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1 Introduction to model theory over groups

1.1

Basic logical notions

We begin with first order theory over groups. The first order theory over a group
is composed of well formed sentences in the language of groups:

Variables, such as z, y, z, a, b, ¢, or finite tuples of variables: x = (z1,...,x,)
Concatenation of variables representing multiplication: xy

Quantifiers: V, 3

Logical operations: A and V

Parentheses, equals, doesn’t equal: ( and ), =, and #.

And if sentences are to be interpreted over a fixed group G, elements of the
group: g € G. If no such terms appear then the sentence is coefficient free.

Since every group has an identity element, we reserve the symbol 1’ to
indicate it.

For example, the following are sentences in the language of groups:

Va,yle,y =1
Fz(w(z) =1)V (v(z) # 1)



and in general

dzy Ve, dug - (Bi(zy) = 1A U(z;) #1) V- -
Definition 1.1 (Definable sets). If a variable x is not bound to a quantifier then it
is free. Let Q) be a sentence, G the group @ is in the language of, and let p be the

tuple of free variables appearing in (). Then the definable set associated to () is
the set of values in G'?I such that Q(p) is true.

The following are examples of formulae with free variables which give defin-
able sets:

Qp) =3z, y(p = [z, 9])
Q(p) = Ty, ..., 2a(p = [21, 2] [T3,24])) A (YY1, y2(p # [Y1, ¥2]))
The previous formulae are coefficient-free.

Our goal in this course is to say something about the geometric structure of
definable sets.

1.2 Basic definable sets

Basic sets are varieties, and correspond to solutions to systems of equations, e.g.,

Qp) = (E(pa) =1)
Where the tuple a is a collection of constants from G.

Over an algebraically closed field k, we have the following theorem due to
Tarski and Seidenberg(sp?):

Theorem 1.1 (Tarski—Seidenberg[?]). Definable sets over k are in the boolean
algebra of basic sets.

Theorem 1.1 is not true in general.

Let € be a collection of words in the variables x and their inverses. Then,
tautologically, there is a one-to-one correspondence between solutions to €2 and
homomorphisms from F'(z)/((2)).

Let p;,p2 be elements of 7 (X,), the orientable surface of genus g. Now
consider the definable set determined by

Q(p1,p2) = w1 -+, w29(p1 = wi(2))A(P2 = wal@))A([w1, T2] - - - [T2g—1, T2g) = 1)

Then Q)(p1, p2) is likely not in the boolean algebra of basic sets if w; and wy
are sufficiently complicated, and the Zariski closure of ) is Hom(X,, F').

2



1.3 Aims of the course

1. Properties of definable sets and their families.

Remark on model theory: Model theorists: totally abstract, how to abstract
notions of logic correspond to concrete objects.

Model theory: Theory, in “nature” .... study models like those of free
groups. Then perhaps other objects have the same theories, e.g. F — - - -

2. Are certain sets definable or not? Example:

Gen(Fk) - {(fla 7fk)‘<f17 7f/€> :]Fk}

The Aut(Fy) orbit of a standard basis.

Question [Malcev] Is Gen(IF) definable? If k£ = 2 then the answer is yes.
f1 and f generate if and only if [fi, fo] = [a,b]. If & > 2 then the answer
is no, by work of Bestvina and Feighn[?].

Produce properties of definable sets that Gen([F;.) doesn’t have.
Question [Bestvina—Feighn]: What subgroups of F' are definable? (f.g.?)

Question 1 (Open question). Is there an infinite field in the first order theory of
the free group? A hyperbolic group?

K afield < D a definable set

and two functions

fi: D x D — D representing addition
fi: D x D — D representing multiplication

such that f; and f5 are definable. Recall that a function is definable if its graph
is definable.

