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0 Introduction

Topology is often loosely defined as ‘rubber-band geometry’. Perhaps a more
rigorous definition is that topology is the study of continuous maps.

Here is a question that the mathematical tools we’ve seen so far in the
tripos aren’t particularly good at answering.

Figure 1: The Hopf link on the left and the 2-component unlink on the right.

Question 0.1. Is the Hopf link really linked? More precisely, is there a
homeomorphism of R3 that takes the Hopf link H to the two-component unlink
U?

How can we think about attacking a qualitative question like this? We can
phrase it as an extension problem. The Hopf link is a particular embeddding
η ∶ S1 ⊔S1 ↪ R3, and the unknot is another embedding υ ∶ S1 ⊔S1 ↪ R3. It’s
easy to see that the unlink extends to a continuous map of two closed discs
D2 ⊔D2 into R3, where we identify S1 with the boundary ∂D2.
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S1 ⊔ S1 R3

D2 ⊔D2

υ

So we can ask a more specific question.

Question 0.2. Does the Hopf link η ∶ S1 ⊔ S1 → R3 extend to a map of
D2 ⊔D2 into R3?

This poses knottedness as an extension problem. Here’s another extension
problem that seems difficult, but is even easier to state. Let

Sn−1 ∶= {x = (x1, . . . , xn) ∈ Rn ∣∑
i

x2
i = 1}

be the (n− 1)-sphere, which is naturally the boundary of the n-ball (or disc)
Dn.

Question 0.3. Does the identity map id ∶ Sn−1 → Sn−1 extend to a continuous
map Dn → Sn−1?

Sn−1 Sn−1

Dn

id

When n = 1, this is answered by the Intermediate Value Theorem! When
n = 2, you may have seen questions like this answered using winding number.
In general, this kind of problem seems difficult to answer, because the set of
continuous maps Dn → Sn−1 is very complicated.

A similar question in algebra, on the other hand, seems very easy.

Question 0.4. Does the identity map id ∶ Z → Z factor through the trivial
group?

Z Z

0

id

The goal of this course is to develop tools to translate difficult problems
like Questions 0.2 and 0.3 into easy problems like Question 0.4.
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1 The fundamental group

As mentioned above, winding number is the first really interesting instance
of a tool to solve this kind of problem. But what does winding number really
mean? We’ll start to develop some definitions to make sense of it. The most
important definition in this section will be the fundamental group, which we
will get to after some preliminaries.

1.1 Deforming maps and spaces

To study ‘rubber geometry’, we need to be able to continuously deform
spaces, and also maps. How do we make sense of this? We’re going to
use the closed interval [0,1] so often that we will write I ∶= [0,1].

Definition 1.1. Let f0, f1 ∶X → Y be (continuous) maps between topological
spaces. A homotopy between f0 and f1 is a continuous map

F ∶X × I → Y

with F (x,0) = f0(x) an F (x,1) = f1(x) for all x ∈ X. We often write
ft(x) ∶= F (x, t). If such an F exists, we say that f0 is homotopic to f1 and
write f0 ≃F f1, or just f0 ≃ f1.

Informally, we think of F as deforming f0 into f1.

Example 1.2. If Y ⊆ R2 is a convex region in the plane, then any pair of maps
f0, f1 ∶X → Y are homotopic, via the straight-line homotopy defined by

F (x, t) = tf0(x) + (1 − t)f1(x)

for all x ∈X and t ∈ I.

Sometimes it will be useful to have a technical strengthening.

Definition 1.3. Suppose that f0 ≃F f1 ∶ X → Y as above. If Z ⊆ X and
F (z, t) = f0(z) = f1(z) for all z ∈ Z and t ∈ I then we say that f0 ≃ f1 relative
to Z.

The notation ≃ strongly suggests that homotopy is an equivalence rela-
tion, and it’s easy to prove that it is.

Lemma 1.4. Let Z ⊆ X,Y be topological spaces. The relation ≃ (relative to
Z) on the set of continuous maps X → Y is an equivalence relation.
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Proof. The map
(x, t)↦ f0(x)

is a homotopy from f0 to itself, so ≃ is reflexive. For symmetry, note that if
F is a homotopy from f0 to f1 then

(x, t)↦ F (x,1 − t)

is a homotopy from f1 to f0.
For transitivity, suppose that f0 ≃F0 f1 and f1 ≃F1 f2 (both relative to Z).

We can get the idea of how to construct a homotopy from f0 to f1 by gluing
together the domains of F0 and F1, then rescaling. Formally, this gives us
the homotopy

F (x, t) =
⎧⎪⎪⎨⎪⎪⎩

F0(x,2t) t ≤ 1/2
F1(x,2t − 1) t ≥ 1/2

gives a well-defined homotopy between f0 and f2 (relative to Z), since F0(x,1) =
f1(x) = F1(x,0).

Having seen how to deform maps, we next need to see how to deform
spaces. Recall that a homeomorphism between two spaces X and Y is a
continuous map f ∶ X → Y with a continuous inverse g ∶ Y → X; that is,
f ○ g = idY and g ○ f = idX . In order to deform spaces, we replace equality by
homotopy in this definition.

Definition 1.5. Let X,Y be topological spaces. A homotopy equivalence
between X and Y is a map f ∶ X → Y with a homotopy inverse g ∶ Y → X;
that is, f ○ g ≃ idY and g ○ f ≃ idX . In this case, we say that X is homotopy
equivalent to Y and write X ≃ Y .

Example 1.6. Let ∗ be the space with one point. Let f ∶ Rn → ∗ be the only
map, and let g ∶ ∗→ Rn send the point to 0. Then f ○g = id∗ and g○f = 0, the
0 map. The straight-line homotopy shows that 0 ≃ Rn, so Rn is homotopy
equivalent to ∗.

The moral is that, unlike homeomorphism, homotopy equivalence is a
violent operation on a space, which destroys a lot of structure. In fact, being
homotopy equivalent to a point is a very common phenomenon in topology,
and has a name.

Definition 1.7. If X ≃ ∗ then we say that X is contractible.
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Here’s another, slightly less trivial, example.

Example 1.8. Let X = S1 and let Y = R2 − 0. Let f ∶ S1 → R2 − 0 be the
natural inclusion and define g ∶ R2 − 0→ S1 by

g(x) = x

∥x∥
for all x. Then g ○ f = idS1 . If we look at the straight-line homotopy

F (x, t)↦ tx + (1 − t) x

∥x∥

between idY and f ○ g in R2, we can see that F (x, t) ≠ 0 for all x ≠ 0 and
t ∈ I. Therefore f ○ g ≃ idY , and so X ≃ Y .

Remark 1.9. The same argument shows that Sn−1 ≃ Rn − 0 for all n ≥ 1.

The homotopy equivalences that we constructed in the two examples had
some special features. They are in fact examples of deformation retractions.

Definition 1.10. Let X,Y be topological spaces and f ∶ X → Y , g ∶ Y → X
continuous maps. If g ○ f = idX then we say that X is a retract of Y , and g
is a retraction. If, in addition, f ○ g ≃ idY relative to f(X) then we say that
X is a deformation retract of Y .

Again, our choice of notation suggests that homotopy equivalence should
be an equivalence relation, and this is true.

Lemma 1.11. Homotopy equivalence is an equivalence relation on topological
spaces.

Proof. Identity maps are homotopy equivalences, so ≃ is reflexive, and sym-
metry is built into the definition. It remains to prove transitivity. Suppose
therefore that X ≃ Y and Y ≃ Z via pairs of homotopy equivalences f, g and
f ′, g′ respectively. We need to prove that f ′ ○ f and g′ ○ g define a pair of
homotopy equivalences between X and Z. Indeed,

(g ○ g′) ○ (f ′ ○ f) = g ○ (g′ ○ f ′) ○ f .

But we know that g′○f ′ ≃ idY via some homotopy F ′, and so the composition
(x, t)↦ g ○ F ′(f(x), t) defines a homotopy

g ○ (g′ ○ f ′) ○ f ≃ g ○ idY ○ f = g ○ f .

Since g ○ f ≃ idX , we have shown that (g ○ g′) ○ (f ′ ○ f) ≃ idX , as required.
Similarly, we see that (f ′ ○ f) ○ (g ○ g′) ≃ idZ which completes the proof.
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1.2 The definition of the fundamental group

Now that we have talked about deforming maps in general, we will focus
specifically on continuous maps from the interval I into a space X. We
think of these as paths.

Definition 1.12. Let X be a space and x0, x1 ∈ X. A path in X is a
continuous map γ ∶ I → X. A path from x0 to x1 is a path γ in X so that
γ(0) = x0 and γ(1) = x1. A loop in X (based at x0) is a path in X from x0

to itself.

Recall that a space X is path-connected if, for every x0, x1 ∈ X, there is
a path from x0 to x1. This is a mild hypothesis on a space, since we can
usually pass to path components. Since I is contractible, any two paths in a
path-connected space are homotopic. To define an interesting theory of de-
formations of paths and loops, we consider homotopies relative to endpoints.

Definition 1.13. Let γ0, γ1 ∶ I →X be paths. A homotopy of paths between
γ0 and γ1 is a homotopy F ∶ I × I → X between γ0 and γ1 relative to {0,1}.
If this exists, we say that γ0 and γ1 are homotopic as paths, but we will often
abuse notation and write γ0 ≃ γ1. We write [γ] for the homotopy class of a
path γ.

We are going to see that we can give a group structure to a set of loops
in a space X. To do this, we define some operations and structures on paths
which are reminiscent of the operations and structures enjoyed by groups.

Definition 1.14. Let X be a space, let x, y, z be points of X and let γ be a
path from x to y and δ a path from y to z.

(i) The concatenation of γ and δ is the path from x to z defined by

(γ ⋅ δ)(t) ∶=
⎧⎪⎪⎨⎪⎪⎩

γ(2t) t ≤ 1/2
δ(2t − 1) t ≥ 1/2

for all t.

(ii) The constant path at x is the path cx in X such that cx(t) = x for all t.

(iii) The inverse of γ is the path from y to x defined by

γ̄(t) = γ(1 − t)

for all t.
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We can now state the existence of the group that we have been referring
to.

Theorem 1.15. Let X be a space and x0 ∈ X. Let π1(X,x0) be the set
of homotopy classes of loops in X based at x0. Then π1(X,x0) admits the
structure of a group, with binary operation

[γ][δ] = [γ ⋅ δ] ,

identity given by the constant path [cx0], and inverses given by [γ]−1 = [γ̄].
This group is called the fundamental group of X (based at x0).

To prove the theorem, we need to check that the group operation is well
defined, and then check the group axioms. We start with the well-defined-
ness.

Lemma 1.16. If γ0 ≃ γ1 are paths to y and δ0 ≃ δ1 are paths from y, then
γ0 ⋅ δ0 ≃ γ1 ⋅ δ1 and γ̄0 ≃ γ̄1.

Proof. The homotopy γ0 ≃ γ1 is a map F from a square P ≅ I × I to X,
equal to cy along the right-hand side. The homotopy δ0 ≃ δ1 is a map G
from a square Q ≅ I × I to X, equal to cy along the left-hand side. We
may therefore glue F and G along a side to obtain a map from the rectangle
R = P ∪I Q→X. Rescaling R to a square defines the required homotopy H.
Note that we could have written H down explicitly.

H(s, t) ∶=
⎧⎪⎪⎨⎪⎪⎩

F (2s, t) s ≤ 1/2
G(2s − 1, t) s ≥ 1/2

For the second assertion, note that (s, t)↦ F (s,1− t) is a homotopy of paths
from γ̄0 to γ̄1.

The group axioms now follow from the following observations.

Lemma 1.17. Consider paths α,β, γ in X from w to x to y to z respectively.

(i) (α ⋅ β) ⋅ γ ≃ α ⋅ (β ⋅ γ)

(ii) α ⋅ cx ≃ α ≃ cw ⋅ α

(iii) α ⋅ ᾱ ≃ cw
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Proof. (i) Consider the path

δ(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α(3t) t ≤ 1/3
β(3t − 1) 1/3 ≤ t ≤ 2/3
γ(3t − 2) t ≥ 2/3

in X. Consider the functions I → I defined by

f0(t) =
⎧⎪⎪⎨⎪⎪⎩

4
3t t ≤ 1/2
1
3 +

2
3t t ≥ 1/2

and

f1(t) =
⎧⎪⎪⎨⎪⎪⎩

1
3t t ≤ 1/2
−1

3 +
4
3t t ≥ 1/2

The straight-line homotopy F in the interval shows that f0 ≃ f1 as
paths. But

(α ⋅ β) ⋅ γ = δ ○ f0

and
α ⋅ (β ⋅ γ) = δ ○ f1

so δ ○ F is the required homotopy of paths.

(ii) Consider the functions I → I defined by

g0(t) =
⎧⎪⎪⎨⎪⎪⎩

2t t ≤ 1/2
1 t ≥ 1/2

and

g1(t) =
⎧⎪⎪⎨⎪⎪⎩

1 t ≤ 1/2
2t − 1 t ≥ 1/2

for t ∈ I. Again, straight-line homotopy shows that g0 ≃ idI ≃ g1 as
paths and, since α ⋅ cx = α ○ g0 and cw ⋅ α = α ○ g1, the result follows.

(iii) Consider the function I → I defined by

h(t) =
⎧⎪⎪⎨⎪⎪⎩

2t t ≤ 1/2
2 − 2t t ≥ 1/2

for all t ∈ I. Straight-line homotopy shows that h ≃ c0 as paths in I.
Since α ⋅ ᾱ = α ○ h and cw = α ○ c0, the result follows.
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This completes the proof of Theorem 1.15, so we can talk about the
fundamental group of a based space, i.e. a space equipped with a base point.

Example 1.18. Let X = Rn and x0 = 0. Consider a based loop γ. The defor-
mation retraction of Example 1.6 shows that γ ≃ c0. Since γ was arbitrary,
it follows that π1(Rn,0) is trivial.

Let’s generalise this computation to some formal properties of fundamen-
tal groups.

Lemma 1.19. Let f ∶ X → Y be a map with f(x0) = y0. The induced map
f∗ ∶ π1(X,x0)→ π1(Y, y0) defined by

f∗[γ] = [f ○ γ]

is a well-defined group homomorphism. Furthermore:

(i) if f ′ ≃ f relative to x0 then f ′
∗
= f∗;

(ii) if g ∶ Y → Z is a map with g(y0) = z0 then g∗ ○ f∗ = (g ○ f)∗;

(iii) (idX)∗ = idπ1(X,x0).

Proof. The map f∗ is well defined because, if F exhibits a homotopy between
γ and δ as paths, then f ○F exhibits a homotopy of paths between f ○γ and
f ○ δ. It’s a group homomorphism because f ○ (γ ⋅ δ) = (f ○ γ) ⋅ (f ○ δ). We
now check the other properties.

(i) If F exhibits a homotopy between f ′ and f relative to x0 then, for any
loop γ based at x0,

(s, t)↦ F (γ(s), t)

is a homotopy of paths between f ○γ and f ′○γ. Therefore f∗[γ] = f ′∗[γ]
as required.

(ii) This is immediate from associativity of composition of functions.

(iii) This is also immediate.
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At this point, we know that the fundamental group is unchanged by ho-
motopy equivalences which fix the base point. But the dependence on the base
point is disappointing. We’d like to know that different choices of base points
give isomorphic fundamental groups, at least when X is path connected. So
we need to think about what happens when we change base points, and to
this end, we define another natural map on fundamental groups.

Lemma 1.20. Let X be a space. A path α from x0 to x1 defines a group
isomorphism

α# ∶ π1(X,x0)→ π1(X,x1)

via
α#[γ] = [ᾱ ⋅ γ ⋅ α] .

Furthermore:

(i) if α ≃ α′ then α# = α′#;

(ii) (cx0)# = idπ1(X,x0);

(iii) if β is a path from x1 to x2 then (α ⋅ β)# = β# ⋅ α#;

(iv) if f ∶X → Y is a map with yi = f(xi) then (f ○ α)# ○ f∗ = f∗ ○ α#.

Proof. To see that α# is a group homomorphism, we notice that

(ᾱ ⋅ γ ⋅ α) ⋅ (ᾱ ⋅ δ ⋅ α) = ᾱ ⋅ γ ⋅ (α ⋅ ᾱ) ⋅ δ ⋅ α
≃ ᾱ ⋅ γ ⋅ cx0 ⋅ δ ⋅ α
≃ ᾱ ⋅ (γ ⋅ δ) ⋅ α

for any loops γ and δ based at x0. By Lemma 1.17 (iii), we see that α−1
# = ᾱ#

and so α# is an isomorphism.

(i) Let γ be any loop based at x0. If F is a homotopy of paths between α
and α′, we can glue together two copies of F with a copy of γ × idI to
obtain a homotopy of paths ᾱ ⋅ γ ⋅ α ≃ ᾱ′ ⋅ γ ⋅ α′, which proves (i).

(ii) This follows from Lemma 1.17(i-ii).

(iii) This follows immediately from the definition and Lemma 1.17(i).

(iv) This also follows immediately from the definition.
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This helps to reduce dependence on the base point. In particular, it makes
sense to talk about the isomorphism type of the fundamental group of a path-
connected space: if X is path-connected then π1(X,x0) ≅ π1(X,x1) for any
x0, x1 ∈ X. But care is needed! If you want to understand more precisely
what happens when we change base points, you should also meditate on the
following simple observation.

Remark 1.21. If α is a loop in X based at x0 then α# is conjugation by [α]
in π1(X,x0).

Since the isomorphism type of the fundamental group of a path-connected
space is well defined, the following definition now makes sense.

Definition 1.22. If X is path-connected and π1(X,x0) is trivial for some
(any) x0 ∈X, we say that X is simply connected.

We now need to understand what happens to fundamental groups under
homotopies that do not fix base points. Let X be a topological space, x0 ∈X,
and let f, g ∶X → Y be continuous maps, homotopic via a homotopy F . Then

α(t) = F (x0, t)

is a path in Y from f(x0) to g(x0). The next lemma explains the different
maps induced on fundamental group.

Lemma 1.23. The triangle

π1(Y, f(x0))

π1(X,x0) π1(Y, g(x0))

α#
f∗

g∗

commutes, which is to say that

α# ○ f∗ = g∗ .

Proof. We need to check that

ᾱ ⋅ (f ○ γ) ⋅ α ≃ g ○ γ
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as paths, for any loop γ in X based at x0. The map G ∶ I × I → Y defined by

G(s, t) = F (γ(s), t)

is a map from the square I × I to Y . We consider two paths from (0,1) to
(1,1) in the square:

a(t) = (t,1)

and b = b1 ⋅ b2 ⋅ b3, where

b1(t) = (0,1 − t), b2(t) = (t,0), b3(t) = (1, t)

for all t ∈ I. Note that

G ○ a(t) = F (γ(t),1) = g ○ γ(t) ,

and
G ○ b = ᾱ ⋅ (f ○ γ) ⋅ α .

But I × I is a convex domain in R2, so the straight-line homotopy H shows
that a and b are homotopic as paths. Therefore, G ○H is the homotopy we
need.

