in general, essential tori may intersect essen-

tially.
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The JSJ decomposition

To remove the problem of essential tori, we ap-

peal to a theorem of Jaco–Shalen and Johann-

son. A 3-manifold is atoroidal if it contains no

essential tori.

Theorem 6 In a closed 3-manifold M there

exists a finite collection of disjoint essential tori

T1, . . . , Tn, unique up to isotopy, so that every

component of

M −

⋃

i

Ti

is either Seifert-fibred or atoroidal.

In contrast to the case of the prime decompo-

sition, there is no canonical way of closing off

the resulting toral boundary components.
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There is a remarkably constructive proof of the

existence of this decomposition, due to Neu-

mann and Swarup. An essential torus is canon-

ical if any other embedded torus can be iso-

toped off it. The JSJ decomposition is defined

simply to be a maximal collection of canonical

tori.

Let N be a piece of the complement that isn’t

atoroidal. Cut it along some maximal collec-

tion of disjoint essential tori, S1, . . . , Sm. Since

no Si is canonical, for each i there exists an

essential torus in N that can’t be homotoped

off Si. Therefore, every component of

N −
⋃

i

Si

contains an essential annulus. A case-by-case

analysis of how the annulus intersects the bound-

ary tori now shows that each component is

Seifert-fibred. Finally, you observe that the

Seifert structures on each component match

up to give a Seifert-fibred structure for N .
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The Geometrization Conjecture

We are now in a position to state Thurston’s

conjecture.

Conjecture 7 If M is a closed 3-manifold, let

M1, . . . ,Mn be the manifolds obtained by ap-

plying first the Kneser-Milnor decomposition,

then the JSJ decomposition. Then each Mi is

geometric.
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The Easy Pieces

Fortunately, the non-spherical and non-hyperbolic

geometries are well understood.

Theorem 8 Let M be a closed 3-manifold.

1. M has a Sol-structure if and only if M is

finitely covered by the mapping torus of a

hyperbolic torus automorphism.

2. If M is Seifert-fibred then M is modelled

on one of S3, E3, S2
× R, H2

× R, Nil or
˜SL2(R).

The geometry of a Seifert-fibred manifold is,

as you would expect, determined by χ and e.
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The Hard Pieces

The problematic pieces are the atoroidal ones.

In this case, the conjecture splits into two.

Conjecture 9 (Elliptization) LetM be a closed

3-manifold with π1(M) finite. Then M has a

spherical structure.

Conjecture 10 (Hyperbolization) Let M be

a compact atoroidal 3-manifold with π1(M) in-

finite. Then M has a hyperbolic structure.

Elliptization in turn is equivalent to two famous

conjectures, both very poorly understood.

Conjecture 11 (Poincaré) Every closed sim-

ply connected 3-manifold is homeomorphic to

S3.

Conjecture 12 (Smale) Every finite group ac-

tion on S3 by diffeomorphisms is conjugate to

an action by isometries.
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Much more progress has been made with hy-

perbolization. A 3-manifold is Haken if it con-

tains an incompressible surface.

Theorem 13 (Thurston) Every atoroidal Haken

3-manifold is geometric.

Conjecturally (the Waldhausen conjecture), ev-

ery 3-manifold is finitely covered by a Haken 3-

manifold. The Waldhausen conjecture is one

of the few big conjectures in 3-manifolds not

implied by geometrization.
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