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Elementary splittings of groups

Definition 1 Let A, B,C be groups and «
C — A B . C — B injective homomorphisms.
The amalgamated free product of A and B
over a and (3 is the direct limit of this diagram
of groups. We abuse notation and denote this

A*CB.

Definition 2 Now suppose A = B. Consider
{A;]i € Z} a collection of copies of A, {C}|j € Z}
a collection of copies of C', and homomor-
phisms «; : C; — A; coinciding with o, (B; :
C; — A;4q coinciding with 3. Let H be the
direct limit of this system, and v : H — H the
shift automorphism mapping G; — Gz‘—l—l- The
semidirect product H % Z is called the HNN-
extension of A over o« and (3, and abusively
denoted

A*C.



A more concrete picture of these construc-
tions is given by their presentations. Let A =
(G|R),B = (H|S). Then it is easy to write
down a presentation for A x~ B, namely

(G,H|R, S, {a(c)B(c™1)|c e C}).

Ax~ B is the freest group into which A, B inject
and the images of C are identified.

In the case where A = B = (G|R), the HNN-
extension Axo has presentation

(G, t|R, {ta(c)t™18(cDc e C}).

Axq~ is the freest group into which G injects
and the isomorphism between the images of C
IS realized as conjugation by an element. The
element t is known as the stable letter.



Example 3 The (non-abelian) free group of
rank 2, F', can be decomposed in either way. It
can be written as the amalgamated free prod-
uct of two copies of Z over the trivial group:

F=7Zx1 7 = 17Zx /4.

It is also the HNN-extension of 7 over the triv-
ial group:

FZZ*l.

Example 4 Free abelian groups only decom-
pose in one way, hamely as an HNN-extension
of a codimension-one subgroup by itself:

Zh=7""1 %, 1.

The homomorphisms o, : Z"~1 — 7zn=1 are
both taken to be the identity.

By the end of this talk we will see many more
less trivial examples.



The topological perspective

Van Kampen’s theorem provides the connec-
tion between these decompositions and topo-
logical decomposition.

Theorem 5 (Van Kampen) Let X,Y, Z be path-
connected topological spaces and o« : Z — X,

B . 4Z —Y mq-injective continuous maps. Then
the fundamental group of the double mapping
cylinder of o, B8 is canonically isomorphic to the
amalgamated free product

If X =Y then the fundamental group of the
mapping torus of ao B3~ is canonically isomor-
phic to the HNN-extension



This gives many more examples of elementary
splittings. The easiest are for surface groups.

Example 6 The fundamental group of a sur-
face has many elementary splittings, which can
be seen by cutting along simple closed curves.
(If the surface has boundary, the curves shouldn’t
be boundary-parallel.)

If the curve is separating, the result is an amal-
gamated free product. If the curve is non-
separating, the result is an HNN-extension.



Reduced words

The main technical tool for dealing with ele-
mentary splittings is the notion of a reduced
word. Consider G = A xo B. A word in the
elements of A and B is reduced if it is of the
form

ai1bias...anbn

where a; € A,b; € B, and moreover a; ¢ C for
i>1and b; ¢ C for i < n.

Theorem 7 Every element of G = Axo B can
be represented as a reduced word. Moreover,
the number n is unique.



Here is a sketch of the proof

Choose sets of coset representatives for A/C
and B/C'. Let X be the set of reduced words of
the form caibias...anby, where c € C' and ay, b;
are chosen coset representatives. Then G acts
on X by left-multiplication, and the resultant
map G — X defined by

g—g.e

provides a left-inverse to the natural map X —
G, this gives the surjectivity of X — G and the
uniqueness of the decomposition.

For the HNN-extension G = Axs a reduced
word is of the form

aptlay...a,_1t"an

where ¢; = =1, furthermore, if ¢, = —¢;4.1 then
a; ¢ C. A similar theorem holds.