1.4 Structure theory for varieties

Basic Sets
hY
Vs



> — Gg

Tautology: Vs <— Hom(Gy, F)

Stallings’ Example ("60s)

Theory for arbitrary system of equations. Interested in sequences of homo-
morphisms {h;: Gy — F'}. A sequence is convergent, or stable, if

Vg € Gy, Ing(Vn > nyh,(g) = 1) V (Vn > nyh,(g) # 1)

The stable kernel of a stable sequence of homomorphisms is the normal clo-
sure of all elements which are eventually trivial:

Ker(h) = Ko = {g € Gx|hna(g) is eventually trivial }

The quotient G/ K, is a limit group, as are all groups constructed in this
manner.
Examples:

o [F
o 7"
e A double of a free group along a primitive element.

e Non-exceptional surface groups.

2 Lecture 2: Limit groups

2.1 Basic properties of limit groups

Letn: G — L = G/K be a limit group quotient of a finitely generated group
G. The following exercises follow directly from the definitions.

1. L is finitely generated.
2. Every finitely generated subgroup of L is a limit group.
3. L is torsion-free.

4. Any pair of non-commuting elements of . generates a free subgroup.



5.fz,y,z € L~ 1and [z,y] = [y,2] = 1 then [z, z] = 1. This property is
called commutative transitivity.

6. If A C L is a maximal abelian subgroup of L then A is malnormal. That is,
L is conjugacy-separated abelian or CSA.

Other properties of limit groups are rather harder to prove.
7. L is finitely presented [SelO1, GuiO4].

The idea behind this is as follows. Replacing L with a factor of its Grushko
decomposition, we may assume that L is freely indecomposable. Any limit group
has a (stable, very small) action on a real tree, and it follows by Rips theory
that the (cyclic) JSJ decomposition of L is non-trivial, unless L is abelian or a
surface group. We can therefore replace L with an arbitrary rigid vertex of the JSJ
decomposition, and repeat. It is a theorem that this iterative process terminates.

8. L is hyperbolic relative to its maximal abelian subgroups [Ali05, Dah03].
9. Lis CAT(0) with isolated flats [ABO6].
10. L is LERF [Wil].

2.2  Why do limit groups help us understand basic sets?

Remark 2.1. There is a partial order on the collection of limit quotients of a group

G: G XA L: Ly > L, if the quotient maps n;: G — Ly and 15: G — Ly can be
completed to a commutative diagram with 7: L; — Lo:

Ly
V iHT
G2~ L,
There are finitely many maximal elements with respect to this partial order.

Theorem 2.1 ([Sel01], Lemma 5.5). Let G be a finitely generated group. There
is a finite collection of maximal limit group quotients

For every homomorphism h: G — F there exists some i and some vy: L; — F
such that h = v, on;.



We can define the Zariski topology on a variety V' = Hom(G, F’), analogously
to the definition in conventional algebraic geometry.

Definition 2.1. An irreducible subvariety of V' is the image of the map
¢: Hom(L,F) -V

induced by any limit group quotient g: G — L. The closed sets of the Zariski
topology on V' are finite unions of irreducible subvarieties of V.

In this context, Theorem 2.1 can be thought of as decomposing the variety into
finitely many irreducible pieces:

Hom(G, F) = Unf Hom(L;, F).

It follows from Guba’s Theorem that this really is a topology.

In the light of Theorem 2.1, it suffices to understand Hom(L, F') where L is a
limit group. In this context, Theorem 2.1 gives no information as there is a unique
maximal limit group quotient, namely the identity homomorphism L — L.

By Grushko’s Theorem, we may assume that L is freely indecomposable. The
next step is to consider the (cyclic) JSJ decomposition of L. The edge groups
are cyclic. Some of the vertex groups are surface groups with edge groups glued
to their boundary components (these vertices are sometimes called quadratically
hanging), some vertices are abelian and the remainder are called rigid.

Associated to JSJ(L) we have a subgroup of Aut(L), denoted Mod(L) and
generated by:

(i) Dehn twists in the edge groups of JSJ(L);

(ii) modular automorphisms of quadratically hanging vertices of JSJ(L) that
fix the incident edge groups up to conjugacy;

(iii) linear automorphisms of abelian vertices of JSJ(L) that fix the incident
edge groups.

(iv) Inner automorphisms.

