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Preliminaries

Throughout this talk, a manifold is a con-
nected, orientable, smooth manifold, possibly
with boundary.

A 3-manifold M is prime if, whenever M =
Mq# Mo, one of My and M»> is homeomorphic
to S3. M is irreducible if any embedded 2-
sphere bounds a 3-ball. Irreducibility is slightly
stronger than primeness; consider, for exam-
ple, 52 x S1.

An embedded 2-sphere is incompressible if it
is not null-homotopic. An embedding of any
other surface > — M is incompressible if it
induces an injection on w1. A surface is essen-
tial if it is incompressible and not isotopic to
a boundary component.



Geometries

Let (X,G) be a manifold and a group of diffeo-
morphisms. A manifold M is modelled on X
(or has an (X, G)-structure) if the interior of M
is diffeomorphic to the quotient of X by a dis-
crete subgroup of G acting freely and properly
discontinuously.

A geometry (X,G) is a connected, simply con-
nected manifold X so that:

1. there exists a complete Riemannian metric
so that G = Isom(X) acts transitively on
X,

2. (X,G) has a compact model.

A 3-manifold is geometric if it is modelled on
a geometry.



2-Dimensional Geometries

Recall ‘the fundamental theorem of differential
geometry’.

Theorem 1 If X" is a simply connected, com-
plete Riemannian manifold with constant sec-
tional curvature +1, O or —1 then X is isomet-
ric to S™, E™ or H™ respectively.

In particular the only homogenous, simply con-
nected Riemannian surfaces are S2, E2 and HZ:
these all have compact quotients, so they are
the three 2-dimensional geometries.

The interior of every compact surface admits
such a geometric structure: using the Gauss-
Bonnet theorem, the structure is spherical, Eu-
clidean or hyperbolic depending on whether the
Euler characteristic is positive, zero or nega-
tive.



Some compact 3-manifolds

Example 2 Let > be a closed hyperbolic sur-
face. Consider M = U, the unit-circle bundle
in the tangent bundle of .

Example 3 Consider a solid dodecahedron D.
Let M be the 3-manifold obtained by identi-
fying opposite sides, after a rotation of 37w /5.
T he result is called ‘Seifert-Weber dodecahe-
dral space’.

Example 4 Consider the 2-torus 1T'. For ¢ €
SL»(Z) the mapping class group of T', let M =
M¢ be the corresponding mapping torus.



The 3-dimensional geometries

Of course, the first examples of 3-dimensional
geometries are the isotropic ones: S3, E3 and
H3 (with the usual metrics). Seifert-Weber do-
decahedral space is an example of a compact
hyperbolic manifold.

The simplest examples of non-isotropic geome-
tries are S2 xR and H2 xR, which are modelled
by trivial circle bundles over surfaces.

By contrast, U3 is a non-trivial circle bundle
over 2. It's clearly a quotient of UHZ2 by a
discrete group action. Since UH? = PSL»(R),

it’s modelled on the universal cover SL>(R)

The remaining geometries cover mapping tori
of the torus.



Nil-geometry

Let Nil be the Heisenberg group, namely the
space of all matrices of the form

1l =z 2z
O 1 vy
O 01

for z,y,z € R. Nil expresses R3 as a non-trivial
line bundle over R2. If A € SL>(Z) is conjugate
to a shear, then M4 has a Nil-structure.

Sol-geometry

Sol is the Lie group structure on R3 given by
the multiplication

(z,y, ) (¢, t) = (z + e ta/,y + ely/, t + ).

If A € SLy(Z) is diagonalizable with distinct
positive eigenvalues then M 4 has a Sol-structure.



Thurston’s classification

Thurston proved that the eight geometries listed
above are all there are. Here is the outline of
the proof, in three cases depending on S, the
identity component of the (orientation-preserving)
stabilizer of a point.

1. S = SO(3). Then X is isotropic, and by
‘the fundamental theorem of differential ge-
ometry’, X is one of S3, E3 or H3 with the
usual group of isometries.

2. S=S50(2). Then X fibres over a surface.
If the base has positive curvature then X
is either S2 xR or S3. If the base is flat, X
is either R3 or Nil. If the base is negatively
curved, X is either H2 x R or SL2(R).



3. §S=1. Then X is identified with the iden-
tity component of G, so is a Lie group. A
classification of 3-dimensional simply con-
nected Lie groups gives that all the ones

with compic_:\t_/quotients are subgroups of
SU>, R3, SL>(R), Nil or Sol.



The Kneser-Milnor Prime Decomposition

We would like to be able to conjecture that ev-

ery compact 3-manifold has a geometric struc-
ture, but there are some obvious counter-examples:
almost no connected sums can be geometric.

To get round this, we appeal to a result of
Kneser and Milnor.

Theorem 5 Every 3-manifold M has a decom-
position as

M = My# ... #Mp#ST x S2# ... #St x §2

where each M; is irreducible. The decomposi-
tion is unique up to permutations of the pieces.

The proof relies on the theory of normal sur-
faces.