Graphs of groups

Definition 8 Let I be an oriented connected
finite graph. For each vertex v let G, be a
group. For each edge e let G be a group, and
let

Ot Ge — Gy(oy

and
0, b1 Ge — Gy

be injective homomorphisms. The data
(r,G,ott 071

defines a graph of groups. We often abusively
denote it just by I.

Example 9 The simplest non-trivial examples
occur when [ has just one edge. There are
two cases: [ has one vertex, and [ has two
vertices.



Example 10 Let T' be an oriented graph on
which a group G acts simplicially and cocom-
pactly, without edge inversions. Let I be the
quotient topological space, an oriented finite
graph. For each vertex v of T choose a lift v €
T, set Gy, = Stabg(v). This choice is well de-
fined up to isomorphism, because Stabg(g9.v) =
gStab(d)g~ 1.

For each edge e of ', choose a lift e in T'; set

Ge = Stabg(e),; again, this is well defined up

to isomorphism. Moreover, the inclusions
Stabg(é) — Stabg(t(€)), Stabg(s(€))

induce injective homomorphisms

Ge = Gi(e)s Gs(e)

which are well defined up to conjugation by an
element of the vertex group, these are taken
to define 81,81, respectively.

The resultant graph of groups I is called the
quotient graph of groups; write ' =T/G.
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The fundamental group

Let I be a graph of groups. Consider the group
F(I") generated by the vertex groups {Gy}, and
the set of edges {e} of I, subject to the fol-
lowing relations: if e is an edge and g € Ge
then

e M (et = 0,1 (g).
Let ¢ be a path in [, combinatorially repre-
sented by the string

€
et ...epl.

A word of type c is an element of F'(I") of the
form

€
goe1' 91 - - - gn—1€'9n

where ¢, = x£1 and, furthermore, if ¢, = +1
then g, € Gt(e) and if ¢, = —1 then g; € Gs(e)'

Fix a vertex vg. Then w1 (", vg) is the subgroup
of F(I') consisting of words whose type is a
loop based at vg.
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Graphs of groups generalize elementary split-
tings.

Example 11 Let " be a graph of groups with
one edge and two vertices; let A, B be the ver-
tex groups and C the edge group. Then

7T1(|_) = A*C B.

The isomorphism is given by forgetting the
edge elements.

Example 12 Let [ be a graph of groups with
one edge and one vertex; let A be the vertex
group and C the edge group. Then

m1(M) = A x¢o .

The isomorphism is given by mapping the edge
element to the stable letter of the HNN-extension.
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An alternative description

It will be useful to be able to think about the
fundamental group in a second way. Fix © a
maximal tree of I'; let E be the set of edges
in T — ®. Then the fundamental group of I
relative to ©, denoted w1(IM,®), is the group
generated by the vertex groups {Gy} and the
edges in E, with the following additional rela-
tions: if e€ E and g € G then

e M (et = 0,1 (g).

Note that there is a natural map F/(I') — w1 (I, ®)
given by mapping edges in © to the identity.

Lemma 13 Let [T be a graph of groups, let
vo be a vertex, and let © be a maximal tree.
Then the induced map

1 (M, v0) — m1 (I, ©).

IS an isomorphism.
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Dévissage

The first aim is to prove a reduced word theo-
rem for graphs of groups. Here is a very useful
technical lemmas.

Lemma 14 Let ' be a graph of groups, and
let " a subgraph. Let A be the graph of
groups defined by contracting '’ to a single
vertex v and setting G, = w1(I'"). Then the
natural map

iIs an isomorphism.

Using dévissage allows results about graphs of
groups to be proved by induction.
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Reduced words in graphs of groups

A word of type ¢ as above, of the form

90€1491 - - - Gn—1€57"gn,
is reduced if the following two conditions hold:

e if n =0 then gg # 1;

e if n > 0, whenever e¢; = ¢;41 and ¢ =
—€i1: 9i & 96'(Ge).

Note that this notion of being reduced coin-
cides with the notions of being reduced in the
one-edge cases. Note also that every element
of m1(I") can be represented by a reduced word.