As JSJ(L) is never trivial, it follows that Mod(L) is never trivial. The aim
now is to understand elements of Hom(L, F'), up to the action of Mod(L).



Theorem 2.2 ([SelO1], Proposition 5.6). Let L be a freely indecomposable limit
group. There is a finite collection of limit group quotients

such that, for every homomorphism h: L — F there exists some j, some ¢ &€
Mod(L) and some vy,: M; — F such that h = v}, o, o ¢.

We can iterate this procedure to construct a tree of limit group quotients such
that every homomorphism to F' factors through some branch of the tree. By
Guba’s Theorem and Koenig’s lemma, this tree is finite and each leaf can be taken
to be a free quotient. The tree is called a Makanin—Razborov Diagram, or MR
diagram. A branch of the MR diagram is a resolution.

3 Lecture 3: Equations with parameters

Example 3.1 (One variable systems of equations). Consider the following one
variable system of equations:

Y ={w(z) =a¥ec, - atle, =1}

The ¢;’s lie in the coefficient group £}, and the group Gy, is given by the presenta-
tion
GZ = <F ks L ‘ w>

Solutions to ¥ correspond to homomorphisms Gy — F}, whose restrictions to
the subgroup F}, are the identity. If G’ is not free of rank k + 1 there are finitely
many sporadic solutions hy, ..., hs: Gy, — F}, and finite collection of limit group
quotients

ni: G — Fio*0y ((A) © (t))

through which every solution to X factors. The variable  can be solved for as
a;t3; and one quickly sees that all non-sporadic solutions are of the form a; \'3;.

Let

wl(xla"'7xn7p17"'apm) =1

wl(xla"'>wn>p17"'7pm) =1



be a system of equations with parameters. Define Gy, and V5, as before. What is
Vs for a fixed value of p? Pictorially, we represent Vs as a bundle whose base
space is the set of parameters {B}’ and for each fixed value P, of p,a fiber VE@%),
where

VE(LQO) ={f: Gy — F| f@) = BO}

For each specialization of the parameters p there is a Makanin-Razborov diagram
encoding all solutions to . which map p to the given specialization. To understand
solutions to ¥ we need to see how the MR diagram changes for different values of
p. For this we introduce the relative MR diagram. Before we do this, the relative
JSJ—decomposition and the relative modular group need to be introduced.

Let L(z, p) be a limit group with parameter subgroup p. The relative JSJ de-
composition is the JSJ-decomposition associated to the family of all abelian split-
tings of L in which the subgroup generated by the variables of p act elliptically.
The relative modular group, Mod(L; p) is the group of modular automorphisms of
L generated by all Dehn twists in one-edged splittings visible in the relative JSJ
decomposition.

To a limit group L without parameters, a finite collection of maximal short-
ening quotients was constructed. This collection had the property that every ho-
momorphism L. — [F factored through an element of the collection, possibly after
precomposition with a modular automorphism of L. In the relative case, we pro-
ceed as in the unrestricted case, constructing a set of maximal shortening quotients
M; of L such that every homomorphism L — [ factors through some M, possi-
bly after precomposition with an element of Mod(L, p). Since the modular group
used is not the full modular group, it is no longer possible to guarantee that the
M; are proper quotients of L. Such difficulties fall into two types:

e JSJ(L,p) is trivial
e JSJ(L,p) is nontrivial

Relative limit groups falling into the first class are called rigid, and those falling
into the second are called solid.

We handle the second case first. Let Rgd(x,p) be a rigid limit group. Then
there exist finitely many flexible quotients Flx(x,p), ..., Flz,(z,p) such that
for all homomorphisms f: Rgd(x,p) — F, where p is mapped to some fixed
value of the parameter p, f either factors through some 7;: Rgd(z,p) — Flx(z,p)
or f is one of finitely many sporadic solutions. The number of sporadic solutions
doesn’t depend on the value of the parameter p. Moreover, the flexible quotients



have nontrivial relative modular groups. If there are no flexible quotients, then for
all values of p the number of sporadic solutions is bounded independently of p,
and the fiber Vy,p ) is a finite collection of points.