We can now prove that homotopy equivalences induce isomorphisms.

Theorem 1.24. If f ∶X → Y is a homotopy equivalence then

f∗ ∶ π1(X,x0)→ π1(Y, f(x0))

is an isomorphism for any x0 ∈X.

Proof. We need to prove that f∗ is bijective. Let g be a homotopy inverse
to f , and F a homotopy from g ○ f to idX . Let α(t) = F (x0, t). Then, by
several lemmas above,

g∗ ○ f∗ = (g ○ f)∗ = α# ○ (idX)∗ = α#

which is an isomorphism, so f∗ is injective and g∗ is surjective. Now let G
be a homotopy from f ○ g to idY and let β(t) = G(f(x0), t). Then, similarly,

f∗ ○ g∗ = (f ○ g)∗ = β# ○ (idY )∗ = β#
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and, since this is an isomorphism, g∗ is surjective, so an isomorphism. (Care
is needed here, since the f∗ in the second equation is not the same as the f∗
in the first equation – the base points are different. However, the two g∗’s
are the same.) Hence

f∗ = (g∗)−1 ○ α#

is an isomorphism, as required.

Corollary 1.25. Contractible spaces are simply connected.

Proof. If X is contractible then there is x0 ∈ X and a homotopy F between
idX and constant map X → x0. In particular, F (x, ⋅) is a path from arbitrary
x ∈X to x0, so X is path connected. Now X is simply connected by Theorem
1.24.

We therefore have a tool for proving that spaces are simply connected.
However, next we need some examples of spaces with non-trivial fundamental
groups.

2 Covering spaces

2.1 Definition and first examples

Informally, a covering space is a way of ‘unwrapping’ the loops in a space X.

Definition 2.1. Let p ∶ X̂ →X be a continuous map. An open set U ⊆X is
evenly covered if there is a discrete set ∆U and an identification

p−1(U) ≡ ∆U ×U

so that, on p−1(U), p coincides with projection onto U . We often write
Uδ ∶= {δ} × U and pδ ∶= p∣Uδ . Note that, if x ∈ U , then each {δ} × U contains
exactly one element of p−1(x), and so we may canonically identify ∆U with
p−1(x). In particular, p−1(U) ≡∐δ∈∆U

Uδ.
If every point in X has an evenly covered neighbourhood then p is a

covering map, and X̂ is a covering space of X.

Clearly homeomorphisms are covering maps, and it is also easy to see
that products of covering maps are covering maps. Here’s the first really
interesting example.
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Example 2.2. Let X̂ = R, X = S1 ⊆ C, and p ∶ R→ S1 defined by

p(t) = e2πit

for all t. Let U ⊆ S1 be any proper open subset of S1 that contains 1, and let
z1 ∉ U . Then we may choose a branch of log that’s well defined on S1 − z1,
with log(1) = 0. Now every point ẑ ∈ p−1(U) can be written uniquely as

ẑ = k + log(z)
2πi

for some k ∈ Z and z = p(ẑ). Therefore, p−1(U) ≡ Z × U , and U is evenly
covered with ∆U = Z. Since every z ∈ S1 is in some such U , it follows that p
is a covering map.

Example 2.3. Let X̂ =X = S1 ⊆ C, and let pn ∶ X̂ →X be defined by

z ↦ zn

for all z. Again, let U ⊆ S1 be any proper open subset of S1 that contains 1,
and let z1 ∉ U . We may choose a branch of n√ that’s well defined on S1 − z1,

with
n√

1 = 1. Now every point ẑ ∈ p−1(U) can be written uniquely as

ẑ = e2πi k
n
n√
z

for z = pn(ẑ). As in the previous example, we obtain that U is evenly covered
with ∆U equal to the set of nth roots of unity, and since every z ∈ S1 is in
some such U , it follows that p is a covering map.

Example 2.4. Let X̂ = S2, let G = Z/2Z act on S2 via the antipodal map
x ↦ −x, and let X be the the quotient G/S2 – that is, the set of G-orbits
on S2, equipped with the quotient topology. Let p ∶ S2 → X be the quotient
map.

A point in X is a pair of antipodal points {x,−x}, or equivalently the
intersection of S2 with a line l ⊆ R3 through the origin. Let U ⊆X be the set
of lines that make an angle strictly less than π/2 with l. Then

p−1(U) = S2 −Cl

where Cl ⊆ S2 is the great circle of points in S2 perpendicular to l. In
particular,

p−1(U) = U+ ⊔U−
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where U± is the set of points at spherical distance less than π/2 from ±x.
Furthermore, it follows from the definition of the quotient topology that
each p∣U± ∶ U± → U is a homeomorphism, and U+ ⊔U− ≅ {±1} ×U . Therefore,
p is a covering map.

The space X is called the real projective plane, and is denoted by RP 2.

Remark 2.5. In the same way, we can construct real projective n-space, RP n,
as the quotient of Sn by the antipodal action of Z/2Z.

All of the covering spaces that we have seen above have an interesting
property: every point in the base has the same number of pre-images in the
cover.

Definition 2.6. Let n ∈ N ∪ {∞}. A covering map p ∶ X̂ →X is n-sheeted if
#p−1(x) = n for any x ∈X. In this case, we call n the degree of p.

2.2 Lifting properties

How are covering spaces related to the fundamental group? Informally, we
can think of a covering space X̂ as unwrapping X. This also has the effect of
unwrapping loops in X, which enables us to see that they are homotopically
non-trivial. The next definition makes this precise.

Definition 2.7. Let p ∶ X̂ → X be a covering map and f ∶ Y → X a contin-
uous map. A lift of f to X̃ is a continuous map f̂ ∶ Y → X̂ so that f = p ○ f̂ .
That is, the following diagram commutes.

X̂

Y X

p

f

f̂

The first important fact about lifts is that they are unique, in a suitable
sense. More precisely, if Y is connected then a lift of f is determined by its
value at a point. We will also prove our results in this subsection under the
hypotheses that some of the spaces we consider are locally path-connected.

Definition 2.8. A space X is locally path-connected if, for every x ∈ X and
every open neighbourhood U of X, there is a path-connected neighbourhood
V of x with x ∈ V ⊆ U .
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In general these lemmas can be proved without the hypothesis of local
path-connectedness – see, for instance, Hatcher – but all the spaces we con-
sider in this course will be locally path-connected, so this hypothesis is fine.

Lemma 2.9. Let p ∶ X̃ → X be a covering map and f̂1, f̂2 ∶ Y → X̂ lifts of
a map f from a connected, locally path-connected space Y to X. If there is
y0 ∈ Y such that f̂1(y0) = f̂2(y0) then f̂1(y) = f̂2(y) for all y ∈ Y .

Proof. The lemma follows from the claim that the set

S = {y ∈ Y ∣ f̂1(y) = f̂2(y)}

is both open and closed; since Y is connected, it follows that S is either
empty or the whole of Y , which proves the lemma.

Let y0 ∈ Y be arbitrary, let U be an evenly covered neighbourhood of
f(y0), and let V ⊆ f−1(U) be a path-connected neighbourhood of y0. We will
show that y0 ∈ S if and only if V ⊆ S, which proves the claim. To this end,
let y ∈ V be arbitrary, and let α be a path in V from y0 to y. Then f̂i ○ α is
a path in X̃ from f̂i(y0) to f̂i(y); furthermore, since

p ○ f̂i ○ α(t) = f ○ α(t) ⊆ f(V ) ⊆ U

we see that f̂i ○α is a path in p−1(U). Therefore, for each i, f̂i(y) and f̂i(y0)
lie in the same path component of p−1(U); in particular, they lie in Uδi for
some δi ∈ ∆U .

Suppose now that y0 ∈ S. Then f̂1(y0) = f̂2(y0), so δ1 = δ2, since distinct
Uδi are disjoint. Therefore,

f̂1(y) = p−1
δ1
○ f(y) = p−1

δ2
○ f(y) = f̂2(y)

and so y ∈ S.
Likewise, suppose that y0 ∉ S. Then f̂1(y0) ≠ f̂2(y0), but each Uδ contains

a unique point of p−1(y0), so δ1 ≠ δ2. Since f̂1(y) and f̂2(y) lie in disjoint
subsets of p−1(U), it follows that f̂1(y) ≠ f̂2(y) and so y ∉ S. This completes
the proof of the claim, and hence the lemma.

In particular, lifts of paths are determined by their initial points.

Definition 2.10. Let γ ∶ I →X be a path from x0 and p ∶ X̂ →X a covering
map. A lift of γ at x̂0 is a lift γ̂ of γ with x̂0 = γ̂(0). Note that x̂0 necessarily
is in p−1(x0).
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Having proved uniqueness, we next move on to existence. Our first lifting
lemma tells us that lifts of paths always exist.

Lemma 2.11 (Path-lifting lemma). Let p ∶ X̂ → X be a covering map and
let γ ∶ I →X be a path from x0. For any x̂0 ∈ p−1(x0) there is a unique lift γ̂
of γ at x̂0.

Proof. Uniqueness follows immediately from Lemma 2.9, so we just need to
prove existence. We will prove that the set

S = {t ∈ I ∣ γ∣[0,t] lifts at x̂0 to X̂}

is open and closed. Since 0 ∈ S and I is connected, it follows that S = I,
which proves the theorem.

Let t0 ∈ I be arbitrary. Let U be an evenly covered neighbourhood of
γ(t0) and let V ⊆ γ−1(U) be a path-connected neighbourhood of t0. We will
prove that t0 ∈ S if and only if V ⊆ S, from which it follows that S is open
and closed, as required. Let t ∈ V be arbitrary.

Suppose first that t0 ∈ S but t ∉ S. Note in particular that t > t0. Then
γ̂ makes sense at t0, so γ̂(t0) ∈ Uδ for some δ. Since [t0, t] ⊆ V , we have that
γ([t0, t]) ⊆ U . Therefore, the path

s↦
⎧⎪⎪⎨⎪⎪⎩

γ̂(s) s ≤ t0
p−1
δ ○ γ(s) s ∈ [t0, t]

is a lift of γ∣[0,t] at x̂0, so t ∈ S, which is a contradiction. Therefore, S is
open.

If t0 ∉ S but t ∈ S, then the same argument with the roles of t0 and t
reversed leads to a contradiction. Therefore, S is closed, and the proof is
complete.

As a first simple application, we can now prove that the n-sheeted prop-
erty of all our examples is not a coincidence.

Lemma 2.12. If p ∶ X̂ →X is a covering map and X is path-connected then
p is n-sheeted for some n ∈ N ∪∞.

Proof. Let γ be a path in X from x to y. For any x̂ ∈ p−1(x), let γ̂x̂ be the
unique lift of γ at x̂. We can now define a map

p−1(x)→ p−1(y)
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by
x̂↦ γ̂x̂(1) .

Furthermore, the map p−1(y) → p−1(x) defined by γ̄ provides an inverse, so
this is a bijection.

Having lifted paths, we next lift homotopies.

Lemma 2.13 (Homotopy-lifting lemma). Let p ∶ X̂ → X be a covering map
and let f0 ∶ Y → X be a map from a locally path-connected space Y . Let
F ∶ Y ×I →X be a homotopy with F (y,0) = f0(y) for all y, and let f̂0 ∶ Y → X̂
be a lift of f0. There is a unique lift F̂ of F to X̂ so that F̂ (⋅,0) = f̂0.

Proof. For each y ∈ Y , the homotopy F defines a path

γy(t) = F (y, t)

from f0(y). By the path-lifting lemma, each γy lifts at f̂0(y) to a path γ̂y in
X̂. By the uniqueness of lifts, we must have

F̂ (y, t) = γ̂y(t)

for all y ∈ Y and t ∈ I. It remains to prove that F̂ is continuous. To do this,
we define a different lift F̃ of F which is continuous by definition, and prove
that the two lifts agree.

Consider y0 ∈ Y . For any t, F (y0, t) has an evenly covered neighbourhood
Ut in X. By compactness of {y0} × I, we may take finitely many intervals
{Ji} that cover I and a path-connected neighbourhood V of y0 so that, for
each i, F (V × Ji) is contained in some evenly covered set Ui. Let Uδi be the
unique slice of p−1(Ui) such that F̂ ({y0} × Ji) ⊆ Uδi .

For any (y, t) ∈ V × I, we now define

F̃ (y, t) = p−1
δi
○ F (y, t)

whenever t ∈ Ji. We need to check that this is well defined. Suppose, there-
fore, that t ∈ Ji ∩ Jj. Let α be a path in V from y0 to y and let

αt(s) = F (α(s), t) .

Then p−1
δi
○ αt is a lift of αt at p−1

δi
○ αt(0) and, likewise, p−1

δj
○ αt is a lift of αt

at p−1
δj
○ αt(0). But

p−1
δi
○ αt(0) = F̂ (y0, t) = p−1

δj
○ αt(0)
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so, by uniqueness of lifts, p−1
δi
○ αt(1) = p−1

δj
○ αt(1). Therefore, p−1

δi
○ F (y, t) =

p−1
δj
○ F (y, t), which proves that F̃ is well defined.

Since V is connected and F̃ (⋅,0) is a lift of f0 that agrees with f̂0 at
y0, we have that F̃ (y,0) = f̂0(y) for all y ∈ V , by uniqueness of lifts. Now,
for each y ∈ V , F̃ (y, ⋅) is a lift of γy at f̂0(y), and so F̃ (y, t) = γ̂y(t) by
uniqueness of lifts. Therefore, F̃ and F̂ agree on V × I. But F̃ is continuous
by construction, so F̂ is too.

Since we are frequently interested in homotopies of paths, we also need
to know that a homotopy of paths lifts to a homotopy of paths.

Lemma 2.14. Let p ∶ X̂ → X be a covering map and let F ∶ I × I → X be a
homotopy of paths. Then any lift F̂ of F to X̂ is also a homotopy of paths.

Proof. Since F is a homotopy of paths, F (⋅,0) and F (⋅,1) are constant paths,
at say x0 and x1 respectively. Now F̂ (⋅,0) is a path in the discrete set p−1(x0),
hence is constant. Similarly, F̂ (⋅,1) is constant. Therefore, F̂ is a homotopy
of paths.

2.3 Applications to calculations of fundamental groups

The lifting properties turn covering spaces into a tool for understanding
fundamental groups.

Lemma 2.15. Let p ∶ X̂ →X be a covering map with p(x̂) = x. The induced
map

p∗ ∶ π1(X̂, x̂)→ π1(X,x)

is injective.

Proof. We need to prove that kerp∗ is trivial. Suppose therefore that [γ̂] ∈
kerp∗. That is to say, γ̂ is a loop in X̂ based at x̂ such thatγ = p ○ γ̂ is
homotopic to cx. By Lemma 2.14, the homotopy of paths F between γ and
cx lifts to a homotopy of paths between γ̂ and cx̂. Therefore, [γ] is trivial,
as required.

We may therefore identify π1(X̂, x̂0) with the subgroup p∗π1(X̂, x̂) ≤
π1(X,x). We next combine this with an elaboration of the idea of the proof
of Lemma 2.12.
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Let [γ] ∈ π1(X,x) and let p ∶ X̂ → X be a covering map. A loop γ based
at x naturally defines a map p−1(x)→ p−1(x) by mapping

x̂↦ γ̂x̂(1) ,

the endpoint of the lift of γ at x̂. Lemma 2.14 now implies that the endpoint
γ̂x̂(1) only depends on the homotopy-class of the loop γ and therefore this
map defines an action of π1(X,x) on p−1(x).

However, care is needed! Because of the order in which we concatenate
paths, this action is a right action.1 We will write x̂.γ ∶= γ̂x̂(1), and it is easy
to check from the uniqueness of lifts that (x̂.γ).δ = x̂.(γ.δ).

Covering spaces can be used to compute fundamental groups because this
action has a natural algebraic interpretation.

Lemma 2.16. Let p ∶ X̂ →X be a covering map and suppose that X̂ is path
connected. Let x ∈X. The map

p∗π1(X̂, x̂)/π1(X,x0) → p−1(x)
p∗π1(X̂, x̂)[γ] ↦ x̂.γ .

is a bijection for any choice x̂ ∈ p−1(x). Furthermore, this bijection is equiv-
ariant, in the sense that

p∗π1(X̂, x̂)[γ][δ]↦ x̂.(γ ⋅ δ)

for all loops γ, δ based at x.

Proof. The lemma is just the Orbit-Stabiliser theorem, applied to the right
action of π1(X,x) on p−1(x). To conclude, we need to show that the action
is transitive (so p−1(x) is the whole orbit) and that the stabiliser of x̂ is
p∗π1(X̂, x̂).

Transitivity follows immediately from the hypothesis that X̂ is path-
connected: any ŷ ∈ p−1(x) is end point of a path γ̂ from x̂, whose image
is a loop γ based at x. By uniqueness of lifts, γ̂ = γ̂x̂, and so x̂.γ = ŷ.

The stabiliser of x̂ consists of the homotopy classes of those loops γ in X
based at x whose lift at x̂ is a loop. This is the definition of p∗π1(X̂, x̂).

1Recall that a right action of a group G on a set X is a map X ×G → X, denoted by
(x, g)↦ x.g, so that (x.g).h = x.(gh).
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One easy consequence is that the degree of the covering map is equal to
the index of the subgroup. So already the existence of a non-trivial connected
covering space implies that the fundamental group is non-trivial.

Corollary 2.17. Let p ∶ X̂ → X be a covering map. If X̂ and X are both
path connected then

deg(p) = ∣π1(X,x) ∶ p∗π1(X̂, x̂)∣

for any choice of x ∈X and x̂ ∈ p−1(x).

So Examples 2.2 and 2.3 show that π1(S1,1) is an infinite group, with
subgroups of every index. Lemma 2.16 is particularly useful when X̂ is
simply connected.

Definition 2.18. If X̂ → X is a covering map and X̂ is simply connected
then X̂ is called a universal cover of X.

In particular, we can completely understand the group structure of π1(X,x)
by understanding the action loops by path-lifting on the preimage of the base
point.

Corollary 2.19. If p ∶ X̂ → X is a universal cover then any choice of x̂ ∈
p−1(x) defines a bijection

π1(X,x)→ p−1(x) ,

and furthermore the group structure is determined by x̂.(γ.δ) = (x̂.γ).δ.

We can use this result to compute the fundamental group of the circle.

Example 2.20. Example 2.2 tells us that

p ∶ R → S1

t ↦ e2πit

is a covering map. Since R is contractible, this is a universal cover. By
Corollary 2.19, path lifting at 0 defines a bijection π1(S1,1) → p−1(1) = Z.
We next give an example of a loop in each homotopy class, and use the right
action to compute the group operation.

For n ∈ Z, consider
γ̃n(t) = nt ,
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which is a path in R from 0 to n. Then γn = p ○ γ̃n is a loop in S1 based at
1, every element of π1(S1,1) is represented by such a loop, and the bijection
with Z is given by [γn]↦ n. Furthermore, for any m ∈ Z, the path m + γ̃n is
the lift of γn based at m = γm(1), so

0.(γm ⋅ γn) = (0.γm).γn =m.γn =m + γ̃n(1) =m + n = 0.γm+n

by the properties of right actions. Therefore, [γm ⋅ γn] = [γm+n], and so the
bijection π1(S1,1)→ Z is an isomorphism of groups.