Theorem 15 Consider a reduced word w in
F(I") of type ¢, where c is a path. Then w is
not the identity.
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Sketch of proof: The theorem follows from
the observations that the inclusion map

F('" — F(N)
and the dévissage map

preserve the property of being reduced.

We already know the special case of amalga-
mated free products; dévissage upgrades this
to trees of groups, by induction.

We also already know the special case of HNN-
extensions; dévissage upgrades this to roses of
groups, by induction.

Using dévissage to contract a maximal tree in
an arbitrary graph of groups gives a rose of
groups; the theorem follows.
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Developing graphs of groups

Theorem 16 Let [ be a graph of groups, let
© be a maximal tree, and set G = w1(I,O).
Then there exists a tree T on which G acts
without edge inversions, and

r=7T/G.

It's not hard to see what the vertices and edges
of this tree must be. Let q : T' — I be the
quotient map, and suppose x is a vertex or an
edge of T'. Then

Stabg(Z) = qu(;z)g_l
for some g € G, by construction. Therefore
take as vertices the set

| |GG

of left-cosets of vertex groups. Likewise take
as edges the set

| |Ge\G

of left-cosets of edge groups.
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The graph T' is defined by attaching the edges
to the vertices according to the following for-
mulae:

t(gGe) = gth(e)

and

s(9Ge) = gG(e)-

We are thinking of G as the fundamental group
relative to a maximal tree ©; in particular, the
element e is the identity if e lies in ©.

There is an obvious map 17" — [ given by

gGy — x

for x a vertex or an edge. This descends to an
isomorphism of graphs; the edge groups and
vertex groups are isomorphic, and the 9-maps
are equivalent up to conjugation by an element
of a vertex group. It remains to see that T'is
a tree.
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First we show T' is connected. For every edge e
in ©, there is an edge in T" joining the vertices
Gye) and Gy, therefore © lifts to T', and for
any pair of vertices u,v of I', Gy, and G, are
joined in T

Consider a vertex of the form ¢gG, of T, for
g € Gy. Since Gy is joined to Gy, it follows that
gGy is joined to gGy = Gy,.

Now consider a vertex of the form eG, for e
an edge. Then eGy is joined to eGy ) = t(Ge),
and so to Gg(,).

But the elements of the vertex groups and the

edges generate w1 (I, ®); applying this argu-
ment inductively gives the connectedness of T'.
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We now show that 71" is simply-connected. Con-
sider a path in T, beginning at Gy,. It first
crosses an edge goGe; (for some gg € Gy,
s(e1) = vg) to goeellel where v{ = t(eq1). Re-
peating this process inductively gives a repre-
sentation of the final vertex of the loop as the
coset

goe1r g1 - - - €7'Guy,.
The loop backtracks if and only if, for some ¢,

goe1t g1 - - - €;'Guv; = goeitgi - - 6?97;67;+1Gv2-+1-
This only happens if ¢, = e;41, ¢ = —€;41,
and g; € 9¢!Ge;. In other words, backtracking
occurs if and only if the word is not reduced.

Now the claim that the path is a loop is equiv-
alent to asserting that

€n —

goe g1 ... e = gn € Gy
or equivalently

goeellgl . e%”ggl = 1.
But this is a reduced word, so that can’t hap-
pen.
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Application: SLy(Z) =7/4 *7,/2 7,]6

Recall that Isom(H?2) & PSL,>(R), so SLy(Z)
acts on H? in a natural way, with kernel {£1}.
G = PSL»(Z) is generated by

z—z+1

and
—1
Z = —
zZ
and a fundamental domain for the action is

given by

1
Uzl 2 1, |Rez| = S}

The translates of the segment [z’,e%] form a
tree, on which G acts without edge inversions.
It is easy to check that Stabg(7) is generated
by z — _71 and is of order 2, while StabG(e%)
is generated by z — 1 — 1 and is of order 3.

This action on the tree gives a decomposition
of G as Z/2x%/3, and of SLy(Z) as Z/4xz,51/6.
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