ipicture;,

Sets of solutions given by solid limit groups can be given a similar description.
As before, there are finitely many flexible quotients 7;: Sld(z,p) — Flx(z,p)
and finitely many families of sporadic solutions, i.e., every f: Sld(z,p) — T ei-
ther factors through some 7; after precomposition by an element of Mod(Sid(z, p); p)
or is contained in one of the sporadic families of solutions. Family must be de-
fined carefully, as can be seen in the example (x, z9;p = |21, 22]).... As before,
the flexible quotients have nontrivial relative JSJ decompositions.

jpicture;,

With solid, rigid, and flexible limit groups and the above facts, the relative
MR diagram can be constructed exactly as in the unrestricted case, bearing in
mind that at each solid or rigid limit group appearing in the diagram, there are
uniformly finitely many (families of) sporadic homomorphisms.

jpicture;,

One variable example...

4 Lecture 4: Merzlyakov’s Theorem

4.1 Aside: the structure of definable sets

Relative Makanin—Razborov diagrams define a stratification of the set of param-
eters. A stratum is a set of parameters for which the relative Makanin—Razborov
diagram looks the same. To be precise, parameters p , and p, are equivalent if Make all this

precise.

1. the number of exceptional solutions is the same;
2. the same resolutions exist; and
3. the same degenerations exist.

There are only finitely many strata. Why?
Given a predicate ()(p), there is a finite number of bundles such that the set sundes are va-

defined by Q(p) is a finite union of strata in these bundles. Each stratum is in the retes?

Boolean algebra of AE-sets, so it follows that Q(p) is also in the Boolean algebra

of AE-sets. -



4.2 1-quantifier sets
A universal sentence is of the form
dzEi(x) =1AT,(z) #1

Makanin [Mak84] proved that the universal theory—the set of sentences with only
one quantifie—of a free group is decidable. A universal set is defined by a pred-
icate of the form

Qp) ={Fz | Zi(z,p) = 1AV (z,p) # 1}.

Likewise, a positive sentence is one with no inequalities. Makanin also showed
that the positive theory is decidable, by reducing it to the universal theory.

4.3 AE sentences
An AE sentence is of the form
VyIdaz Xz, y) = 1AV(x,y) # 1.
To start with, we will restrict ourselves to the positive case:
VydazXi(z,y) = 1.

Merzlyakov’s theorem is a sort of implicit function theorem that provides a proof
that a given positive AE sentence is true. The truth of such a positive sentence
can be rephrased in terms of the following extension problem. Let Gy, = (x,y |
Yi(z,y)) and let v be the natural map F'(y) — Gyx. For every homomorphism

h: F(y) — Fy there exists h: Gy — Fysuchthat h = hov.
G
F (g) R k
Such a sentence certainly exists if there exists a retraction ) : Gy, — F(y) (by a

retraction we mean a left inverse to ). Merzlyakov’s theorem asserts that this is
always the case.

Theorem 4.1 (Merzlyakov, *66). If the sentence
Vy3IdaYi(z,y) =1

is true then there exists 1) : Gx. — F(y) such that ) o v is the identity on F(y).
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The theorem only holds for positive sentences. Consider the case with inequa-
tions:
Vyda Sz, y) =1AV(z,y) # 1.

We can consider the ¥; to be elements of G's,. The formal solution 7 fails to verify
the sentence for the set of homomorphisms 4 such that h o (¥;) = 1 for some k.
Writing n(z) = z(y), this set of unverified homomorphisms corresponds to
the union of the varieties Vp, = {y | ®x(y) = 1} where ®1(y) = Wr(z(y), ).
Therefore we now need to verify the sentence a -

Vye Ve, Iz Ei(z,y) =1NV;(z,y) # 1.

So the question becomes ‘Does Merzlyakov’s theorem hold when y is restricted
to some variety?’

Example 4.1. Consider a limit group defined as the amalgam of two rigid vertices
that surjects a surface group X, and thence the free group Fj:

L:Ul >I<<w> U2—>Zk—>Fk.