Another counter-example

There's another obstruction to geometric struc-
tures: neither hyperbolic nor spherical mani-
folds admit essential tori. For example, con-
sider N the complement of a tubular neigh-
bourhood of the figure-eight knot, a simple
example of a hyperbolic manifold with a ‘cusp’;
that is, a boundary torus with Euclidean struc-
ture.

Let M be the double of N along the bound-
ary. Then M is irreducible, and clearly can't
admit any non-hyperbolic structures. But it
also can’'t admit a hyperbolic structure, since
the boundary torus of N is essential in M.
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Seifert-fibred 3-manifolds

M is Seifert-fibred if it is foliated by circles,
and each leaf has the following local structure.

e A generic leaf has a tubular neighbourhood
homeomorphic to a solid torus with the ob-
vious foliation by circles.

e A singular leaf has a tubular neighbourhood
homeomorphic to a solid torus, with the fo-
liation induced by cutting along a disc and
gluing again after a twist through 27p/q
(for p, g coprime).

Seifert-fibred manifolds should be thought of

as examples of manifolds with lots of essential
tori.
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The best way of thinking about Seifert-fibred
manifolds is as circle bundles over orbifolds.
Let M be Seifert-fibred, and let > be the leaf
space. Then because of the local structure of
the leaves of M, 2 has the topological type of
a surface; generic leaves correspond to ordi-
nary points, while singular leaves of type (p, q)
correspond to Z, cone points. That is, > nat-
urally inherits an orbifold structure.

This gives two important invariants of M: v,
the orbifold Euler characteristic of >; and e,
the Euler class of the bundle structure on M.

It's now easy to see the essential tori in M.
Just pick an essential curve in >. Then its
preimage in M is an essential torus. Note that,
in general, essential tori may intersect essen-
tially.
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The JSJ decomposition

To remove the problem of essential tori, we ap-
peal to a theorem of Jaco—Shalen and Johann-
son. A 3-manifold is atoroidal if it contains no
essential tori.

Theorem 6 In a closed 3-manifold M there
exists a finite collection of disjoint essential tori
11,...,Ty, unique up to isotopy, so that every
component of

M- T,
()

is either Seifert-fibred or atoroidal.

In contrast to the case of the prime decompo-
sition, there is no canonical way of closing off
the resulting toral boundary components.
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There is a remarkably constructive proof of the
existence of this decomposition, due to Neu-
mann and Swarup. An essential torus is canon-
ical if any other embedded torus can be iso-
toped off it. The JSJ decomposition is defined
simply to be a maximal collection of canonical
tori.

Let N be a piece of the complement that isn’t
atoroidal. Cut it along some maximal collec-
tion of disjoint essential tori, Sq,...,5m. Since
no S; is canonical, for each : there exists an
essential torus in N that can’'t be homotoped
off S;. Therefore, every component of

N -5,
1

contains an essential annulus. A case-by-case
analysis of how the annulus intersects the bound-
ary tori now shows that each component is
Seifert-fibred. Finally, you observe that the
Seifert structures on each component match
up to give a Seifert-fibred structure for N.
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The Geometrization Conjecture

We are now in a position to state Thurston’s
conjecture.

Conjecture 7 If M is a closed 3-manifold, let
My,..., M, be the manifolds obtained by ap-
plying first the Kneser-Milnor decomposition,
then the JSJ decomposition. Then each M; is
geometric.
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The Easy Pieces

Fortunately, the non-spherical and non-hyperbolic
geometries are well understood.

Theorem 8 Let M be a closed 3-manifold.

1. M has a Sol-structure if and only if M is
finitely covered by the mapping torus of a
hyperbolic torus automorphism.

2. If M is Seifert-fibred then M is modelled
on one of S3, E3, S2 xR, H2 x R, Nil or
SL>(R).

The geometry of a Seifert-fibred manifold is,
as you would expect, determined by x and e.
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The Hard Pieces

T he problematic pieces are the atoroidal ones.
In this case, the conjecture splits into two.

Conjecture 9 (Elliptization) Let M be a closed
3-manifold with w1 (M) finite. Then M has a
spherical structure.

Conjecture 10 (Hyperbolization) Let M be
a compact atoroidal 3-manifold with w1 (M) in-
finite. Then M has a hyperbolic structure.

Elliptization in turn is equivalent to two famous
conjectures, both very poorly understood.

Conjecture 11 (Poincaré) Every closed sim-
ply connected 3-manifold is homeomorphic to
S3.

Conjecture 12 (Smale) Every finite group ac-
tion on S3 by diffeomorphisms is conjugate to
an action by isometries.

17



Much more progress has been made with hy-
perbolization. A 3-manifold is Haken if it con-
tains an incompressible surface.

Theorem 13 (Thurston) Every atoroidal Haken
3-manifold is geometric.

Conjecturally (the Waldhausen conjecture), ev-
ery 3-manifold is finitely covered by a Haken 3-
manifold. The Waldhausen conjecture is one
of the few big conjectures in 3-manifolds not
implied by geometrization.
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