2.4 The fundamental group of the circle

In the last section, we saw that π1(S1,1) ≅ Z. This is our first example of a
non-trivial fundamental group, and it has some attractive applications. The
first is the extension problem of the kind we saw in the introduction.

Theorem 2.21. The identity idS1 does not extend to a map from the disc
D2 → S1. In other words, S1 is not a retract of D2.

Proof. Suppose that idS1 = r ○ ι where ι ∶ S1 → D2 is the natural inclusion
and r ∶ D2 → S1 is a retraction. Since D2 is contractible and hence simply
connected, we have a factorisation

(idS1)∗ = r∗ ○ ι∗

through the trivial group. Therefore idZ maps 1 to 0, which is a contradiction.

One attractive corollary is the Brouwer fixed point theorem.

Corollary 2.22. Every continuous map f ∶D2 →D2 has a fixed point.

Proof. Let f be a continuous map D2 → D2 without a fixed point. Let
g ∶D2 → S1 be defined by projecting f(x) through x onto S1. This is then a
continuous retraction of D2 onto S1, which contradicts Theorem 2.21.

Another famous application is Gauss’s proof of the fundamental theorem
of algebra.

Theorem 2.23. Every non-constant polynomial p ∶ C→ C has a root.
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Sketch proof of Theorem 2.23. Let r ∶ C−0→ S1 be the usual retraction, and
let λR ∶ S1 → C be multiplication by R. If p has no root then

fR = r ○ p ○ λR
defines a map S1 → S1 for any R > 0. In particular, for any R1,R2, the two
maps fR1 and fR2 are homotopic, so they induce the same homomorphism
p∗ on fundamental groups

Z ≅ π1(S1,1)→ Z ≅ π1(S1,1)

which is equal to multiplication by some constant l.
The theorem now follows by noticing that, for very small R, d = 0, whereas

for very large R, d = deg(p).

2.5 Existence of universal covers

We have seen that universal covers are a useful tool for computing funda-
mental groups. It’s therefore an important fact that they can be guaranteed
to exist in a wide variety of settings. The next theorem records this fact.
The proof is non-examinable, and we only sketch it here.

Theorem 2.24. If X is a path-connected, locally simply connected2 topolog-
ical space, then there exists a universal cover p ∶ X̃ →X.

Sketch proof (non-examinable): The idea of the construction is a natural con-
sequence of the lifting properties we have already proved. Fix a basepoint
x0 ∈X, and consider the set of all paths γ starting at x0.

X = {γ ∶ I →X ∣ γ(0) = x0}

We define
X̃ ∶= X / ≃

the quotient of X by homotopy of paths. The map p ∶ X̃ →X is defined by

p([γ]) = γ(1) ,

so it sends (homotopy classes of) paths to their endpoints.
Now the difficulty of the proof is to define a suitable topology on X̃ and

prove that p then has the desired properties.

2Recall that this means that, for every neighbourhood U of every point x, there exists
a neighbourhood V ⊆ U which is simply connected.
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2.6 The Galois correspondence

Now we know that universal covers exist, we can go on and understand all
covering spaces in terms of the algebra of the fundamental group. Roughly,
we would like to say that path-connected covering spaces correspond to sub-
groups of the fundamental group. To make this precise, we need an appro-
priate notion of equivalence for covering spaces.

Definition 2.25. Let X be a path-connected space and p1 ∶ X̂1 → X,
p2 ∶ X̂ → X be covering maps. An isomorphism of covering spaces is a
homeomorphism φ ∶ X̂1 → X̂2 so that the following diagram commutes.

X̂1 X̂2

X

φ

p1 p2

That is, p2 ○φ = p1. Note that φ−1 is also an isomorphism of covering spaces.
If X̂i are equipped with base points x̂i and φ(x̂1) = x̂2, then φ is said to be
based.

Remark 2.26. The isomorphism φ is a lift of p1 to X̂2, so we can apply the
results we already have about lifts to covering transformations. In particular,
based isomorphisms are uniquely determined by where they send their base
points.

We can now state a correspondence between covering spaces and sub-
groups of the fundamental group. This correspondence is often called the
Galois correspondence, since it is analogous to (and, in the context of Rie-
mann surfaces, equivalent to) the fundamental correspondence of Galois the-
ory.

Theorem 2.27 (Galois correspondence with base points). Let X be a path-
connected, locally simply connected space with base point x0. The map that
sends a covering space p ∶ X̂ → X equipped with a base point x̂0 ∈ p−1(x0)
to the subgroup p∗π1(X̂, x̂0) induces a bijection between the set of based-
isomorphism-classes of path-connected covering spaces with base point and
the set of subgroups of π1(X,x0).

The proof of this theorem is non-examinable, and hence omitted. But
it’s easy to illustrate the theorem in the example that we have studied most
intently so far: the circle.
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Example 2.28. Example 2.20 tells us that π1(S1,1) ≅ Z. Therefore, every
subgroup can be written uniquely as

Hn = ⟨n⟩

where n ∈ N. The universal cover p ∶ R → S1 corresponds to the trivial
subgroup ⟨0⟩, while the n-sheeted cover pn (seen in Example 2.3) corresponds
to Hn. Therefore, every connected covering space of S1 is based isomorphic
to exactly one of pn or p.

One nice consequence is that universal covers are unique up to (based)
isomorphism.

Corollary 2.29. Let X be a path-connected, locally simply connected space.
Any two universal covers p1 ∶ X̃1 →X and p2 ∶ X̃2 →X are isomorphic.

Proof. Choose base points x ∈ X and x̂i ∈ p−1
i (x). Since both X̂i are simply

connected, they both map under the Galois correspondence to the trivial
subgroup 1 ≤ π1(X,x). Therefore, by Theorem 2.27, they are isomorphic.

Theorem 2.27 is beautiful, but the dependence on base points is annoying.
Fortunately, we can deduce a base-point-free version.

Corollary 2.30 (Galois correspondence without base points). Let X be a
path-connected, locally simply connected space with base point x0. The map
that sends a covering space p ∶ X̂ →X equipped with a base point x̂0 ∈ p−1(x0)
to the subgroup p∗π1(X̂, x̂0) induces a bijection between the set of isomor-
phism classes of path-connected covering spaces ( without distinguished base
point) and conjugacy classes of subgroups of π1(X,x0).

Proof. It follows immediately from Theorem 2.27 that the map is surjec-
tive. To see that it is injective, we need to show that if p1∗π1(X̂1, x̂1) and
p2∗π1(X̂2, x̂2) are conjugate then there is an isomorphism of covering spaces
φ ∶ X̂1 → X̂2 (not necessarily respecting base points).

Suppose therefore that

p1∗π1(X̂1, x̂1) = [γ]p2∗π1(X̂2, x̂2)[γ̄]

for some [γ] ∈ π1(X,x). Let ¯̂γ be the lift of γ̄ at x̂2, and let x̂′2 be the end
point of ¯̂γ. By Lemma 1.20, we see that

[γ]p2∗π1(X̂2, x̂2)[γ̄] = p2∗γ̂#π1(X̂2, x̂2) = p2∗π1(X̂2, x̂
′

2) .
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Therefore,
p1∗π1(X̂1, x̂1) = p2∗π1(X̂2, x̂

′

2) ,
so by Theorem 2.27, p1 ∶ X̂1 →X and p2 ∶ X̂2 →X are isomorphic.

Note that we don’t see the difference between Theorem 2.27 and Corollary
2.30 in our favourite example of X = S1, because π1(S1) ≅ Z is abelian,
so every subgroup is normal and every conjugacy class of subgroups is a
singleton.

3 The Seifert–van Kampen theorem

Our next task is to compute more non-trivial fundamental groups. Our main
tool is the Seifert–van Kampen theorem, which is a ‘gluing theorem’: it
computes the fundamental group of a space X which is the result of ‘gluing
together’ two subspaces A and B. It tells us that π1(X) is constructed by
‘gluing together’ π1(A) and π1(B). To state the theorem, we need to know
how to ‘glue together’ two groups.

3.1 Free groups and group presentations

You may have informally seen the notion of a group presentation already, if
you have seen expressions like the following definition of a dihedral group.

D2n = ⟨r, s ∣ s2 = rn = 1, srs = s−1⟩

To state the Seifert–van Kampen theorem clearly, we will need to define group
presentations formally. We start with a free groups, which are the groups with
no relations at all: that is, these will be the groups with presentations of the
following form.

⟨a1, a2, . . . ∣⟩
The set of generators A = {ai} is called an alphabet. It can be any set (though
we will usually only need it to be countable), and the free group with those
generators will be called F (A). We now give the formal definition of a free
group.

Definition 3.1. Let A be a set, let F (A) be a group, and let A→ F (A) be
a map of sets. We say that F (A) is the free group on A if it satisfies the
following universal property. For any group G and any set map A→ G there
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is a unique homomorphism of groups f ∶ F (A) → G so that the following
diagram commutes.

F (A)

A G

f

We call the resulting homomorphism f the canonical homomorphism.

Roughly speaking, this definition says that F (A) maps onto anything
that can happen to A in a group.

Example 3.2. Let A = {α} contain one element. Let A→ Z be the map α ↦ 1.
Given any assignment

α ↦ g ∈ G
for G a group, the homomorphism f(n) = gn satisfies the universal property.

Remark 3.3. We make some remarks on what Definition 3.1 means for exis-
tence and uniqueness.

(i) Definition 3.1 really is a definition! It implies that F (A) is unique up to
canonical isomorphism. Indeed, suppose that A → F ′(A) also satisfies
the universal property. Putting G = F ′(A) in the universal property for
F (A), we get a canonical homomorphism f ∶ F (A) → F ′(A). Putting
G = F (A) in the universal property for F ′(A), we get a canonical
homomorphism f ′ ∶ F ′(A)→ F (A). Next put G = F (A) in the universal
property of F (A). Then f ′ ○ f and idF (A) both satisfy the properties
for the canonical homomorphism, so by uniqueness, f ′ ○ f = idF (A).
Similarly, f ○ f ′ = idF ′(A), and so we obtain that F (A) and F ′(A) are
(canonically) isomorphic.

(ii) What Definition 3.1 does not make clear is that F (A) exists. We shall
defer that question until after the Seifert–van Kampen theorem. How-
ever, it is a fact that F (A) always exists.

(iii) If A is a finite set of cardinality r (such as {a1, . . . ar} or A = {a, b, . . .})
then we will write Fr ≡ F (A) and call this the free group of rank r.

We identify elements a ∈ A with their images in F (A), so we can write
expressions like

w = aba−1b−1
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for elements of F (A) if a, b ∈ A. Note that the subgroup ⟨A⟩ ≤ F (A) also
satisfies the universal property, so it must in fact be the whole of F (A).
Therefore, A generates F (A).

Now that we have free groups, it is a simple matter to define presentations.

Definition 3.4. A (group) presentation consists of a set A and a subset of
relations R ⊆ F (A). It presents the group

⟨A ∣ R⟩ ∶= F (A)/⟪R⟫

(where ⟪R⟫ denotes the normal closure of R, i.e. the smallest normal sub-
group to contain R). The presentation is called finite if A and R are both
finite sets.

Group presentations also have a universal property. Just as in Remark
3.3(i), this property defines ⟨A ∣ R⟩ up to canonical isomorphism.

Lemma 3.5. Consider the group ⟨A ∣ R⟩ and the quotient map q ∶ F (A) →
⟨A ∣ R⟩. Whenever G is a group and f ∶ F (A)→ G is a homomorphism such
that R ⊆ ker f , there is a unique homomorphism g ∶ ⟨A ∣ R⟩ → G that makes
the following diagram commute.

⟨A ∣ R⟩

F (A) G

gq

f

Proof. It is easy to see that

⟪R⟫ = {
n

∏
i=1

γir
±1
i γ

−1
i ∣ n ∈ N, ri ∈ R, γi ∈ Γ}

where n = 0 corresponds to the identity. In particular, since f(r) = 1 for all
r ∈ R, it follows that f(w) = 1 for all w ∈ ⟪R⟫.

An arbitrary element of ⟨A ∣ R⟩ is of the form

q(w) = w⟪R⟫

for w ∈ F (A). By hypothesis, we must define

g ○ q(w) = f(w)

so g, if it exists, is unique. Furthermore, if q(w) = q(v) then v−1w ∈ ⟪R⟫, so
f(w) = f(v) and g ○ q(w) = g ○ q(v). This shows that g is well defined.
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Example 3.6. In Example 3.2 we saw that F ({a}) ≅ Z. Since Z is abelian,
every subgroup is normal and so ⟪an⟫ = ⟨an⟩. Therefore

⟨a ∣ an⟩ = ⟨a⟩/⟨an⟩ ≅ Z/nZ

as you would expect.

Example 3.7. Define the dihedral group D2n to be the group of symmetries
of the regular n-gon. Standard arguments (as seen in 1a Groups) show that
this is generated by a rotation ρ through angle 2π/n and a reflection σ, that
these satisfy the relations ρn = 1, σ2 = 1 and σρσ = ρ−1, and that D2n has
elements.

Consider now the alphabet A = {r, s} and the relations R = {rn, s2, rsrs}.
The universal properties of free groups and presentations together imply that
the assignment r ↦ ρ and s↦ σ extends uniquely to a homomorphism

⟨r, s ∣ rn, s2, rsrs⟩→D2n

which is surjective since ρ, σ generate D2n; in particular, ⟨r, s ∣ rn, s2, rsrs⟩
is of cardinality at least 2n. Using the relations R, we can show that any
element of ⟨r, s ∣ rn, s2, rsrs⟩ is an image of an element of F ({r, s}) of one
of the forms

1, r, . . . , rn−1, s, sr, sr2, . . . , srn−1 .

Therefore, the cardinality of ⟨r, s ∣ rn, s2, rsrs⟩ is at most 2n, and so the
canonical map ⟨r, s ∣ rn, s2, rsrs⟩→D2n is an isomorphism.

Example 3.8. Let G be a group. Consider the identity set map G → G. By
the universal property of free groups, there is a canonical homomorphism
F (G)→ G. Let R be the kernel of this map. It follows immediately that

G ≅ ⟨G ∣ R⟩

by the first isomorphism theorem. Thus, every group has a presentation – the
tautological presentation. However, these presentations are very inefficient –
indeed, they are never finite unless G is finite – and so they are not usually
of much use.

We can now give a precise definition of what it means to ‘glue two groups
A and B along a group C’. The definition is again via a universal property.

Definition 3.9. Consider a commutative square of group homomorphisms.
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C A

B Γ

j

i

k

l

(That is, we assume that k ○ i = l ○ j.) This diagram is called a pushout if it
satisfies the following universal property. Whenever G is a group and there
are homomorphisms f ∶ A → G, g ∶ B → G such that f ○ i = g ○ j, there exists
a unique homomorphism φ ∶ Γ → G such that f = φ ○ k and g = φ ○ l. This is
illustrated in the following commutative diagram.

C A

B Γ

G

j

i

k
f

l

g

φ

As in Remark 3.3(i), this definition defines Γ, together with the maps k
and l, uniquely up to canonical isomorphism. We may write Γ = A∐C B
(suppressing the dependence on i, j).

This has a number of important special cases.

Definition 3.10. If C is trivial then A∐C B is called the free product of A
and B, and is denoted by A ∗ B. More generally, if i, j are injective then
A∐C B is called the free product with amalgamation and denoted by A∗CB.

Example 3.11. The free product Z ∗Z satisfies the universal property of the
free group F2, so F2 ≅ Z ∗Z. This argument generalises to show that

F (S1 ⊔ S2) ≅ F (S1) ∗ F (S2) ,

and so by induction we can see that

Z ∗ . . . ∗Z
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r times

≅ Fr

for any r ∈ N.
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At the other end of the spectrum, we have the situation where one of the
groups A or B is trivial. In this case, we see that pushouts also generalise
quotients.

Lemma 3.12. For a map of groups i ∶ C → A and the trivial map j ∶ C → 1,
we have

A∐
C

1 ≅ A/⟪i(C)⟫ .

Proof. We just need to check that the quotient A/⟪i(C)⟫ satisfies the desired
universal property. Indeed, the hypotheses of the pushout diagram tell us to
consider a homomorphism f ∶ A → G such that, for all c ∈ C, f ○ i(c) = 1.
But this implies that f descends to a unique map φ ∶ A/⟪i(C)⟫ → G, as
required.

More generally, if we have presentations for the groups A and B and
generators for the group C then we can write down a presentation for the
pushout A∐C B.

Lemma 3.13. Suppose that A = ⟨S1 ∣ R1⟩ and B = ⟨S2 ∣ R2⟩. Suppose
furthermore that T is a generating set for C, and let ĩ ∶ T → F (S1) be a lift
of i and j̃ ∶ T → F (S2) a lift of j. Then

Γ = ⟨S1 ⊔ S2 ∣ R1 ∪R2 ∪ {̃i(t)−1j̃(t) ∣ t ∈ T}⟩

is a presentation for A∐C B.

Proof. We need to check that the presentation satisfies the universal property
of pushouts. Suppose we are given homomorphisms f ∶ A→ G and g ∶ B → G.
Consider the following monstrous commutative diagram.

T F (S1)

C A

F (S2) B Γ

G

ĩ

j̃

q1

f̃
j

i

k

f

g̃

q2 l

g
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where q1 ∶ F (S1) → A and q2 ∶ F (S2) → B are the natural quotient maps,
k ∶ A → Γ and l ∶ B → Γ are the canonical homomorphisms induced by the
natural maps S1 → Γ and S2 → Γ, and f̃ = f ○ q1, g̃ = g ○ q2. In particular,
note that f̃(R1) = g̃(R2) = 1 and f̃ ○ ĩ(t) = g̃ ○ j̃(t) for any t ∈ T . The
universal property of free products now gives us a canonical homomorphism
φ̃ ∶ F (S1) ∗ F (S2) → G that agrees with f̃ on F (S1) and g̃ on F (S2); in
particular, φ̃(R1) = φ̃(R2) = 1. Furthermore, for any t ∈ T ,

φ̃ ○ ĩ(t) = f̃ ○ ĩ(t) = g̃ ○ j̃(t) = φ̃ ○ j̃(t)

so ι̃(t)−1j̃(t) ∈ ker φ̃. Therefore, by the universal property of presentations,
φ̃ induces a unique homomorphism φ ∶ Γ → G. It remains to check that φ
makes the diagram commute.

For an arbitrary element a = q1(w) ∈ A (with w ∈ F (S1)), we have that

φ ○ k(a) = φ̃(w) = f̃(w) = f ○ q1(w) = f(a)

as required, and similarly φ ○ l(b) = g(b) for b ∈ B. So φ does indeed make
the diagram commute, as required.