LetU; = (y.) and let ¥y = (z | [[;[22): 22j+1]). The homomorphism L — % can
be pre-composed with a Dehn twist in w. One therefore has the sentence

Vy3Itz(tw =1)A(z=2z(y, tyt ")) A([]lzes 225501) = 1.

J

There is no implicit relation between the values of . in L and their values in ;.

5 Lecture 5: Completions

5.1 Examples

Example 4.1 shows that one cannot expect a naive version of Merzlyakov’s The-
orem to hold. To state a version that does hold, we need to use the notion of a
completion of a resolution. Rather than give a general definition here, we will
give some examples that cover the main cases.

Example 5.1. Let L = V; %, V2 where V; and V; are rigid. Consider a resolution
L5 F,
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and assume for simplicity that some 7(w) has no proper roots in F). Then the
associated completion is defined to be

M = F *(r(w)) ((T(w)) X (t))

There is a natural map L — M defined by V; — 7(V;) and Vo — t7(Vo)t L. Itis
an easy exercise that L injects into M.

Example 5.2. Let L =V * ) X *(u,) V2 Where V; and V5 are rigid and X is the
fundamental group of a surface with boundary. Consider a resolution

L5 F,.

The associated completion M is constructed by amalgamating F}, with > along
(T(wy)) and (7(ws)). Again, L injects into M.

For a general resolution
Li—Ly—...—L,— F}
one constructs the completion for L, inductively from the completion for L.

Remark 5.1. There is a subtlety relating to abelian vertices, as Merzlyakov’s
Theorem does not hold for abelian groups.

Definition 5.1. A limit group obtained as the completion of resolution is called
an (w-residually free) tower.

5.2 The Generalized Merzlyakov’s Theorem

Using completions one can state a generalized version of Merzlyakov’s Theorem.
Again, we start by considering positive sentences, of the form

VyeVedaXi(z,y) =1

for Vo = {y | Pr(y) = 1} a variety.

Just as Before,;ve can rephrase the sentence in terms of an extension problem.
As usual we can write Vo = Hom(Go,F) for Go = (y | ®(y) ). Consider
the set of resolutions in the Makanin-Razborov diagram for G, and let { M} be
the (finite) set of completions of all these resolutions. So there is a collection of
maps {v : G — M} such that every homomorphism G — F factors through

12



some v. Consider the set of all h € Vg that factor through some fixed v—that
is, those h for which there exists h € Hom(M,F) such that h = h o v. Let
Gy =(z,y | Zi(z,y), Pr(y) ). We have the diagram

Gy
2 X
Go —>M-">F
where )\ is the natural map G — Gx. Once again, the truth of the sentence
is equivalent to the assertion that for every h there exists / making the diagram

commute.

In particular, the extension h certainly always exists if there happens to exist
a homomorphism 7 : Gy, — M making the diagram commute. The Generalized
Merzlyakov’s Theorem asserts that such an 7 always exists when the sentence is

true.

Theorem 5.1 (Generalized Merzlyakov’s Theorem). If the sentence
VyeVe Iz Xi(z,y) =1

is true then there exists a homomorphism n : Gy, — M, such that the diagram

Gy
e
n
ch L> M
commutes.

Remark 5.2. Some points should be emphasized.

1. The statement of the theorem is not quite accurate. Because of the difficulty
with abelian groups, one really needs to use the closure of the completion.

2. As before, we think of 7 as a ‘formal solution’.
3. Note that 7 is not a retraction, in general.

4. The map 7 is in general not unique. However, one can describe the set of
all n’s, using a Makanin—Razborov diagram.

Let us now consider a general AE-sentence with inequalities, of the form

VyeVedz (Bi(z,y) =1) A (Y(z,y) #1).

13
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We can take the completion M to have a presentation of the form

M=y, z|®y), =iz 2)).