3.2 The Seifert–van Kampen theorem for wedges

We’ll start with a simple version of the theorem.

Definition 3.14. Let X,Y be spaces equipped with base points x0, y0 re-
spectively. The wedge of X and Y is defined to be

X ∨ Y ∶=X ⊔ Y / ∼

where ∼ is the smallest equivalence relation such that x0 ∼ y0. Note that as
long as X,Y are path-connected, the wedge only depends on the choices of
x0, y0 up to homotopy equivalence, so the fact that the notation suppresses
the base points isn’t a big problem.

We can now state our first version of the Seifert–van Kampen theorem.

Theorem 3.15 (Seifert–van Kampen theorem for wedges). Suppose that
X = Y1 ∨ Y2 with Y1, Y2 path-connected and x0 the wedge point. Suppose,
furthermore, that Y1 and Y2 each contain an open neighbourhood that defor-
mation retracts to the wedge point. Then

π1(X,x0) = π1(Y1, x0) ∗ π1(Y2, x0) .
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Sketch proof (non-examinable): Consider homomorphisms fi ∶ π1(Yi, x0) →
G. We need to construct the canonical homomorphism φ ∶ π1(X,x0)→ G.

First, we modify X by a homotopy equivalence to make it easier to anal-
yse. Consider

X ′ = Y1 ⊔ I ⊔ Y2/ ∼

so that 0 ∈ I is glued to the base point of Y1 and 1 ∈ I is glued to the base
point of Y2. Then it is not difficult to prove that X ′ ≃X (cf. Example Sheet
1, question 9). Let’s take x0 = 1/2 ∈ I, and write Y ′

1 = Y1 ∪ [0,1/2] and
Y ′

2 = Y2 ∪ [1/2,1].
Consider a loop γ in X ′ based at x0. We can ‘straighten’ γ so that it can

be written as a concatenation

γ = α1 ⋅ β1 ⋅ α2 ⋅ . . . ⋅ βn−1 ⋅ αn ⋅ βn

where the αi are loops in Y ′

1 based at x0 and the β′i are loopsin Y ′

2 based at
x0. Now we are forced to set

φ(γ) = f1(α1)f2(β1) . . . f1(αn)f2(βn) .

It follows easily that φ, if well defined, is unique and a homomorphism, as
required, but we still need to check that it is well defined.

To check that it is well defined, we need to show that φ was independent
of the homotopy-representative γ. Let

γ′ = α′1 ⋅ β′1 ⋅ α′2 ⋅ . . . ⋅ β′m−1 ⋅ α′m ⋅ β′m

be another ‘straightened’ loop in the same homotopy-class as γ, and let F
be a homotopy of paths from γ to γ′. We can also ‘straighten’ the homotopy
F so that it is always transverse to x0. This means that F −1(x0) is a finite
embedded union of arcs and circles in the square I × I, where the endpoints
of the arcs lie in the boundary of I × I.

There are now various cases to consider. If there is a circle in F −1(x0)
then the disc that it bounds can be cut out and removed (since the whole
boundary is sent to x0). If there is an arc of F −1(0) starts and ends on γ
then that shows that a sub-path of γ is homotopy as a path to x0. This
shows that γ can be modified by a homotopy to reduce n without changing
φ(γ). Likewise, if there is an arc in F −1(x0) with endpoints on γ′ thenwe
can modify γ′ by a homotopy to reduce m. A similar argument applies if we
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have an arc in F −1(0) with one endpoint on γ or γ′ and one endpoint on the
constant sides of the square.

At the end of this process, F −1(0) consists of a finite number of arcs, each
with one endpoint on γ and the other on γ′. This shows that m = n, and also
that αi ≃ α′i and βi ≃ β′i as paths, for each i. It follows that φ(γ) = φ(γ′), so
φ is well defined.

Let’s give some applications immediately.

Example 3.16. Theorem 3.15 combined with Example 2.20 and Lemma 3.11
show us that

π1(S1 ∨ S1) ≅ Z ∗Z ≅ F2 .

In particular, the free group of rank 2 exists.

Similar considerations tell us that all free groups exist.

Example 3.17. Let A be any finite set and consider the wedge product

⋁
A

S1 ∶= (A × S1)/ ∼

where ∼ is the smallest equivalence relation that identifies (a,1) for all a ∈ A.
It now follows that

π1(⋁
A

S1) ≅ F (A)

by induction, just as in Example 3.16. Thus all free groups of finite rank Fr
exists.

Remark 3.18. In fact, it is not difficult to show that π1(⋁A S1) ≅ F (A) for
any set A, so in fact all free groups exist.

3.3 The full theorem

In fact, the theorem holds in much greater generality. We are interested in
the situation where our topological space X is covered by sets Y1 and Y2,
with intersection Z. We’ll write X = Y1 ∪Z Y2 for this situation.

Theorem 3.19 (Seifert–van Kampen theorem). Suppose that Y1, Y2 ⊆X are
open subsets and X = Y1 ∪Z Y2 with Y1, Y2, Z all path-connected. Let x0 ∈ Z,
and let ik ∶ Z → Yi, jk ∶ Yi →X be the inclusion maps (for k = 1,2). Then the
diagram

34



π1(Z,x0) π1(Y1, x0)

π1(Y2, x0) π1(X,x0)

i2

i1

j1

j2

is a pushout.

The proof is a more elaborate version of the proof of Theorem 3.15, and
we won’t give it here.

The conclusion of the theorem looks abstract, but in fact Lemma 3.13
shows us that if we have presentations of π1(Y1) and π1(Y2) and a good
understanding of the maps i1, i2 then we can write down a presentation for
π1(X). Let’s see some important examples.

Example 3.20. Let Sn be the n-sphere, let x± = (±1,0, . . . ,0), let U± = Sn −
{x∓} and let V = Sn − {x+, x−}. Then we see that

Sn = U+ ∪V U−

so we can apply the Seifert–van Kampen theorem as long as V is path-
connected.

Now, stereographic projection provides homeomorphisms U± ≅ Rn, so
these are contractible and hence simply connected. We may also easily write
down a horizontal projection π of V to a cylinder (−1,1) × Sn−1: for x =
(x1, x2, . . . xn) ∈ V and x′ = (x2, . . . , xn) ∈ Rn−1, the map

π ∶ V → (−1,1) × Sn−1

x ↦ (x1, x
′/∥x′∥)

is a homeomorphism. Thus we see that V ≃ Sn−1 which is path-connected as
long as n > 1. Choosing a base point in V , the Seifert–van Kampen theorem
now tells us that the commutative square

π1(V ) 1

1 π1(Sn)

is a pushout, so it follows that π1(Sn) is trivial by Lemma 3.12. Therefore
Sn is simply connected for n ≥ 2.
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An inconvenient feature of Theorem 3.19 is that the pieces Y1, Y2 are
required to be open. In fact, we can work with closed pieces as long as they
are sufficiently nice.

Definition 3.21. A subset Y ⊆ X is called a neighbourhood deformation
retract if Y has an open neighbourhood

Y ⊆ V ⊆X

such that Y is a deformation retract of V .

It’s not hard to see that the Seifert–van Kampen theorem works equally
well when Y1, Y2 are closed and the intersection Z is a neighbourhood defor-
mation retract.

Corollary 3.22. Suppose that Y1, Y2 ⊆X are closed subsets and X = Y1∪Z Y2

with Y1, Y2, Z all path-connected. Let x0 ∈ Z, and let ik ∶ Z → Yi, jk ∶ Yi →
X be the inclusion maps (for k = 1,2). Suppose furthermore that Z is a
neighbourhood deformation retract in both Y1 and Y2. Then the diagram

π1(Z,x0) π1(Y1, x0)

π1(Y2, x0) π1(X,x0)

i2

i1

j1

j2

is a pushout.

Proof. Let
Z ⊆ V2 ⊆ Y2

be an open neighbourhood of Z so that Z is a deformation retract of V2.
Then U1 = Y1 ∪V2 is open in X, and it is easy to see that Y1 is a deformation
retract of U1. Similarly, Y2 is a deformation retract of an open set U2 = Y2∪V1,
and Z is a deformation retract of the intersection W = U1∩U2 = V1∪V2. This
allows us to rewrite the commutative square in the statement of the corollary
as

π1(W,x0) π1(U1, x0)

π1(U2, x0) π1(X,x0)

i2

i1

j1

j2

and the result now follows by applying Theorem 3.19.
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3.4 Attaching cells

The Seifert–van Kampen theorem allows us to write down presentations for
a very large class of ‘reasonable’ spaces.

Definition 3.23. Let X be a topological space and let α ∶ Sn−1 → X be a
continuous map. The space

X ∪αDn ∶=X ⊔Dn/ ∼

where ∼ is the smallest equivalence relation that identifies θ ∈ Sn−1 = ∂Dn

with α(θ) is said to be the result of attaching an n-cell to X.

The Seifert–van Kampen theorem enables us to precisely compute the
effect on the fundamental group of attaching an n-cell. We first start with
the case when n ≥ 3.

Lemma 3.24. If n ≥ 3 then the inclusion map i ∶ X → X ∪α Dn induces an
isomorphism on fundamental groups.

Proof. The mapping cylinder of α is the space

Mα ∶= (X ⊔ Sn−1 × I)/ ∼

where (θ,0) ∼ α(θ) for all θ ∈ Sn−1. Identify Sn−1 with Sn−1 × {1} ⊆Mα, and
note that Sn−1 is now a neighbourhood deformation retract in both Mα and
Dn. Note also that

X ∪αDn ≅Mα ∪Sn−1 Dn .

We can now apply Corollary 3.22 with a basepoint in Sn−1 to see that the
diagram

π1(Sn−1,X0) π1(Mα, x0)

π1(Dn, x0) π1(X ∪αDn, x0)

is a pushout. Since π1(Sn−1,X0) ≅ π1(Dn, x0) ≅ 1, it follows easily that the
map π1(Mα, x0) → π1(X ∪αDn, x0) induced by inclusion is an isomorphism.
Changing base points, this also applies to any base point in X, and since X
is a deformation retract of Mα, the result follows.
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In this sense, the fundamental group doesn’t ‘see’ any n-dimensional in-
formation about the space if n ≥ 3. Something more interesting happens
when we attach a 2-cell. In this case, given a choice of base point on S1,
the map α defines a based loop in X, corresponding to an element [α] of
the fundamental group of X. Attaching a 2-cell along this loop precisely
corresponds to killing it in the fundamental group.

Lemma 3.25. Let α ∶ S1 →X be a continuous map, and choose a base point
x0 = α(θ0) for θ0 ∈ S1. Then

π1(X ∪αD2, x0) ≅ π1(X,x0)/⟪[α]⟫

and the inclusion map i induces the quotient map on fundamental groups.

Proof. The proof proceeds in exactly the same way as Lemma 3.24, and we
obtain the fact that, for a base point in x0 ∈ S1, the following diagram is a
pushout.

π1(S1, θ0) π1(X,x0)

π1(D2, θ0) π1(X ∪αD2, x0)

Since D2 is simply connected and α∗π1(S1, θ0) = [α], the result follows from
Lemma 3.12.

Another way to state Lemma 3.25 is that if ⟨A ∣ R⟩ is a presentation
for π1X and we attach a 2-cell to X along a loop α then the fundamental
group of the resulting space has presentation ⟨A ∣ R, [γ]⟩. This enables us to
characterise very precisely the fundamental groups of spaces constructed in
this way. In particular, we can construct spaces with a very wide range of
fundamental groups!

Theorem 3.26. For any finitely presented group G there is a compact space
X such that

π1(X,x0) ≅ G
for any base point x0.

Proof. Suppose that G = ⟨A ∣ R⟩ for A and R finite. By example 3.17 there
is a path-connected space X(1) such that X(1)≅F (A). Applying Lemma 3.25
inductively, we obtain a path-connected space X with π1(X,x0) ≅ G.
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In fact, using Example 3.8 and a little more care, every group is the
fundamental group of a space X. However, we cannot in general assume
that the space is compact.

3.5 The classification of surfaces

We’ll finish our discussion of the fundamental group by computing the fun-
damental groups of another important class of examples.

Definition 3.27. An n-dimensional (topological) manifold is a Hausdorff
topological space M such that every point x ∈ M has a neighbourhood U
homeomorphic to an open neighbourhood in Rn. A 2-dimensional manifold
is called a surface.

Manifolds are the basic objects of study in topology. We can build a large
number of examples by attaching 2-cells to wedges of circles. We start with
the most basic example.

Example 3.28. Let α ∶ S1 → ∗ be the constant map and consider

X = ∗ ∪αD2 .

If we identify R2 with the interior of D2 then stereographic projection defines
a homeomorphism between the interior of D2 and S2−{x0} for any point x0.
This homeomorphism extends to a continuous bijection

X → S2

which is a homeomorphism since X is compact and S2 is Hausdorff.

This example extends naturally to a large family of examples.

Example 3.29. Let g ∈ N and consider the wedge

Γ2g ∶=
2g

⋁
i=1

S1
i

where each S1
i is a circle. For each 1 ≤ i ≤ g, let αi ∶ I → S1

i and βi ∶ I → S1
i+g

be paths that restrict to homeomorphisms on the interior of I. We now
consider the path

ρg ∶= α1 ⋅ β1 ⋅ ᾱ1 ⋅ β̄1 ⋅ α2 ⋅ . . . ⋅ β̄g−1 ⋅ αg ⋅ βg ⋅ ᾱg ⋅ β̄g
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and let Σg ∶= Γ2g ∪ρg D2.
The space Σg is actually a compact surface. To see this, we need to check

that every point in Σg has a neighbourhood homeomorphic to an open disc
in R2. This is clear for points in the interior of D2. For points x ∈ Γ2g which
are not the wedge point, it’s also easy to see: x is in the image of exactly two
points of ∂D2, each of which has a neighbourhood which is an open half-disc;
these two half-discs glue together to give a disc.

Finally, we need to consider the cone point x0. This is the image of 2g
points in ∂D2, which we should think of as the vertices of a regular 2g-gon.
Each of these has a small neighbourhood which we can think of as an open
sector of angle π/g. These neighbourhoods necessarily glue together in Σg to
make a wedge of discs, and in fact we can check from the combinatorics of
the concatenation ρg that they glue together to make a single disc.

It’s not hard to see that this corresponds to identifying sides of a 2g-gon
in a certain pattern of pairs. The surface Σg is called the orientable surface
of genus g. Lemma 3.25 implies that

π1Σg ≅ ⟨a1, . . . , ag, b1, . . . , bg ∣ a1b1a
−1
1 b

−1
1 . . . agbga

−1
g b

−1
g ⟩ .

Note that Σ0 ≅ S2 and Σ1 is homeomorphic to the 2-torus T 2 ∶= S1 × S1.

Example 3.30. Let g ∈ N and consider the wedge

Γg+1 ∶=
g

⋁
i=0

S1
i

where each S1
i is a circle. For each 0 ≤ i ≤ g, let αi ∶ I → S1

i be a path that
restricts to a homeomorphism on the interior of I. We now consider the path

σg ∶= α0 ⋅ α0 ⋅ α1 ⋅ α1 ⋅ . . . αh ⋅ αg

and let Sg ∶= Γg+1∪σgD2. As in Example 3.29, Sg is a compact surface, called
the non-orientable surface of genus g. Again, Lemma 3.25 implies that

π1Sg ≅ ⟨a0, a1, . . . , ag ∣ a2
0a

2
1 . . . a

2
g⟩ .

It’s a nice exercise to check that S0 ≅ RP 2. The surface S1 is the Klein bottle.

Amazingly, in dimension 2 we have a complete classification of compact
manifolds.
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Theorem 3.31 (Classification of compact surfaces). Any compact surface
X is homeomorphic to Σg or Sg, or some g.

The proof of this theorem is beyond the scope of this course, and so
is omitted here. But Theorem 3.31 leaves open the following important
question: are the surfaces Σg and Sg pairwise non-homeomorphic, or even
non-homotopy-equivalent? We can answer this using our calculations of the
fundamental group. The following lemma characterises the groups π1Σg and
π1Sg via their abelian quotient groups.

Lemma 3.32. Let g ∈ N. The group π1Σg surjects Z2g but not Z2g⊕(Z/2Z).
The group π1Sg surjects Zg ⊕ (Z/2Z) but not Zg+1.

Proof. We start with

π1Σg ≅ ⟨a1, . . . , ag, b1, . . . , bg ∣ a1b1a
−1
1 b

−1
1 . . . agbga

−1
g b

−1
g ⟩ .

Let {āi, b̄i ∣ 1 ≤ i ≤ g} be a basis for Z2g. The assignment ai ↦ āi, bi ↦ b̄i
sends ρg to 0, so by Lemma 3.5, it extends to a surjective homomorphism.

On the other hand, suppose f ∶ π1Σg → Z2g ⊕ (Z/2Z) is a surjection.
Composing with reduction modulo 2, we get a surjection π1Σg → (Z/2Z)2g+1,
and so the latter is generated by the 2g elements {f(ai), f(bi) ∣ 1 ≤ i ≤ g},
which is absurd.

Now consider

π1Sg ≅ ⟨a0, a1, . . . , ag ∣ a2
0a

2
1 . . . a

2
g⟩ .

Let {āi ∣ 1 ≤ i ≤ g} be a basis for the Zg factor of Zg ⊕ (Z/2Z), and let c̄0

generate the Z/2Z factor. The assignment ai ↦ āi for 1 ≤ i ≤ g and

a0 ↦ c̄0 −
g

∑
i=1

āi

sends σg to 0, so extends to a surjective homomorphism π1Sg → Zg⊕(Z/2Z).
On the other hand, suppose f ∶ π1Sg → Zg+1 is a surjection. Then the set

{f(ai) ∣ 0 ≤ i ≤ g} generates Zg+1, but

g

∑
i=1

2f(ai) = 0 ,

which is absurd.
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4 Simplicial complexes

We have used the fundamental group to prove some very nice theorems (such
as the Brouwer fixed-point theorem), but its usefulness is limited by the
fact that it doesn’t tell us anything interesting about the higher-dimensional
spheres, for instance. There are various kinds of ‘higher-dimensional’ in-
variants that one can define. In this course, we are going to use simplicial
homology. But before we do that, we need to define the class of spaces for
which it works. These are the simplicial complexes of the title of this section.

4.1 Simplices and stuff

Simplicial complexes form a large, but very well behaved, class of spaces.
The basic building block is a simplex (plural simplices).

Definition 4.1. A finite set V = {v0, . . . , vn} ⊆ Rm is said to be in general
position if the smallest affine subspace that contains A is of dimension n.
There are various other formulations that are easily seen to be equivalent:

(a) the set of vectors {v1 − v0, . . . , vn − v0} is linearly independent;

(b) for any scalars s1, . . . , sn, if

n

∑
i=1

si(vi − v0) = 0

then every si = 0;

(c) for any scalars t0, . . . , tn such that ∑i t0 = 0, if

n

∑
i=0

tivi = 0

then every ti = 0.

In particular, m ≥ n.

Simplices are the convex hulls of finite sets of points in general position.

Definition 4.2. Let n ≥ 0. If V = {v0, . . . , vn} ⊆ Rm then the set

⟨V ⟩ ∶= {
n

∑
i=0

tivi ∣
n

∑
i=0

ti = 1 , ti ≥ 0}
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is called the span of V . If V is in general position then ⟨V ⟩ is said to be an
n-simplex, and n is the dimension of ⟨V ⟩.

Each simplex comes with a natural collection of subsimplices.

Definition 4.3. If V ⊆ Rn is in general position and U ⊆ V then ⟨U⟩ ⊆ ⟨V ⟩
is said to be a face of the simplex ⟨V ⟩, and we write ⟨U⟩ ≤ ⟨V ⟩. If U ≠ V
then ⟨U⟩ is a proper face of ⟨V ⟩.
Remark 4.4. Since the ∅ ⊆ V , every simplex σ has an empty face, which is
the (empty) span of the empty set.

A simplicial complex is now defined to be a finite collection of simplices
that can be glued together along their faces.

Definition 4.5. A (geometric) simplicial complex is a finite set K of sim-
plices in Rm (for some suitably large m) such that:

(a) if σ ∈K and τ ≤ σ then τ ∈K;

(b) if σ, τ ∈K then the intersection σ ∩ τ is a face of both σ and τ .

The dimension of K is the largest n such that K contains an n-simplex. The
d-skeleton of K is defined to be

K(d) ∶= {σ ∈K ∣ dim(σ) ≤ d} .

Example 4.6. The set of faces of a simplex σ is clearly a simplicial complex.

Example 4.7. The set of proper faces of an n-simplex σ is also a simplicial
complex, namely the (n−1)-skeleton of σ. It is called the boundary of σ and
denoted by ∂σ. The set of points that are in σ but not in a simplex of ∂σ
are called the interior of σ, denoted by σ̊.

Remark 4.8. For n > 0, the interior σ̊ coincides with the usual notion. How-
ever, a 0-simplex σ has no non-empty proper faces, so the boundary is empty
and σ̊ = σ!

Simplicial complexes provide us with a convenient way of building spaces.

Definition 4.9. If K is a simplicial complex in Rm, the polyhedron or reali-
sation of K is

∣K ∣ ∶= ⋃
σ∈K

σ ,

the union of the simplices in K. More generally, if X is any topological
space, a triangulation of X is a homeomorphism h ∶ ∣K ∣ → X, where K is
some simplicial complex.
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Example 4.10. Consider Rn+1 equipped with a basis e0, . . . , en. The standard
n-simplex is the span of the basis vectors, σn ∶= ⟨e0, . . . , en⟩. It’s easy to see
that there exists a triangulation h ∶ σn →Dn.

Example 4.11. The standard simplicial (n − 1)-sphere is defined to be ∂σn,
where σn is the standard n-simplex. It’s so-called because the triangulation
h ∶ σn →Dn restricts to a triangulation ∣∂σn∣→ Sn−1.

Example 4.12. As above, let e0, . . . , en be the standard basis for Rn+1. Let
E ∶= {±e0, . . . , en} and let E0 be the set of subsets S ⊆ E such that, for each
i ∈ I, we do not have both ei ∈ S and −ei ∈ S. Each S ∈ E0 is in general
position, and so

K ∶= {⟨S⟩ ∣ S ∈ E0}

is a set of simplices. If T ⊆ S ∈ E0 then T ∈ E0, from which it follows that
K is closed under passing to faces. Furthermore, it is easy to check directly
that, for any S,T ∈ E0,

⟨S⟩ ∩ ⟨T ⟩ = ⟨S ∩ T ⟩

from which it follows that K is closed under taking intersections. Therefore,
K is a simplicial complex. For any vector v ∈ Rn+1 −{0}, it’s easy to see that
the ray from 0 through v passes through a unique point of ∣K ∣. It follows
that the map

h ∶ ∣K ∣ → Sn

v ↦ v

∥v∥

is a triangulation.

Having defined our objects of study, we of course next need to define the
maps between them.

Definition 4.13. Let K, L be simplicial complexes. A simplicial map is a
map f ∶K → L such that:

(i) each 0-simplex ⟨v⟩ ∈K is sent to a 0-simplex ⟨f(v)⟩ ∈ L; and

(ii) f(⟨v0, . . . , vn⟩) = ⟨f(v0), . . . , f(vn)⟩ for any ⟨v0, . . . , vn⟩ ∈K.

Note that the images are not required to be in general position, just to span
a simplex.
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The realisation of f ∶K → L is the continuous map ∣f ∣ ∶ ∣K ∣ → ∣L∣ defined
to be equal to

fσ (
m

∑
i=0

tivi) =
m

∑
i=0

tif(vi)

on σ = ⟨v0, . . . , vm⟩ Note that ∣f ∣ is well defined and continuous, since fσ is
continuous and fσ = fτ when τ ≤ σ.

Remark 4.14. The realisation of the 0-skeleton, ∣K(0)∣, is called the set of
vertices of K, and denoted by VK . A very convenient feature of simplicial
maps is that they are determined by their values on the vertices.

4.2 Barycentric subdivision

Since we need to study arbitrary continuous maps, we would like to prove
that every continuous map between realisations is homotopic to a realisation
of a simplicial map. However, we quickly run into a problem.

Example 4.15. Let K = ∂σ2, the standard simplicial circle. On the one hand,
∣K ∣ ≅ S1, so there are infinitely many homotopy classes of maps ∣K ∣ → ∣K ∣.
On the other hand, a simplicial map K →K is determined by the images of
the three vertices, so there are at most 33 = 27 simplicial maps K → K. In
particular, it is certainly not the case that every continuous map is homotopic
to a realisation of a simplicial map.

We fix this problem by subdividing.

Definition 4.16. Let V = {v0, . . . , vn} be in general position. The point

σ̂ ∶= 1

n + 1

n

∑
i=0

vn

is called the barycentre of the simplex σ ∶= ⟨V ⟩.

Barycentres fit nicely together, and from this we obtain a way to subdivide
a simplicial complex. The idea is to that the vertices of the subdivided
complex should be the barycentres of the simplices of the original complex.

Definition 4.17. Let K be a simplicial complex. The barycentric subdivi-
sion K ′ is the simplicial complex defined as follows. The vertices are the
barycentres of the simplices of K.

VK ∶= {σ̂ ∣ σ ∈K}
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These vertices span a simplex precisely when the corresponding collection of
simplices is a nested collection of faces. That is

⟨σ̂1, σ̂2, . . . , σ̂n⟩ ∈K ′

if and only if σ1 ≤ σ2 ≤ . . . ≤ σn.

It’s not completely obvious that K ′ has the properties we expect, but this
is checked in the following result.

Lemma 4.18. Let K be a simplicial complex. Then K ′ is a simplicial com-
plex, and ∣K ′∣ = ∣K ∣.

Proof. We first check that each of the spans in the definition really is a
simplex. By removing redundancies, we may suppose that σ1 � σ2 � . . . �
σn. Now suppose that ∑n

i=0 ti = 0 and ∑n
i=0 tiσ̂i = 0. Let j be maximal such

that tj ≠ 0. It follows that

σ̂j = −
j−1

∑
i=0

ti
tj
σ̂i

which implies that σ̂j is contained in a proper face of σj, a contradiction.
Therefore the set of barycentres {σ̂1, σ̂2, . . . , σ̂n} is in general position, and
so ⟨σ̂1, σ̂2, . . . , σ̂n⟩ is a simplex, as claimed.

We next check that K ′ really is a simplicial complex. We do this by
induction on dimK. It’s immediate from the definition that K ′ is closed
under passing to faces, so it remains to check that K ′ is closed under taking
intersections. The simplex ⟨σ̂1, σ̂2, . . . , σ̂n⟩ of K ′ is contained in σn, so we may
reduce to the case of two simplices σ′, τ ′ ∈K ′ both contained in some common
simplex δ ∈ K. If either σ′ or τ ′ doesn’t contain δ̂, then their intersection is
contained in ∂δ. If both σ′, τ ′ contain δ̂, then their intersection is equal to
the span of δ̂ and the intersection of (σ′ ∩ ∂δ) ∩ (τ ′ ∩ ∂δ). In either case, we
reduce to the case of δ̂ which is of lower dimension.

Finally, it remains to check that ∣K ′∣ = ∣K ∣. By definition, each simplex
⟨σ̂1, σ̂2, . . . , σ̂n⟩ ∈ K ′ is contained in σn ∈ K, so ∣K ′∣ ⊆ ∣K ∣. The reverse
inclusionis again proved by induction on dimK. Consider σ = ⟨v0, . . . , vm⟩ ∈
K and x ∈ σ, with a view to showing that x ∈ ∣K ′∣. If x = σ̂ there is nothing
to prove. Otherwise, we may consider the projection π(x) of x from σ̂ onto
the boundary ∣∂σ∣. By induction, π(x) is in a simplex

⟨σ̂1, σ̂2, . . . , σ̂n−1⟩ ∈K ′
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where each σi is a proper face of σ. It now follows that x ∈ ⟨σ̂1, σ̂2, . . . , σ̂n−1, σ̂⟩ ∈
K ′, as required.

Our aim is to subdivide repeatedly, to make the complex finer.

Definition 4.19. We inductively define K(0) ∶= K and K(r) ∶= (K(r−1))′ for
r > 0. The complex K(r) is called the rth barycentric subdivision of K.

We next need to formalise the intuitive notion of how ‘fine’ a complex is.

Definition 4.20. For K a simplicial complex, the quantity

mesh(K) ∶= max
⟨u,v⟩∈K

∥u − v∥

is called the mesh of K. That is, it is the `2-norm of the longest 1-simplex
in K.

Remark 4.21. Note that mesh(K) is also the maximal diameter of any sim-
plex of K.

The next lemma now makes precise the idea that K(r) becomes increas-
ingly fine as r increases.

Lemma 4.22. If dimK = n then

mesh(K(r)) ≤ ( n

n + 1
)
r

mesh(K)

for any r. In particular, mesh(K(r))→ 0 as r →∞.

Proof. It suffices to handle the case r = 1. If ⟨u, v⟩ ∈K ′ then u = τ̂ and v = σ̂,
for τ ≤ σ without loss of generality. Since distance to a simplex is maximised
on a vertex, we may further assume that τ is a 0-simplex, so τ̂ is a vertex of
σ. Let σ = ⟨v0, . . . , vm⟩ with τ̂ = v0. Now

∥τ̂ − σ̂∥ = ∥v0 −
1

m + 1

m

∑
i=0

vi∥

= ∥ m

m + 1
v0 −

1

m + 1

m

∑
i=1

vi∥

= 1

m + 1
∥
m

∑
i=1

v0 − vi∥

≤ m

m + 1
mesh(K)

≤ n

n + 1
mesh(K)
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as required.

4.3 The simplicial approximation theorem

The main theorem of this section will tell us that every continuous map
between realisations of simplicial complexes is homotopic to the realisation
of a simplicial map, after subdividing often enough.

Definition 4.23. Let K be a simplicial complex. The (open) star of a vertex
v of K is the union of the interiors of the simplices that contain v.

StK(v) ∶= ⋃
v∈σ
σ̊

Definition 4.24. Let K and L be simplicial complexes, and φ ∶ ∣K ∣ → ∣L∣ a
continuous map. A simplicial map f ∶ K → L is a simplicial approximation
to φ if

φ(StK(v)) ⊆ StL(f(v))

for every vertex v of K.

For simplicial approximations to do the job we want them to, we need
them to be homotopic to the original map. The next lemma guarantees this.

Lemma 4.25. If f ∶ K → L is a simplicial approximation to φ ∶ ∣K ∣ → ∣L∣
then ∣f ∣ ≃ φ.

Proof. Let ∣L∣ be contained in the ambient vector space Rm. We will show
that straight-line homotopy between ∣f ∣ and φ has image contained in ∣L∣.

Consider x ∈ ∣K ∣, contained in the interior of a unique simplex σ, and let
φ(x) be contained in the interior of the simplex τ ∈ L. We will show that
f(σ) is a face of τ .

Let vi be a vertex of σ. Then x ∈ StK(vi) and so

φ(x) ∈ φ(StK(vi)) ⊆ StL(f(vi))

since f is a simplicial approximation to φ. Therefore, τ̊ ⊆ StL(f(vi)) and so
f(vi) is a vertex of τ . So every vertex of σ is sent by f to a vertex of τ , and
f(σ) is a face of τ , as claimed.

Since τ is convex in Rm, it follows that the straight line between ∣f ∣(x)
and φ(x) is contained τ , and the result follows.
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We are now ready to prove the main theorem.

Theorem 4.26 (Simplicial approximation theorem). Let K,L be simplicial
complexes and φ ∶ ∣K ∣ → ∣L∣ a continuous map. For some r ∈ N, there exists
a simplicial approximation f ∶K(r) → L to φ.

Proof. The collection of open sets U = {φ−1StL(u) ∣ u ∈ VL} is an open cover
of ∣K ∣. We next prove that there is a δ > 0 such that, for every x ∈ ∣K ∣, the
ball B(x, δ) is contained in some element of U . (This statement about open
covers is called the Lebesgue number lemma.)

If not then, for each n, there is xn ∈ ∣K ∣ so that B(xn,1/n) is not contained
in any U . Taking a subsequence, we may assume that the sequence (xn)
converges to a limit x. But then x ∈ U for some U ∈ U , so B(x, ε) ⊆ U for some
ε > 0. Now d(xn, x) < ε/2 for sufficiently large n, and so B(xn, ε/2) ⊆ U . When
1/n < ε/2, this contradicts the assumption that B(xn,1/n) is not contained
in any U .

By Lemma 4.22, we may choose r sufficiently large that mesh(K(r)) < δ.
For each vertex v of K(r), we now have that

StK(r)(v) ⊆ B(v, δ) ⊆ φ−1(StL(u))

for some u a vertex of L. Set f(v) = u. This is now constructed to be a
simplicial approximation, but we still need to check that it is a simplicial
map: i.e. that f sends simplices of K(r) to simplices of L.

As in the proof of Lemma 4.25, if σ is a simplex of K and x ∈ σ̊ then
f(σ) is a face of τ , the unique simplex of L containing φ(x) in its interior.
In particular, f(σ) is a simplex, as required.

We have already seen that it is sometimes useful to be able to construct
relative homotopies. This is easy to arrange, at least relative to vertices.

Remark 4.27. If S is a subset of VK such that φ(S) ⊆ VL then we may
take f(v) = φ(v) for all v ∈ S (by choosing δ in the proof a little smaller
if necessary). In this case, the straight-line homotopy between ∣f ∣ and φ is
relative to S.

5 Homology

We are now ready to define a new algebraic invariant of a topological space –
homology. We will see that it has the advantage that, unlike the fundamental
group, it can detect higher-dimensional phenomena.
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5.1 Simplicial homology

The fundamental group was defined using paths. The corresponding notion
for homology is chains. These are formal sums of simplices. It’s easy to inter-
pret 2σ as two copies of σ, but it’s less clear how to interpret the expression
−σ. To do this we define oriented simplices.

Definition 5.1. Let V = (v0, . . . , vn) be an ordered set of points in general
position in Rm. We consider the natural action of the symmetric group Sn+1

on V . As long as n ≥ 1, there are two orbits of the alternating group An+1

under this action. An orientation on the simplex ⟨V ⟩ is a choice of one of
these orbits. An oriented simplex σ consists of the simplex σ together with
a choice of orientation on σ. We will abuse notation and write ⟨v0, . . . , vn⟩
to mean the oriented simplex determined by the orbit of (v0, . . . , vn). For
an oriented simplex σ, the notation σ̄ denotes the same simplex with the
opposite orientation.

Example 5.2. Consider an unoriented 1-simplex σ = ⟨v0, v1⟩. The two orien-
tations on σ correspond to the two orderings ⟨v0, v1⟩ and ⟨v1, v0⟩. We can
represent these pictorially by drawing a small arrow on σ from the first ver-
tex to the second vertex. So the two orientation corresponds to the intuitive
idea that we can travel along σ in two different directions.

Example 5.3. Consider an unoriented 2-simplex σ = ⟨v0, v1, v2⟩. The two ori-
entations on σ correspond to the two cyclic orderings ⟨v0, v1, v2⟩ and ⟨v2, v1, v0⟩.
On a drawing of σ, these correspond to travelling either clockwise or anti-
clockwise round the boundary of σ. We can represent these pictorially by
drawing a small rotating arrow on σ.

We are now ready to define the chains associated to a simplicial complex.

Definition 5.4. Let K be a simplicial complex. For each n ∈ N, the group
of n-chains on K is the free abelian group

Cn(K) ∶= ⊕
dimσ=n

⟨σ⟩

formally generated by the n-simplices of K. That is, elements of Cn(K) are
expressions of the form aσ + bτ + cυ + . . . where σ, τ, υ are n-simplices of K
and a, b, c ∈ Z. In particular, if K has no n-simplices (because n > dimK or
n < 0) then Cn(K) = 0.
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Choose an orientation arbitrarily on each simplex σ of K (of dimension
> 0). We then identify −σ with σ̄, the simplex with the opposite orienta-
tion. Note that the arbitrary choice of orientation did not change Cn(K)
dramatically, since changing the orientation of a simplex is reflected in the
automorphisms of Cn(K) that changes the sign of one of the generators.

So far the connection between Cn(K) and the topology of K is rather
slight. However, we next define homomorphisms that are intimately con-
nected with the way that K is constructed. Informally, these homomor-
phisms send simplices to their boundaries. To give a formal definition, we
need to be careful about orientations.

Definition 5.5. The boundary homomorphism ∂ ≡ ∂n ∶ Cn(K) → Cn−1(K)
is the homomorphism defined on a basis element σ = ⟨v0, . . . , vn⟩ as follows.

∂σ ∶=
n

∑
i=0

(−1)i⟨v0, . . . , v̂i, . . . , vn⟩

Here, the notation ⟨v0, . . . , v̂i, . . . , vn⟩ means the oriented (n − 1)-simplex de-
fined by omitting vi from the list. Note that that this is well defined. Indeed,
if we apply the transposition (j, j + 1) then dn(σ) becomes

j

∑
i=0

(−1)i⟨v0, . . . , v̂i, . . . , vj+1, vj, . . . , vn⟩ + (−1)j⟨v0, . . . , v̂j+1, vj, . . . , vn⟩

+(−1)j+1⟨v0, . . . , vj+1, v̂j, . . . , vn⟩ +
n

∑
i=j+2

⟨v0, . . . , vj+1, vj, . . . , v̂i, . . . , vn⟩

which equals −dn(σ). Since consecutive transpositions generate Sn+1, it fol-
lows that permutations act by multiplying by their sign, and so An+1 acts
trivially, as required.

Example 5.6. Let σ = ⟨v0, v1⟩. Then ∂σ = ⟨v1⟩−⟨v0⟩. Thus, the boundary can
be interpreted as the difference between the end vertex and the start vertex.