The formal solution provided by the Generalized Merzlyakov’s Theorem verifies
the truth of the sentence except for on those h for which s o n(¥;) = 1 (thinking

of the words W, as elements of Gy) for some factorization h = h o v. Writing
n(z) = z(y, z), the unverified set corresponds to

D={yeVe|IzV(z(y 2)y) =1}
It therefore remains to verify the sentence
Vye D3Iz (Xi(z,y) =AY zy) #1)

where D is a Diophantine set.

5.3 Diophantine sets

Recall that a variety is a set of the form
Vo ={yeF"| ®(y) =1}
A Diophantine set is of the form
Dy ={yeVe|3I2z%(yz) =1}

Let Go = (y | P(y) ) asusual, and let Gy, = (y,z | P(y),%(y,z) ). There is a
natural map G — Gy, and Dy, is precisely the set of homomorphisms G — F
that factor through G4 — Gfy.

In contrast to the case of varieties, there is in general no descending chain
condition for Diophantine sets.

Example 5.3. Consider an infinite chain of strict inclusions of the free group of
rank 2 into itself:

L1 Lo L3 ln—1 L
) e )

The composition of inclusions ¢, o ... 0 ¢y : Fy — F5 defines a strictly decreas-
ing sequence of Diophantine sets. This sequence clearly does not terminate after
finitely many steps.
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Moreover, the intersection of a sequence of Diophantine sets may not be itself
a Diophantine set. The problem seems to be that there is no systematic measure
of complexity for a Diophantine set.

Of course, we are not interested in general sequences of Diophantine sets—we
are interested in sequences of the form

Tower — Quotient — Tower — Quotient — - - -

Again, there is in general no descending chain condition. It follows that we cannot
naively apply the Generalized Merzlyakov Theorem iteratively, and hope to verify
the truth of a sentence in finitely many steps.

5.4 The anvil

The anvil is the tool that one uses to overcome the problem that there is no de-
scending chain condition for Diophantine sets. In general one has the set-up

LS M— N

where L is a limit group, M is a tower and N is the quotient M /{{¥)), where the
quotient is taken in the category of limit groups. We would like to know that the
image of L in N is strictly simpler than L. However, in general the relation W can
involve all the generators of M.

The anvil provides a way of keeping the relations in an ‘envelope’ of the image
L. The idea is to resolve the top level of the completion M before resolving the
lower levels.

To this end, consider the JSJ decomposition of L, with rigid vertices V7, ..., V..
Treat the images v(V}), ... v(V}.) as parameter subgroups in M and consider a res-
olution

M—>M1—>M2—>...—>Mt

in the Makanin—Razborov diagram for M relative to the subgroups v(V;), ... v(V,.).

The following lemma is the crucial technical point that makes the anvil work.
Lemma 5.1. The map L. — M, is not injective.

Proof. Suppose the map is injective. As L is not free, M; must be solid (or rigid).
Every splitting of M, induces a splitting of L, so the rigid vertices Vi, ..., V,, em-
bed into the rigid vertices of the JSJ decomposition of ;. Therefore the relative
JSJ decomposition of M, is equal to the full JSJ decomposition:

JSJT(M,) = JST(My; Va,..., Vy).
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But then the relative modular group of M; is equal to the full modular group of
M. So M, cannot be solid (or rigid). ]

This enables us to define the anvil.

Definition 5.2. Let L; be the image of L in M;. Let P be the completion of the
(relative) resolution of M chosen above. Let () be the completion of a resolution
of L;. Then L; embeds in P and in (). The anvil is defined as the amalgamation  How wrong is

this?

%:P*LtQ.

One then defines the induced resolution of L. Roughly speaking, the resolu-
tion begins as
L—1L{—Ly— ... — L,

where L; is the image of L in M;. The resolution then continues with the chosen
resolution of Lt: How wrong is

this?

L—1Ly—Ly—...—>Li— Ly — ... Fj
Let R be the completion of the induced resolution of L.
Lemma 5.2. The natural map L. — <f extends to an embedding Is this right?

R — .

The image of R is the ‘envelope’ of L in <7, within which the relation V¥ is
confined. In this context, there is a descending chain condition.
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