Example 5.7. Let σ = ⟨v0, v1, v2⟩. Then ∂σ = ⟨v1, v2⟩ − ⟨v0, v2⟩ + ⟨v0, v1⟩ =
⟨v0, v1⟩ + ⟨v1, v2⟩ + ⟨v2, v0⟩. Thus, ∂σ can be thought of as the 1-chain that
goes round the boundary, in the same direction as the orientation on σ.

This map allows us to define two important subgroups of chains.
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Definition 5.8. Let n ∈ Z. The group of n-cycles is the group

Zn(K) ∶= ker(∂n ∶ Cn(K)→ Cn−1K)) .

The group of n-boundaries is the group

Bn(K) ∶= im(∂n ∶ Cn+1(K)→ Cn(K)) .

So the n-cycles are the n-chains with no boundaries, and the n-boundaries
are the n-chains that are boundaries.

Continuing the analogy with the fundamental group, if chains are analo-
gous to paths, then cycles are analogous to loops, and boundaries are anal-
ogous to homotopies. The fact that makes it possible to define homology is
that every boundary is a cycle.

Lemma 5.9. For each n, Bn(K) ⊆ Zn(K), that is, the composition ∂ ○∂ = 0
in every dimension.

Proof. We only need to check that ∂ ○ ∂(σ) = 0 for an arbitrary oriented
simplex σ = ⟨v0, . . . , vn⟩. By definition,

∂σ =
n

∑
i=0

(−1)i⟨v0, . . . , v̂i, . . . , vn⟩ .

When working out ∂ ○ ∂(σ), we take out another vertex vj, and the sum
breaks into two parts depending on whether j < i or i < j. We compute:

∂ ○ ∂(σ) = ∑
j<i

(−1)j(−1)i⟨v0, . . . , v̂j, . . . , v̂i, . . . , vn⟩ +

∑
j>i

(−1)j−1(−1)i⟨v0, . . . , v̂i, . . . , v̂j, . . . , vn⟩

= ∑
j<i

(−1)i+j⟨v0, . . . , v̂j, . . . , v̂i, . . . , vn⟩ −

∑
j>i

(−1)i+j⟨v0, . . . , v̂i, . . . , v̂j, . . . , vn⟩ .

Reversing the roles of i and j, we see that the two terms cancel, and the
result follows.

We can now define simplicial homology, which measures how many cycles
fail to be boundaries.
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Definition 5.10. The nth (simplicial) homology group of a simplicial com-
plex K is defined to be the quotient

Hn(K) ∶= Zn(K)/Bn(K) .

Remark 5.11. Note the happy fact that, since Hn(K) is defined in terms
of linear maps of abelian groups, we can in principle always compute it.
However, this is very tedious in practice, and we will shortly see some very
useful techniques for simplifying computations.

It takes a while to understand this definition intuitively. The idea is that
the boundaries ‘fill in’ some of the cycles, so the homology groups measure
how many holes remain in K. This becomes a bit clearer if we compute a
couple of examples.

Example 5.12. Let K be the standard simplicial circle (i.e. 1-sphere). The
0-simplices are ⟨e0⟩, ⟨e1⟩ and ⟨e2⟩, and the 1-simplices are ⟨e0, e1⟩, ⟨e1, e2⟩
and ⟨e2, e0⟩. We take these oriented simplices to be bases for C0(K) and
C1(K). So C0(K) ≅ C1(K) ≅ Z3, and all the other chain groups are trivial.
In particular, Hk(K) = 0 when k < 0 or k > 2.

The only non-zero boundary map is ∂1; when written in these bases it
has the following matrix.

⎛
⎜
⎝

−1 0 1
1 −1 0
0 1 −1

⎞
⎟
⎠

To compute the homology groups, we put it in Smith normal form.

⎛
⎜
⎝

−1 0 1
1 −1 0
0 1 −1

⎞
⎟
⎠

∼
⎛
⎜
⎝

−1 0 1
0 −1 1
0 1 −1

⎞
⎟
⎠
∼
⎛
⎜
⎝

−1 0 1
0 −1 1
0 0 0

⎞
⎟
⎠

∼
⎛
⎜
⎝

−1 0 0
0 −1 0
0 0 0

⎞
⎟
⎠
∼
⎛
⎜
⎝

1 0 0
0 1 0
0 0 0

⎞
⎟
⎠

From this we see that im ∂1 is a Z2 direct factor of C0(K) and that ker∂1 ≅ Z.
We can now finish the computation.

H0(K) = Z0(K)/B0(K) = C0(K)/B0(K) ≅ Z2/Z2 ≅ Z
H1(K) = Z1(K)/B1(K) ≅ Z/0 ≅ Z
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The interpretation here is that H0(K) tells us that ∣K ∣ is path-connected
(see Lemma 5.14 below), while H1(K) tells us that ∣K ∣ has a one-dimensional
‘hole’.

Example 5.13. Let L be the standard 2-simplex σ2, together with its faces.
The 0- and 1-simplices are as in Example 5.12. There is also the unique
2-simplex ⟨e0, e1, e2⟩. Therefore, Ci(L) = Ci(K) for i = 0,1, and ∂1 is un-
changed. But we also have C2(K) = ⟨σ⟩ and another non-trivial boundary
map ∂2, represented by the following matrix.

( 1 1 1 )

Since the image of ∂2 is primitive and contained in ker∂1, in fact im ∂2 =
ker∂1. We also see that ker∂2 = 0. We can now compute the interesting
homology groups of L.

H0(L) = Z0(L)/B0(L) = C0(L)/B0(L) ≅ Z2/Z2 ≅ Z
H1(L) = Z1(L)/B1(L) = ker∂1/im ∂2 ≅ 0

H2(L) = Z2(L)/B2(L) = 0/0 ≅ 0

The interpretation here is that the 2-simplex added a boundary that ‘filled
in’ the 1-dimensional hole in ∣K ∣. Note that this is the same as the homology
of a point. This shouldn’t surprise us, since ∣L∣ is contractible.

The next lemma makes formal the idea that we’ve already seen, that
H0(K) ≅ Z tells us that ∣K ∣ is path-connected.

Lemma 5.14. Let K be a simplicial complex. If d is the number of path
components of ∣K ∣ then H0(K) ≅ Zd.

Proof. Let π0(K) be the set of path components of ∣K ∣.3 Let Z[π0(K)] be
the free abelian group with basis π0(K). There is a natural map

q ∶ C0(K)→ Z[π0(K)]

that sends 0-simplex ⟨v⟩ of K to the path component [v]. Since every path
component of ∣K ∣ contains a vertex, this map is surjective. Since Z0(K) =
C0(K), the result follows if we can show that the ker q = B0(K).

3Why is this good terminology?
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For each 1-simplex σ = ⟨v0, v1⟩ ∈ C1(K),

q ○ ∂σ = q(⟨v1⟩) − q(⟨v0⟩) = 0

since v0 and v1 are in the same path component. Therefore, q ○ ∂1 = 0 and so
B0(K) ⊆ ker q.

For the other direction, note that ker q is the subspace generated by all
elements of the form ⟨v⟩−⟨u⟩ where u and v are in the same path component.
In this case, there is a continuous path from u, and v, and a simplicial ap-
proximation then defines a simplicial path. Summing the oriented simplices
that appear in this path gives a 1-chain

c = ⟨v0, v1⟩ + ⟨v1, v2⟩ + . . . + ⟨vk−1, vk⟩

where u = v0 and v = vk. Now ∂c = ⟨v⟩ − ⟨u⟩, and so ⟨v⟩ − ⟨u⟩ ∈ B0(K).
Therefore ker q ⊆ B0(K). This completes the proof.

5.2 Chain maps and chain homotopies

As well as computing more examples, we would love to know that homology
groups are invariants of the homeomorphism, or even homotopy, types of
simplicial complexes. To achieve this, we’ll need some more theory. To do
this, we need to introduce a slightly more abstract setting.

Definition 5.15. A chain complex C● is a sequence of abelian groups {Cn ∣
n ∈ Z} with Cn = 0 for n < 0 and homomorphisms

∂n ∶ Cn → Cn−1

such that ∂n−1 ○ ∂n = 0. A chain map between two chain complexes f● ∶ C● →
D● is a collection of homomorphisms fn ∶ Cn →Dn such that

Cn Cn−1

Cn Dn−1

∂n

fn fn−1
∂n

commutes for all n. That is, ∂ ○ f● = f● ○ ∂.

We can make definitions for any chain complex in analogy with the defi-
nitions of the last section.
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Definition 5.16. Let C● be a chain complex. The group of n-boundaries
is Bn(C●) ∶= im ∂n+1. The group of n-cycles is Zn(C●) ∶= ker∂n. The nth
homology group of C● is then Hn(C●) ∶= Zn(C●)/Bn(C●).

An automatic consequence of these definitions is that a chain map f● ∶
C● →D● induces a homomorphism on homology.

Lemma 5.17. Let f● ∶ C● →D● be a chain map. The formula

[c]↦ [fn(c)]

gives a well-defined homomorphism f∗ ∶Hn(C●)→Hn(D●) for all n.

Proof. Let c ∈ Zn(C●). By the definition of a chain map,

∂n ○ fn(c) = fn−1 ○ ∂n(c) = 0

so fn(c) ∈ Zn(D●). Therefore [fn(c)] is an element of Hn(D●). To see that
this map descends to Hn(C●), suppose that c − c′ ∈ Bn(C●). Then, by the
definition of Bn(C), there exists b ∈ Cn+1 such that c − c′ = ∂n+1(b). Now

fn(c − c′) = fn ○ ∂n+1(b) = ∂n+1 ○ fn(b)

so fn(c − c′) ∈ Bn(D●). Therefore [fn(c)] = [fn(c′)] in Hn(D●), so f∗ is well
defined on homology. It’s clear from the definition that it’s a homomorphism.

Lemma 5.9 shows us that the chain groups of a simplicial complex form
a chain complex. Simplicial maps also induce chain maps.

Lemma 5.18. A simplicial map f ∶K → L induces a chain map f● ∶ C●(K)→
C●(L) via the following assignment.

fn ∶ σ ↦
⎧⎪⎪⎨⎪⎪⎩

f(σ) dim f(σ) = n
0 otherwise

In particular, it also induces a homomorphism f∗ ∶Hn(K)→Hn(L).
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Proof. Let σ = ⟨v0, . . . , vn⟩ as usual. We need to check that ∂n ○ fn(σ) =
fn−1 ○ ∂n(σ). If f(σ) is a simplex of dimension n then every face is also
sent to a simplex of the same dimension, and the result is clear. Likewise,
if dim f(σ) ≤ n − 2 then every face is also sent to a simplex of strictly lower
dimension, and the result is also clear.

Therefore, the case of interest is when (without loss of generality) f(v0) =
f(v1) and f(⟨v1, . . . , vn⟩) is of dimension n − 1. In this case, fn(σ) = 0 and
so ∂n ○ fn(σ) = 0. To evaluate the other side of the equation, consider

∂n(σ) =
n

∑
i=0

⟨v0, . . . , v̂i, . . . , vn⟩

as usual. Since f(v0) = f(v1), whenever i ≠ 0,1, the corresponding face is
sent to something of strictly lower dimension and so killed by fn−1. Therefore

fn−1 ○ ∂n(σ) = ⟨f(v1), f(v2), . . . , f(vn)⟩ − ⟨f(v0), f(v2), . . . , f(vn)⟩ = 0

as required.

Remark 5.19. The maps on homology induced by simplicial maps enjoy the
usual ‘functorial’ properties.

(i) If f ∶K → L and g ∶ L→M are simplicial maps then (g ○ f)∗ = g∗ ○ f∗.

(ii) If K is a simplicial complex then (idK)∗ = idHn(K) (for any n).

This is a useful tool, but to prove homotopy invariance, we will need an
analogue of homotopy that works in this context. This is provided by the
following definition.

Definition 5.20. Let C● and D● be chain complexes, and let f●, g● ∶ C● →D●

be chain maps. A chain homotopy h● between f● and g● is a collection of
homomorphisms hn ∶ Cn →Dn+1 so that

gn(c) − fn(c) = ∂n+1 ○ hn(c) + hn−1 ○ ∂n(c)

for all c ∈ Cn. In this case, we say that the chain maps f● and g● are chain
homotopic, and write f● ≃ g●.

It is a minor miracle of this subject that this entirely algebraic definition
captures many of the features of topological homotopies. In particular, chain-
homotopic maps induce the same map on homology.
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Lemma 5.21. If f● ≃ g● ∶ C● → D● the induced maps f∗, g∗ ∶ Hn(C●) →
Hn(D●) are equal for every n.

Proof. Consider c ∈ Zn(C●). Since, ∂n(c) = 0, the definition of chain homo-
topy gives

gn(c) − fn(c) = ∂n+1 ○ hn(c) + hn−1 ○ ∂n(c) = ∂n+1 ○ hn(c) ∈ Bn(D●)

so [gn(c)] = [fn(c)] in homology, as required.

The following example may give a hint of why chain homotopies are like
actual homotopies.

Example 5.22. Let K be the 2-complex that consists of the standard 2-
simplex σ2 = ⟨e0, e1, e2⟩ and its faces. Let L consist of the face ⟨e0, e1⟩ and its
faces. Let i ∶ L → K be the natural inclusion, and r ∶ K → L the simplicial
retraction that fixes e0 and e1, and sends e2 ↦ e0. Naturally, r ○ i = idL.
We now define a chain homotopy hn ∶ Cn(K) → Cn+1(K) by sending every
simplex to 0 except for the following.

h0 ∶ ⟨e2⟩↦ ⟨e2, e0⟩
h1 ∶ ⟨e1, e2⟩↦ −⟨e0, e1, e2⟩

We can now check directly that this defines a chain homotopy between i ○ r
and idK by evaluating the two sides of the defining equation each of the seven
simplices of K. Most of these checks are fairly trivial. The three least trivial
are:

(∂1 ○ h0 + h−1 ○ ∂0)(⟨e2⟩) = ∂1(⟨e2, e0⟩)
= ⟨e0⟩ − ⟨e2⟩
= (i0 ○ r0 − idC0(K))(⟨e2⟩) ;

(∂2 ○ h1 + h0 ○ ∂1)(⟨e1, e2⟩) = ∂2(−⟨e0, e1, e2⟩) + h0(⟨e2⟩ − ⟨e1⟩)
= −⟨e0, e1⟩ − ⟨e1, e2⟩ − ⟨e2, e0⟩ + ⟨e2, e0⟩
= ⟨e1, e0⟩ − ⟨e1, e2⟩
= (i1 ○ r1 − idC1(K))(⟨e1, e2⟩) ;

and

(∂3 ○ h2 + h1 ○ ∂2)(⟨e0, e1, e2⟩) = h1(⟨e0, e1⟩ + ⟨e1, e2⟩ + ⟨e2, e0⟩)
= −⟨e0, e1, e2⟩
= (i2 ○ r2 − idC2(K))(⟨e0, e1, e2⟩)

58



as required.

We can use chain homotopies to check that a certain simple class of
simplicial complexes, which are obviously contractible, have the homology of
a point.

Definition 5.23. A simplicial complex K is a cone if there is a vertex x0

such, for every simplex τ ∈K , there exists σ ∈K such that x0 ∈ σ and τ ≤ σ.
The vertex x0 is called a cone point.

Lemma 5.24. If K is a cone then the homology of K is as follows.

Hn(K) ≅
⎧⎪⎪⎨⎪⎪⎩

Z n = 0

0 otherwise

Proof. Let i ∶ {⟨x0⟩} → K be the inclusion and r ∶ K → {⟨x0⟩} the unique
retraction. Evidently r∗○i∗ is the identity. We will exhibit a chain homotopy
between idC●(K) and i● ○ r●. By Lemma 5.21, this implies that r∗ is an
isomorphism, and the result follows.

Let σ = ⟨v0, . . . , vn⟩ ∈K. Then

hn(σ) =
⎧⎪⎪⎨⎪⎪⎩

0 x0 ∈ σ
⟨x0, v0, . . . , vn⟩ otherwise

We need to check this is the required chain homotopy. The proof divides into
several cases. First, assume that n > 0. Suppose that x0 ∉ σ. Then

(∂n+1 ○ hn + hn−1 ○ ∂n)(σ) = ⟨v0, . . . , vn⟩ −
n

∑
i=0

(−1)i⟨x0, v0, . . . , v̂i, . . . , vn⟩

+
n

∑
i=0

(−1)i⟨x0, v0, . . . , v̂i, . . . , vn⟩

= σ

= (idCn(K) − in ○ rn)(σ)

as required.
If x0 ∈ σ then x0 = vj for some j. Now hn(σ) = 0 and so

(∂n+1 ○ hn + hn−1 ○ ∂n)(σ) = hn−1 (
n

∑
i=0

(−1)i⟨v0, . . . , v̂i, . . . vn⟩)

= (−1)j⟨x0, v0, . . . , v̂j, . . . , vn⟩
= ⟨v0, . . . , vj−1, x0, vj+1, . . . , vn⟩
= (idCn(K) − in ○ rn)(σ)
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where the third equality holds because a (j + 1)-cycle has sign (−1)j.
Now assume that n = 0, so σ = ⟨v0⟩. If v0 ≠ x0 then

(∂1 ○ h0 + h−1 ○ ∂0)(σ) = ∂1⟨x0, v0⟩ = ⟨v0⟩ − ⟨x0⟩ = (idC0(K) − i0 ○ r0)(σ)

as required. Finally, if σ = ⟨x0⟩ then

(∂1 ○ h0 + h−1 ○ ∂0)(σ) = 0 = (idC0(K) − i0 ○ r0)(σ)

and the proof is complete.

5.3 The homology of the simplex and the sphere

This enables us to compute some homology groups quite quickly.

Example 5.25. Let K be the simplicial complex that consists of the standard
n-simplex σn, together with its faces. Then any vertex is a cone point, so

Hk(K) ≅
⎧⎪⎪⎨⎪⎪⎩

Z k = 0

0 otherwise

by Lemma 5.24.

From this, it’s not difficult to compute the homology of the (standard
simplicial) sphere.

Example 5.26. Let L = ∂σn, the standard simplicial (n− 1)-sphere, for n ≥ 2.
The chain complex of L is very close to the chain complex of K from Example
5.25.

0 0 Cn−1(L) ⋯ C0(L) 0

0 Cn(K) Cn−1(K) ⋯ C0(K) 0

∂n−1

=

∂1

=

∂n ∂n−1 ∂1

In particular, for k ≤ n − 2, we see that Ck+1(L) = Ck+1(K) and Ck(L) =
Ck(K), and so Hk(L) =Hk(K) as computed in Example 5.25.

The only remaining dimension of interest is k = n−1. From Hn−1(K) ≅ 0,
it follows that Zn−1(K) = Bn−1(K). But Cn(K) = ⟨σn⟩, and so the boundary
map ∂n is clearly injective; in particular, Bn−1(K) ≅ Cn(K). Therefore

Zn−1(L) = Zn−1(K) = Bn−1(K) ≅ Cn(K) ≅ Z .
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But Cn(L) ≅ 0, so Bn−1(L) ≅ 0 and Hn−1(L) = Zn−1(L)/Bn−1(L) ≅ Z/0 ≅ Z.
In summary, for n ≥ 2, the homology of the standard (n − 1)-dimensional
sphere is as follows.

Hk(K) ≅
⎧⎪⎪⎨⎪⎪⎩

Z k = 0, n − 1

0 otherwise

A similar calculation works when n = 1.

Hk(K) ≅
⎧⎪⎪⎨⎪⎪⎩

Z2 k = 0

0 otherwise

This is very encouraging, because it shows that, unlike the fundamental
group, homology distinguishes the spheres in all dimensions. It seems to
confirm our intuition that nth homology should detect n-dimensional holes.

5.4 Continuous maps and homotopies

We would like to know that the groups Hn(K) are invariant of the realisation
∣K ∣, not just of the complex K. More generally, we would like continuous
maps φ ∶ ∣K ∣→ ∣L∣ to induce well defined maps on homology. The idea should
be clear: let f ∶K(r) → L be a simplicial approximation to φ, and then set

φ∗ ∶= f∗ ∶Hn(K(r))→Hn(L)

for any n ∈ Z. However, there are two obvious problems: we made a choice
of simplicial approximation, so we don’t know that φ∗ is well defined; and
we got a map from Hn(K(r)), not from Hn(L). So we need to check that
Hn(K(r)) is canonically isomorphic to Hn(K), and also that the induced
map φ∗ is independent of the choice fo simplicial approximation f . The key
idea is the next definition, which is a simplicial version of a homotopy.

Definition 5.27. Two simplicial maps f, g ∶ K → L are contiguous if, for
every σ ∈K there exists τ ∈ L such that f(σ) and g(σ) are both faces of τ .

Remark 5.28. Suppose that φ ∶ ∣K ∣→ ∣L∣ is a continuous map, and f, g ∶K →
L are both simplicial approximations to φ. Suppose that x ∈ σ̊ and that
φ(x) ∈ τ̊ . In the proof of Lemma 4.25, we proved that f(σ) ≤ τ . Likewise,
g(σ) ≤ τ , and so f and g are contiguous.

Contiguous maps can be thought of as homotopic in a simplicial sense.
The next lemma checks that they do in fact induce equal maps on homology.
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Lemma 5.29. If f, g ∶K → L are contiguous then

f∗ = g∗ ∶Hn(K)→Hn(L)

for all n.

Proof. It suffices to exhibit a chain homotopy between f∗ and g∗. We find
this chain homotopy in a surprising way. Fix a total order < on the vertices
of K. We can then write each σ ∈K uniquely as

σ = ⟨v0, . . . , vn⟩

such that v0 < . . . < vn. For notational simplicity, we’ll adopt the convention
that

⟨f(v0), . . . , f(vi), g(vi), . . . , g(vn)⟩ = 0

if these n + 1 vertices are not in general posiiton. Then define hn ∶ Cn(K) →
Cn(L) by setting

hn(⟨v0, . . . , vn⟩) =
n

∑
i=0

(−1)i⟨f(v0), . . . , f(vi), g(vi), . . . , g(vn)⟩

for each n-simplex σ = ⟨v0, . . . , vn⟩ of K. We next check that this is a chain
homotopy on the n-simplex σ.

∂ ○ h + h ○ ∂(σ) = ∂ (
n

∑
j=0

(−1)j⟨f(v0), . . . , f(vj), g(vj), . . . , g(vn)⟩)

+ h(
n

∑
i=0

(−1)i⟨v0, . . . , v̂i, . . . , vn⟩)

= ∑
i≤j

(−1)i+j⟨f(v0), . . . , f̂(vi), . . . , f(vj), g(vj), . . . , g(vn)⟩

− ∑
i≥j

(−1)i+j⟨f(v0), . . . , f(vj), g(vj), . . . , ĝ(vi), . . . , g(vn)⟩

+ ∑
j<i

(−1)i+j⟨f(v0), . . . , f(vj), g(vj), . . . , ĝ(vi), . . . , g(vn)⟩

− ∑
j>i

(−1)i+j⟨f(v0), . . . , f̂(vi), . . . , f(vj), g(vj), . . . , g(vn)⟩

=
n

∑
i=0

⟨f(v0), . . . , f(vi−1), g(vi), . . . , g(vn)⟩

−
n

∑
i=0

⟨f(v0), . . . , f(vi), g(vi+1), . . . , g(vn)⟩

= ⟨g(v0), . . . , g(vn)⟩ − ⟨f(v0), . . . , f(vn)⟩
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Combining Remark 5.28 with Lemma 5.29, we see that different choices of
simplicial approximation will induce the same homomorphism on homology.
We next need to deal with the identification of Hn(K) and Hn(K ′).

Lemma 5.30. Let K be a simplicial complex. A simplicial map s ∶ K ′ → K
is a simplicial approximation to the identity id∣K∣ if and only if s(σ̂) is a
vertex of σ, for all σ ∈K. Furthermore, such an s exists.

Proof. Suppose that s ∶ K ′ → K is a simplicial approximation to id∣K∣. By
the definition of simplicial approximation,

σ̊ ⊆ id∣K∣(StK′(σ̂)) ⊆ StK(s(σ̂))

so in particular s(σ̂) is a vertex of σ.
Conversely, suppose that s(σ̂) is a vertex of σ for each σ ∈ K. Consider

a simplex τ ′ ∈K ′ is so that τ̊ ′ ⊆ StK′(σ̂). Then the interior of τ ′ is contained
in the interior of a simplex τ ∈K such that σ ≤ τ . In particular, s(σ̂) is also
a vertex of τ . Therefore

τ̊ ′ ⊆ τ̊ ⊆ StK(s(σ̂)) .

Since the interiors of such simplices τ ′ cover StK′(σ̂), it follows that id∣K∣(StK′(σ̂)) ⊆
StK(s(σ̂)), so s is indeed a simplicial approximation to id∣K∣.

To see that such an s exists, for each vertex σ̂ of K ′ choose any s(σ̂) that
is a vertex of σ. A simplex of K ′ is of the form

⟨σ̂0, . . . , σ̂n⟩

where each σ0 ≤ σ1 ≤ . . . ≤ σn. In particular, all vertices of any σi are vertices
of σn, and so

⟨s(σ̂0), . . . , s(σ̂n)⟩
is a face of σn. Therefore, s defines a simplicial map.

Finally we need the following fact, whose proof will be postponed to a
subsequent section.

Proposition 5.31. If s ∶ K ′ → K is a simplicial approximation to the iden-
tity, then the induced map on homology

s∗ ∶Hn(K ′)→Hn(K)

is an isomorphism for all n.
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Combining Proposition 5.31 with Remark 5.28, 5.29 and Lemma 5.30, we
obtain a special case of the invariance we have been looking for.

Corollary 5.32. Let K be a simplicial complex. We may canonically identify
Hn(K) with Hn(K ′).

In light of Corollary 5.32, we will write Hn(K(r)) ≡Hn(K). We are at last
ready to define the homology of a triangulable space, and the homomorphism
induced by a continuous map.

Definition 5.33. Let α ∶ ∣K ∣→X be a triangulation. Then we define

Hn(X) ∶=Hn(K)

for all n.
Let φ ∶ X → Y be a continuous map of triangulable spaces; let α ∶ ∣K ∣ →

X and β ∶ ∣L∣ → Y be triangulations. Let f ∶ K(r) → L be a simplicial
approximation to β−1 ○ φ ○ α. Then we define

φ∗ ∶= f∗ ∶Hn(K) =Hn(X)→Hn(L) =Hn(Y ) .

for each n. Here, we are using Corollary 5.32 to identify Hn(K(r)) with
Hn(K). By Remark 5.28 and Lemma 5.29, φ∗ is independent of the choice
of simplicial approximation.

This is a big step forward, but we would also like to know that homo-
topic maps induce equal maps on homology. This is the content of the next
theorem, whose proof we will only sketch.

Theorem 5.34. Suppose that α ∶ ∣K ∣→X and β ∶ ∣L∣→ Y are triangulations.
If φ ≃ ψ ∶X → Y are homotopic continuous maps then

φ∗ = ψ∗ ∶Hn(X)→Hn(Y )

for every n.

Sketch proof. By hypothesis, β−1○φ○α ≃ β−1○ψ○α; let Φ ∶ ∣K ∣×I → ∣L∣ realise
this homotopy. The product ∣K ∣× I is the realisation of a simplicial complex
M (see Example Sheet 3, Question 9), in which ∣K ∣ × {0} and ∣K ∣ × {1} sit
naturally as subcomplexes, K0 and K1 respectively.
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Furthermore, for each subcomplex  L ⊆∈ K, ∣L∣ × I is the realisation of a
subcomplex ML of M . We also notice that there is a simple formula for the
boundary of a product:

∂(Mσ) = (σ × {1}) ∪ (σ × {0}) ∪M∂σ

for any simplex σ.
Let F ∶ M (r) → L be a simplicial approximation to Φ. By the definition

of induced homomorphism, we can take take φ∗ to be induced by f = F ∣
K
(r)
0

and ψ∗ to be induced by g = F ∣
K
(r)
1

. To prove the theorem, we need to write

down a chain homotopy between f and g.
Let i ∶ K(r) → K

(r)
0 ⊆ M (r) and j ∶ K(r) → K

(r)
1 ⊆ M (r) be the natural

inclusions. For each n-simplex σ ∈K(r), let hn(σ) be the sum of the (suitably

oriented) (n + 1)-simplices that occur in M
(r)
σ . Now, the formula for the

boundary of a product translates at the level of chains into the formula

∂n+1 ○ hn(σ) = jn(σ) − in(σ) − hn−1 ○ ∂n(σ)

which rearranges to show that h● defines a chain homotopy between i● and
j●. Since F● is a chain map, it follows that

Fn ○ jn − Fn ○ in = ∂n+1 ○ Fn+1 ○ hn + Fn ○ hn−1 ○ ∂n

for all n. Because fn = Fn ○ in and gn = Fn ○ jn, we have that F● ○ h● is the
required chain homotopy.

Finally, for homology to be a useful tool, we also need to check that it
has the usual ‘functorial’ properties.

Lemma 5.35. Let X
φ→ Y

ψ→ Z be continuous maps of triangulable spaces.
Then

(ψ ○ φ)∗ = ψ∗ ○ φ∗ ∶Hn(X)→Hn(Z)

for all n. Furthermore, (idX)∗ = idHn(X) for all n.

Proof. Let α ∶ ∣K ∣ → X, β ∶ ∣L∣ → Y , γ ∶ ∣M ∣ → Z be triangulations. The sec-
ond assertion is clear, because we may take idK as a simplicial approximation
to α−1 ○ idX ○ α = id∣K∣.
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For the first assertion, take g ∶ L(s) →M to be a simplicial approximation
to γ−1 ○ ψ ○ β and f ∶ K(r) → L(s) a simplicial approximation to β−1 ○ φ ○ α.
For any vertex v of K(r) we now have

γ−1 ○ ψ ○ φ ○ α(StK(r)(x)) ⊆ γ−1 ○ ψ ○ β(StL(s)(f(x))) ⊆ StM(g ○ f(x))

so g ○ f is a simplicial approximation to γ−1 ○ ψ ○ φ ○ α. Therefore

(ψ ○ φ)∗ = (g ○ f)∗ = g∗ ○ f∗ = ψ∗ ○ φ∗

as required.

As an immediate consequence of Theorem 5.34 and Lemma 5.35, we ob-
tain that homology is an invariant of homotopy equivalence.

Corollary 5.36. Let X,Y be triangulable spaces. A homotopy equivalence
φ ∶X → Y induces isomorphisms φ∗ ∶Hn(X)→Hn(Y ) for all n.

6 Homology calculations

With the results of the previous section in hand, homology becomes a pow-
erful tool. We’ll start by recording some applications.

6.1 Homology of spheres and applications

Part of our motivation for developing homology groups was to detect the
‘higher-dimensional holes’ in spheres.

Example 6.1. In Example 5.26, we saw that no sphere Sn−1 has the same
homology groups as a point. Therefore, by Corollary 5.36, spheres are never
contractible. We also saw that distinct spheres have different homology
groups. This shows that Sm ≃ Sn if and only if m = n.

The next result is a classical theorem, called invariance of domain. Its
proof is similar, but a little more subtle. It’s a nice example of how to use
homotopy equivalence to prove that spaces are not homeomorphic.

Theorem 6.2. If Rm ≅ Rn then m = n.
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Proof. Suppose that φ ∶ Rm → Rn is a homeomorphism. Composing with
a translation of Rn, we may assume that φ(0) = 0. Therefore Rm − {0} ≅
Rn − {0}. In Remark 1.9, we noticed that punctured Euclidean space is
homotopy equivalent to the unit sphere, so it follows that Sm−1 ≃ Sn−1. By
Example 6.1, it follows that m = n.

Another nice application is to a higher-dimensional Brouwer fixed point
theorem. The next theorem is now proved in exactly the same way as Corol-
lary 2.22, except using the (n − 1)st homology group instead of the funda-
mental group.

Theorem 6.3. Any continuous map from the closed n-dimensional ball to
itself

φ ∶Dn →Dn

has a fixed point.

Proof. The proof is left as an easy exercise, following the proofs of Theorem
2.21 and Corollary 2.22.

6.2 Mayer–Vietoris theorem

For more sophisticated applications, we need to be able to compute more
examples. The main theorem of this section is a gluing theorem for homology
groups. It plays an analogous role to the role of the Seifert–van Kampen
theorem for the fundamental group.

Definition 6.4. A sequence of homomorphisms of abelian groups

⋯→ Ai+1
fi→ Ai

fi−1→ Ai−1 → ⋅

is said to be exact at Ai if im (fi) = ker(fi−1). The sequence is exact if it is
exact at every Ai. A short exact sequence is sequence

0→ A→ B → C → 0

which is exact.

The idea behind exact sequences is that, if one know most of the terms
in an exact sequence, then one can figure out the remaining terms. We can
think of homology groups as measuring the failure of a chain complex to be
exact.
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Example 6.5. Exactness at B of

A
f→ B → 0

means that g is surjective. Exactness at A

0→ A
f→ B

means that f is surjective. In particular, a very short sequence

0→ A
f→ B → 0

is exact if and only if f is an isomorphism.

The Mayer–Vietoris sequence concerns a simplicial complex K which is
the union of two subcomplexes L and M . Let N denote the intersection, and
write K = L ∪N M . Let i ∶ N → L, j ∶ N →M , l ∶ L → K and m ∶M → K be
the inclusion maps.

Theorem 6.6 (Mayer–Vietoris). Consider simplicial complexes K = L∪NM .
For every n ∈ Z, there is a homomorphism

δ∗ ∶Hn(K)→Hn−1(N)

that makes the following sequence exact.

⋯ Hn+1(L)⊕Hn+1(M) Hn+1(K)

Hn(N) Hn(L)⊕Hn(M) Hn(K)

Hn−1(N) Hn−1(L)⊕Hn−1(M) ⋯

i∗⊕j∗ l∗−m∗

δ∗

i∗⊕j∗ l∗−m∗

δ∗

i∗⊕j∗ l∗−m∗

The theorem follows from a purely algebraic fact. A sequence of chain
maps

A●→B●→C●

is exact at B● if An → Bn → Cn is exact at Bn for every n. Again, the
sequence is exact if it is exact at every term.
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Lemma 6.7 (Snake lemma). Let

0→ A●

f●→ B●

g●→ C● → 0

be a short exact sequence of chain complexes. For every n ∈ Z, there is a
homomorphism

δ∗ ∶Hn+1(C●)→Hn(A●)

that makes the following sequence exact.

⋯ Hn+1(B●) Hn+1(C●)

Hn(A●) Hn(B●) Hn(C●)

Hn−1(A●) Hn−1(B●) ⋯

f∗ g∗

δ∗

f∗ g∗

δ∗

f∗ g∗

Proof. The proof is a long sequence of trivial checks. The reader may like to
refer to the following commutative diagram.

⋮ ⋮ ⋮

0 An+1 Bn+1 Cn+1 0

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

⋮ ⋮ ⋮

fn+1

∂n+1

gn+1

∂n+1 ∂n+1
fn

∂n

gn

∂n ∂n

fn−1 gn−1

The first task is to construct the homomorphism δ∗ ∶ Hn+1(C●) → Hn(A●).
Consider [x] ∈ Hn+1(C●), defined by an (n + 1)-cycle x ∈ Zn+1(C●) ⊆ Cn+1.
By exactness at Cn+1, there is y ∈ Bn+1 such that gn+1(y) = x. Because x is a
cycle,

gn ○ ∂n+1(y) = ∂n ○ gn+1(y) = ∂n(x) = 0
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so ∂n+1(y) ∈ ker(gn), which equals im(fn) by exactness at Bn. Therefore,
∂n+1(y) = fn(z) for some z ∈ An. What is more,

fn−1 ○ ∂n(z) = ∂n ○ fn(z) = ∂n ○ ∂n(y) = 0

but, exactness at An−1 tells us that fn−1 is injective, so ∂n(z) = 0. Therefore,
z ∈ Zn(A●), and so defines a class in Hn(A●). We set δ∗([x]) = [z].

We next need to check that this is well defined: that is, if we modify
x by a boundary, and make different choices of y and z, then the resulting
(n − 1)-chain only changes by a boundary. Consider therefore x′ ∈ Cn+1 with
x′−x = ∂n+2(w), for w ∈ Cn+2, and suppose the construction proceeds similarly
with y′ ∈ Bn+1 and z′ ∈ An−2. Exactness at Cn+1 implies that w = gn+2(u) for
some u ∈ Bn+2. Now

gn+1 ○ ∂n+2(u) = ∂n+2 ○ gn+2(u) = ∂n+2(w) = x′ − x

so in particular y′ − y − ∂n+2(u) ∈ ker gn+1 = im fn+1, by exactness at Bn+1.
Therefore, there is v ∈ An+1 such that y′−y = fn+1(v)+∂n+2(u). This gives us

fn(z′ − z) = ∂n+1(y′ − y) = ∂n+1 ○ fn+1(v) + ∂n+1 ○ ∂n+2(u) = fn ○ ∂n+1(v)

by commutativity of the diagram. Since fn is injective, it follows that z′ − z
is a boundary, as required.

Thirdly, we note that the assignment δ∗[x] ∶= [z] is a homomorphism,
since if x′′ = x + x′, then we can take y′′ = y + y′ and z′′ = z + z′. This
completes the construction of δ∗.

We next need to check that the sequence is exact. We start at Hn(B●),
where we need to show that im f∗ = ker g∗. If [a] ∈Hn(A●) then

g∗ ○ f∗[a] = [gn ○ fn(a)] = 0

by exactness at Bn, so im f∗ ⊆ ker g∗. Suppose now that [b] ∈ Hn(B●) with
g∗[b] = 0. This means that gn(b) = ∂n+1(x) for some x ∈ Cn+1, but x = gn+1(y)
for y ∈ Bn+1 since gn+1 is surjective. Therefore

gn ○ ∂n+1(y) = ∂n+1 ○ gn+1(y) = ∂n+1(x) = gn(b)

so b−∂n+1(y) ∈ ker gn = im fn by exactness at B●. Therefore b−∂n+1(y) = fn(a)
for some a ∈ An. Now

fn−1 ○ ∂n(a) = ∂n ○ fn(a) = ∂n(b) − ∂n ○ ∂n+1(y) = 0
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since b ∈ Zn(B●) so, since fn−1 is injective, ∂n(a) = 0. Therefore, a ∈ Zn(A●)
and so defines a class [a] ∈Hn(A●) that satisfies

f∗[a] = [fn(a)] = [b − ∂n+1(y)] = [b]

which shows that [b] ∈ im f∗. Therefore ker g∗ ⊆ im f∗, which completes the
proof of exactness at Hn(B●).

We next turn to exactness at Hn(A●). Consider first [z] = δ∗[x], for x
and z as in the construction of δ∗ above. By construction,

f∗[z] = [fn(z)] = [∂n+1(y)] = 0

so im δ∗ ⊆ ker f∗. For the reverse inclusion, suppose that f∗[z] = 0, which
means that fn(z) = ∂n+1(y) for some y ∈ Bn+1. Setting x = gn+1(y), we have
that δ∗[x] = [z] by the construction of δ∗. This completes the proof that
im δ∗ = ker f∗, so the sequence is exact at Hn(A●).

Finally, we need to check exactness at Hn(C●), meaning that we need to
check that im g∗ = ker δ∗. Suppose first that [x] ∈ im g∗. This means that,
in the construction of δ∗, we can take x = gn(y) for y an (n + 1)-cycle, so
∂n(y) = 0 and we can take z = 0. Therefore δ∗[x] = 0, so im g∗ ⊆ ker δ∗ as
required. For the reverse inclusion, suppose that δ∗[x] = 0, meaning that,
in the construction of δ∗, we can take z ∈ An−1 to be a boundary. That is,
z = ∂n(b) for some b ∈ Bn. Now

∂n ○ fn(b) = fn−1 ○ ∂n(b) = fn−1(z) = ∂n(y)

so y − fn(b) is a cycle. Also, gn(y − fn(b)) = gn(y) = x, so x is the image of
a cycle. In particular, [x] ∈ im g∗. This completes the proof of exactness at
Hn(C●), and hence the proof of the lemma.

We can now prove Theorem 6.6 as an application of Lemma 6.7.

Proof of Theorem 6.6. It’s easy to see that Hn(C●⊕D●) ≅Hn(C●)⊕Hn(D●).
Therefore, by Lemma 6.7, it suffices to show that

0→ C●(N) i●⊕j●→ C●(L)⊕C●(M) l●−m●→ C●(K)→ 0

is a short exact sequence of chain complexes.
For the first term, note that Cn(N) is in fact a direct summand of Cn(L)

and Cn(M), with in and jn the inclusions. In particular, in and jn are
injective, and hence so is in ⊕ jn.
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For the last term, consider c ∈ Cn(K). Since K = L ∪M , we may write
c = cL + cM where cL is supported on simplices of L and cM is supported
on simplices of M . This means that cL = ln(bL) and cM = mn(bM) for some
bL ∈ Cn(L) and bM ∈ Cn(M). In particular, c = ln(bL) −mn(bM), so is in the
image of ln −mn as required.

Finally, we check exactness at Cn(L) ⊕ Cn(M). For a pair (bL, bM) ∈
Cn(L)⊕Cn(M), we have ln(bL) −mn(bM) if and only if every simplex that
occurs in bL also occurs in bM with the same coefficient. This means precisely
that both chains are supported on the intersection N , and that there is some
a ∈ Cn(N) such that bL = in(a) and bM = jn(a). Therefore ker(ln −mn) =
im(in ⊕ jn), as required.

When applying the Mayer–Vietoris theorem, the next result is often use-
ful.

Lemma 6.8 (Five lemma). Suppose that the rows of the following commu-
tative diagram are exact.

A B C D E

A′ B′ C ′ D′ E′

α β γ δ ε

If α, β, δ and ε are all isomorphisms, then so is γ.

Proof. The proof is an easy diagram-chase. It is Question 3 of Example Sheet
4.

We are now at last in a position to prove that the canonical homomor-
phism identifies the homology of a simplicial complex and its subdivision.

Proof of Proposition 5.31. The proof is by induction on the number of sim-
plices of K. Note that the result is trivial if K has one simplex (necessarily
a 0-simplex). For the inductive step, let σ ∈ K be a simplex which is not
a proper face of any simplex of K – for instance, any simplex of maximal
dimension has this property. Let L =K −{σ}, let M be the subcomplex of K
that consists of σ and its faces, and let N = L ∩M = ∂σ. Abusing notation,
let s denote the restrictions of s to the barycentric subdivisions of any of
these subcomplexes.
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Now M and M ′ are both cones, so s∗ ∶ Hn(M ′) → Hn(M) is trivially
an isomorphism. Also, L and N necessarily have fewer simplices than K,
so by induction s∗ ∶ Hn(L′) → Hn(L) and s∗ ∶ Hn(N ′) → Hn(N) are both
isomorphisms. Applying the Mayer–Vietoris theorem to K = L ∪N M and
K ′ = L′ ∪N ′ M ′, we obtain the following commutative diagram with exact
rows.

Hn+1(N ′) Hn(L′)⊕Hn(M ′) Hn(K ′) Hn−1(N ′) Hn−1(L′)⊕Hn−1(M ′)

Hn+1(N) Hn(L)⊕Hn(M) Hn(K) Hn−1(N) Hn−1(L)⊕Hn−1(M)

s∗ s∗⊕s∗ s∗ s∗ s∗⊕s∗

Since all the other vertical arrows are isomorphisms, it follows that s∗ ∶
Hn(K ′)→Hn(K) is an isomorphism for all n.

6.3 Homology of compact surfaces

The Mayer–Vietoris sequence can also be used to compute the homology
groups of compact surfaces. Recall the compact, orientable surfaces Σg from
Example 3.29. These were constructed by attaching a 2-cell to a graph.

Σg ≅ Γ2g ∪ρg D2

We therefore start by computing the homology of wedges of circles.

Example 6.9. Let Γr ∶= ⋁ri=1 S
1. It is easy to see that Γr is triangulable:

simply triangulate the circles S1 and identify a single vertex. Now Γ1 ≅ S1

and
Γr ≅ Γr−1 ∨ S1

so we may apply the Mayer–Vietoris sequence to compute the homology
groups by induction. Let Γr be the realisation of K = L ∪N M , where L
is a triangulation of Γr−1, M is a triangulation of S1 and N = {∗}. Then
Mayer–Vietoris gives us an exact sequence, and after filling in the terms that
we know, we obtain the following.

0 H1(Γr−1)⊕Z H1(Γr)

Z Z⊕Z H0(Γr)

δ∗
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Since Γr is connected we also know that H0(Γr) ≅ Z, and the first arrow of
the bottom row is injective just by the general description given in Lemma
5.14. Therefore im δ∗ ≅ 0, and so we obtain a very short exact sequence.

0→H1(Γr−1)⊕Z→H1(Γr)→ 0

By induction, it follows that:

Hn(Γr) ≅

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Z n = 0

Zr n = 1

0 otherwise

For future reference, it is useful to note that, if α1, . . . , αr represent a standard
set of loops in each copy of S1, then the homology classes [α1], . . . , [αr] form
a basis for H1(Γr).
Remark 6.10. In fact, our discussion of the groups H0 was valid whenever
K,L,M,N were connected. In this setting, we can always conclude that
δ∗ ∶H1(K)→H0(N) is the zero map.

Rather like in the proof of Lemma 3.24, it’s convenient to attach the 2-cell
in two stages: first attach an annulus, and then attach a disc to the other
boundary of the annulus. To this end, we define

Σ∗

g ∶= Γ2g ∪ρg (S1 × I)

where ρg attaches S1 ×{0} to Γ2g. Note that Σ∗

g is homeomorphic to Σg with
an open disc removed. Shrinking I to a point shows that Σ∗

g deformation
retracts to Γ2g. We may then recover Σg as

Σg = Σ∗

g ∪iD2

where i ∶ S1 → Σ∗

g identifies S1 = ∂D2 with S1 × {1} ⊆ Σ∗

g .

Example 6.11. Choose compatible triangulations so that Σg is the realisation
of K = L ∪N M , with Σ∗

g the realisation of L, D2 the realisation of M , and
S1 the realisation of N . (It’s not hard to see that such triangulations exist.)
Since Σ∗

g deformation retracts to Γ2g, we know the homology groups of L, M
and N . Mayer–Vietoris now gives us the following exact sequence. (As in
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Remark 6.10, we may ignore the 0th row.)

0 H2(Σg)

Z Z2g H1(Σg)

0

δ∗

i∗

δ∗

To complete the calculation, we need to work out the map i∗. The element
1 ∈ Z ≅ H1(S1) is represented by a 1-cycle γ that goes once around the
circle. The inclusion i identifies γ with the boundary circle ∂Σ∗

g ⊆ Σ∗

g , and
the deformation retraction to Γ2g identifies this boundary with the image of
the circle under ρg. In other words, i∗ is equal to the map induced by ρg.
From the definition of ρg,

ρg∗(1) = [α1]+[β1]−[α1]−[β1]+[α2]+ . . .+[βg−1]+[αg]+[βg]−[αg]−[βg] = 0

and we deduce that i∗ is the zero map. This tells us that the above exact
sequence breaks into two very short exact sequences:

0→H2(Σg)→ Z→ 0

and
0→ Z2g →H1(Σg)→ 0

from which the homology groups of Σg follow.

Hn(Σg) ≅

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Z n = 0,2

Z2g n = 1

0 otherwise

This gives an alternative proof that surfaces Σg are pairwise not homotopy-
equivalent. It also shows us that Σg is not homotopy-equivalent to Γ2g, say;
this wasn’t obvious from our computation of the fundamental group.

We can compute the homology groups of the non-orientable surfaces Sg
similarly.
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Example 6.12. Consider the non-orientable surfaces Sg of Example 3.30. The
calculation of Hn(Sg) proceeds identically to the orientable case, until we
obtain the following long exact sequence.

0 H2(Sg)

Z Zg+1 H1(Sg)

0

δ∗

i∗

δ∗

As in Example 6.11, i∗ is induced by the attaching map of the 2-cell, in this
case σg. Looking at the definition of σg, we see that

i∗(1) = σg∗(1) = 2[α0] + 2[α1] +⋯ + 2[αg] .

Therefore i∗ is injective, so H2(Sg) ≅ ker i∗ ≅ 0. We can also compute the
first homology group.

H1(Sg) ≅ im l∗

≅ Zg+1/ker l∗

= Zg+1/im i∗

= ⟨[α0]⟩⊕⋯⊕ ⟨[αg]⟩/⟨2[α0] +⋯ + 2[αg]⟩
≅ Zg ⊕ (Z/2Z)

In summary:

Hn(Sg) ≅

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Z n = 0

Zg ⊕ (Z/2Z) n = 1

0 otherwise

6.4 Rational homology and Euler characteristic

So far we have defined homology with coefficients in Z. In fact, homology
can be defined with much more general coefficients. In this section, we’ll
briefly discuss what happens if we take coefficients in Q.

Definition 6.13. Let K be a simplicial complex. For each n ∈ Z, the vector
space of rational n-chains Cn(K;Q) is the vector space over Q with basis
the n-simplices of K. As before, we arbitrarily choose orientations on the
simplices, and identify −σ with σ̄.
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The definition of the boundary map and its basic properties go through
as before, and we may therefore define homology as before.

Definition 6.14. Let K be a simplicial complex. Then Zn(K;Q) is defined
to be the kernel of ∂n ∶ Cn(K;Q) → Cn−1(K;Q) and Bn(K;Q) is defined
to be the image of ∂n+1 ∶ Cn+1(K;Q) → Cn(K;Q). Since ∂n ○ ∂n+1, we have
Bn(K;Q) ⊆ Zn(K;Q), and we set the nth rational homology vector space of
K to be

Hn(K;Q) ∶= Zn(K;Q)/Bn(K;Q)
for any n ∈ Z.

This is often easier to work with than the usual (integral) homology, since
the groups involved are vector spaces. However, it loses some information,
as the next result makes clear.

Lemma 6.15. Let K be a simplicial complex. If

Hn(K) ≅ Zb ⊕ F

where F is a finite abelian group, then Hn(K;Q) ≅ Qb.

Proof. Let Hn(K;Q) ≅ Qb′ (since it’s a finite-dimensional vector space). We
need to prove that b′ = b.

There is a natural comparison maps Cn(K) → Cn(K;Q) obtained by
thinking of an n-chain as a rational n-chain. Since these comparison maps
are chain maps, they induce comparison maps Bn(K)→ Bn(K;Q), Zn(K)→
Zn(K;Q) and Hn(K)→Hn(K;Q).

If c ∈ Zn(K,Q) then, multiplying by the product m of the denominators,
we see that mc is in the image of Zn(K) for some non-zero m. It follows
that b′ ≤ b.

Let [c1], . . . , [cb] ∈ Hn(K) together generate a copy of Zb, and consider
their images in Hn(K,Q). Suppose there are rationals λ1, . . . , λb so that

b

∑
i=1

λi[ci] = 0

in Hn(K,Q). Clearing denominators, we may take the λi to be integers. But
all the ci are integral, so this implies that ∑i λici is a boundary in Zn(K),
which in turn implies that

b

∑
i=1

λi[ci] = 0
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in Hn(K). Therefore λi = 0 for all i. This implies that b′ ≥ b, and the proof
is complete.

So rational homology by itself does not have the power to distinguish RP 2

from a point, for instance. Its advantage is that it leads to some invariants
that are very easy to compute.

Definition 6.16. Let K be a simplicial complex. The Euler characteristic
of K is

χ(K) ∶=∑
n∈Z

(−1)n dimQHn(K;Q) ,

which we note is a finite sum. As usual, if α ∶ ∣K ∣→X is a triangulation, we
also set χ(X) ∶= χ(K).

The reason this is so easy to compute boils down to the rank-nullity
formula.

Lemma 6.17. Let K be a simplicial complex. Then

χ(K) =∑
n∈Z

(−1)n#{n−simplices in K}

which we again note is a finite sum.

Proof. Since the number of n-simplices in K is dimQCn(K;Q), we in fact
prove the following, more natural, identity.

χ(K) =∑
n∈Z

(−1)n dimQCn(K;Q)

The rank-nullity formula applied to the quotient map Zn(K;Q)→Hn(K;Q)
tells us that

dimQHn(K;Q) + dimQBn(K;Q) = dimQZn(K;Q)

while, applied to the boundary map ∂n, it tells us that

dimQZn(K;Q) + dimQBn−1(K;Q) = dimQCn(K bQ) .

We therefore compute:

∑
n∈Z

(−1)n dimQCn(K;Q) = ∑
n∈Z

(−1)n dimQ Zn(K;Q) +∑
n∈Z

(−1)n dimQBn−1(K;Q)

= ∑
n∈Z

(−1)n dimQZn(K;Q) −∑
n∈Z

(−1)n dimQBn(K;Q)

= ∑
n∈Z

(−1)n dimQHn(K;Q)

as required.
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Remark 6.18. In the case of a 2-dimensional simplicial complex with V 0-
simplices, E 1-simplices and F 2-simplices, we recover the familiar formula

χ(K) = V −E + F

which you have probably seen before. Interpreting it in terms of homology
gives a natural reason why the Euler characteristic is a homeomorphism, and
even homotopy, invariant.

6.5 The Lefschetz fixed-point theorem

The final theorem of the course is a far-reaching generalisation of the Brouwer
fixed-point theorem.

Definition 6.19. Let X be a triangulable space and φ ∶X →X a continuous
map. The Lefschetz number of φ is defined to be

L(φ) ∶=∑
n∈Z

(−1)ntr(φ∗ ∶Hn(X;Q)→Hn(X;Q))

which, as usual, we note is a finite sum.

The first thing to notice is that this is a generalisation of Euler charac-
teristic.

Remark 6.20. If X is triangulable then χ(X) = L(idX), since the trace of the
identity map on a vector space is the dimension.

Like Euler characteristic, the Lefschetz number can be computed at the
level of chains.

Lemma 6.21. If f ∶K →K is a simplicial self-map of a simplicial complex
then

L(∣f ∣) ∶=∑
n∈Z

(−1)n tr(fn ∶ Cn(K;Q)→ Cn(K;Q)) .

Proof. First, consider the following commutative diagram of linear maps of
vector spaces, with exact rows.

0 A B C 0

0 A′ B′ C ′ 0

α β γ
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It’s an easy exercise in linear algebra to see that tr(β) = tr(α) + tr(γ). The
proof is now identical to the proof of Lemma 6.17.

We’re now ready to state the Lefschetz fixed-point theorem. We only
sketch the proof, which is non-examinable.

Theorem 6.22 (Lefschetz fixed-point theorem). Let φ ∶X →X be a contin-
uous self-map of a triangulable space. If L(φ) ≠ 0 then φ has a fixed point.

Sketch proof. We prove the contrapositive: if φ has no fixed point then L(φ) =
0. By compactness, if φ has no fixed point then there is δ > 0 such that
∥x − φ(x)∥ > δ for all x ∈ X. We now choose a simiplicial complex K, and
identify ∣K ∣ with X, so that mesh(K) < δ/2. In particular, if x ∈ σ ∈ K then
φ(x) ∉ σ.

Let f ∶K(r) →K is a simplicial approximation to φ. If v is a vertex of K(r)

contained in a simplex σ ∈K then φ(v) ∈ StK(r)(f(v)) so ∥φ(v)−f(v)∥ < δ/2.
But ∥φ(v) − v∥ > δ and so ∥v − f(v)∥ > δ/2. Therefore, f(v) ∉ σ.

Let ι● ∶ C●(K;Q) → C●(K(r);Q) be the map that induces the canonical
identification on homology. For each n-simplex σ ∈K, ιn(σ) is supported on
simplices contained in σ. Therefore, since f takes vertices of σ out of σ, it
follows that fn ○ ιn(σ) is supported on simplices that are disjoint from σ.

Since φ∗ is induced at the level of chains by fn ○ ιn, we now have

L(φ) =∑
n∈Z

(−1)ntr(fn ○ ιn)

by Lemma 6.21. But fn ○ ιn moves every simplex off itself and so the corre-
sponding matrix has zeroes on the diagonal. Therefore its trace is zero and
the result follows.

We immediately obtain a dramatic generalisation of the Brouwer fixed-
point theorem.

Corollary 6.23. If X is triangulable and contractible then any continuous
self-map φ ∶X →X has a fixed point.

Proof. The only non-zero term in L(φ) comes from the 0-dimensional ho-
mology. The map φ∗ ∶ H0(X;Q) → H0(X;Q) ≅ Q is the identity map, and
so L(φ) = 1. Therefore, by Theroem 6.22, φ has a fixed point.
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